Displaying publications 21 - 40 of 56 in total

Abstract:
Sort:
  1. Prasad N, Yang B, Kong KW, Khoo HE, Sun J, Azlan A, et al.
    PMID: 23710209 DOI: 10.1155/2013/154606
    Nypa fruticans Wurmb. is one of the important underutilized fruit of Malaysia, which lacks scientific attention. Total phenolics, flavonoid content, and antioxidant capacities from endosperm extracts of Nypa fruticans (unripe and ripe fruits) were evaluated. Endosperm extract of unripe fruits (EEU) exhibited the highest phenolics (135.6 ± 4.5 mg GAE/g), flavonoid content (68.6 ± 3.1 RE/g), and antioxidant capacity. Free radical scavenging capacity of EEU as assessed by 2-2'-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radicals showed inhibitory activity of 78 ± 1.2% and 85 ± 2.6%, respectively. Beta carotene bleaching coefficient of EEU was higher (2550 ± 123), when compared to endosperm extract of ripe fruits (1729 ± 172). Additionally, EEU exhibited high antioxidant capacity by phosphomolybdenum method and ferric reducing antioxidant power values. Eight phenolic compounds from Nypa fruticans endosperm extracts were identified and quantified by ultra-high-performance liquid chromatography. Chlorogenic acid, protocatechuic acid, and kaempferol were the major phenolic compounds. Thus this fruit could be used as a potential source of natural antioxidant.
    Matched MeSH terms: Hydroxybenzoates
  2. Cheong MW, Chong ZS, Liu SQ, Zhou W, Curran P, Bin Yu
    Food Chem, 2012 Sep 15;134(2):686-95.
    PMID: 23107679 DOI: 10.1016/j.foodchem.2012.02.162
    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid.
    Matched MeSH terms: Hydroxybenzoates/analysis*
  3. Sulaiman SF, Ooi KL
    J Agric Food Chem, 2012 Nov 28;60(47):11832-8.
    PMID: 23136968 DOI: 10.1021/jf303736h
    Mature-green and ripe fleshes from 12 samples of Mangifera were selected for this study. The mature-green fleshes were found to have higher vitamin C contents than the ripe fleshes. However, not all higher total or individual phenolic contents were measured from the mature-green fleshes. The highest contents of vitamin C and total phenolics were respectively measured from the aqueous extracts of mature-green (255.86 ± 12.98 μg AAE/g sample) and ripe (142.57 ± 0.38 μg GAE/g sample) fleshes of M. petandra cv. Pauh. Gallic acid and mangiferin were detected in all aqueous extracts. The extracts of the mature-green flesh of M. indica cv. Chokanan and the ripe flesh of M. indica cv. Siku Raja, respectively, exhibited the greatest 1,1-diphenyl-2-picrylhydrazyl radical (DPPH)-scavenging activity (408.21 ± 5.37 μg TE/g sample) and metal chelating activity (93.68 ± 0.74%). The combined or potentiation effects of the moderate vitamin C, gallic acid, and mangiferin contents in both extracts may be responsible for the activities. The highest mangiferin content (31.72 ± 2.57 μg/g sample) in the mature-green M. caesia (Binjai) could be the major contributor to its highest FRAP activity (868.29 ± 2.71 μg TE/g sample). This paper reports apparently the first comparative study highlighting the antioxidant activities of these fruit fleshes.
    Matched MeSH terms: Hydroxybenzoates/analysis
  4. Syarifah-Noratiqah SB, Zulfarina MS, Ahmad SU, Fairus S, Naina-Mohamed I
    Int J Med Sci, 2019;16(5):711-719.
    PMID: 31217739 DOI: 10.7150/ijms.29934
    The oil palm tree (Elaeis guineensis) from the family Arecaceae is a high oil-producing agricultural crop. A significant amount of vegetation liquor is discarded during the palm oil milling process amounting to 90 million tons per year around the world. This water-soluble extract is rich in phenolic compounds known as Oil Palm Phenolics (OPP). Several phenolic acids including the three isomers of caffeoylshikimic acid (CFA), p-hydroxybenzoic acid (PHBA), protocatechuic acid (PCA) and hydroxytyrosol are among the primary active ingredients in the OPP. Previous investigations have reported several positive pharmacological potentials by OPP such as neuroprotective and atheroprotective effects, anti-tumor and reduction in Aβ deposition in Alzheimer's disease model. In the current review, the pharmacological potential for CFA, PHBA, PCA and hydroxytyrosol is carefully reviewed and evaluated.
    Matched MeSH terms: Hydroxybenzoates/chemistry
  5. Gholivand S, Lasekan O, Tan CP, Abas F, Wei LS
    Food Chem, 2017 Jun 01;224:365-371.
    PMID: 28159281 DOI: 10.1016/j.foodchem.2016.12.075
    The solubility limitations of phenolic acids in many lipidic environments are now greatly improved by their enzymatic esterification in ionic liquids (ILs). Herein, four different ILs were tested for the esterification of dihydrocaffeic acid with hexanol and the best IL was selected for the synthesis of four other n-alkyl esters with different chain-lengths. The effect of alkyl chain length on the anti-oxidative properties of the resulted purified esters was investigated using β-carotene bleaching (BCB) and free radical scavenging method DPPH and compared with butylated hydroxytoluene (BHT) as reference compound. All four esters (methyl, hexyl, dodecyl and octadecyl dihydrocaffeates) exhibited relatively strong radical scavenging abilities. The scavenging activity of the test compounds was in the following order: methyl ester>hexyl ester⩾dodecyl ester>octadecyl ester>BHT while the order for the BCB anti-oxidative activity was; BHT>octadecyl ester>dodecyl ester>hexyl ester>methyl ester.
    Matched MeSH terms: Hydroxybenzoates/chemistry
  6. Chia TS, Quah CK
    Acta Crystallogr B Struct Sci Cryst Eng Mater, 2017 Apr 01;73(Pt 2):285-295.
    PMID: 28362293 DOI: 10.1107/S2052520616019405
    Isonicotinamide-4-methoxybenzoic acid co-crystal (1), C6H6N2O·C8H8O3, is formed through slow evaporation from methanol solution and it undergoes a first-order isosymmetry (monoclinic I2/a ↔ monoclinic I2/a) structural phase transition at Tc= 142.5 (5) K, which has been confirmed by an abrupt jump of crystallographic interaxial angle β from variable-temperature single-crystal XRD and small heat hysteresis (6.25 K) in differential scanning calorimetry measurement. The three-dimensional X-ray crystal structures of (1) at the low-temperature phase (LTP) (100, 140 and 142 K) and the high-temperature phase (HTP) (143, 150, 200, 250 and 300 K) were solved and refined as a simple non-disordered model with final R[F2> 2σ(F2)] ≃ 0.05. The asymmetric unit of (1) consists of crystallographically independent 4-methoxybenzoic acid (A) and isonicotinamide (B) molecules in both enantiotropic phases. Molecule A adopts a `near-hydroxyl' conformation in which the hydroxyl and methoxy groups are positioned on the same side. Both `near-hydroxyl' and `near-carbonyl' molecular conformations possess minimum conformational energies with an energy difference of
    Matched MeSH terms: Hydroxybenzoates/chemistry
  7. Ghasemzadeh A, Jaafar HZ
    PMID: 24289290 DOI: 10.1186/1472-6882-13-341
    Phytochemicals and antioxidants from plant sources are of increasing interest to consumers because of their roles in the maintenance of human health. Most of the secondary metabolites of herbs are used in a number of pharmaceutical products.
    Matched MeSH terms: Hydroxybenzoates/pharmacology; Hydroxybenzoates/chemistry
  8. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al.
    Plant Foods Hum Nutr, 2015 Jun;70(2):184-92.
    PMID: 25800644 DOI: 10.1007/s11130-015-0478-5
    The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
    Matched MeSH terms: Hydroxybenzoates/analysis; Hydroxybenzoates/pharmacology
  9. Jubaidi FF, Zainalabidin S, Mariappan V, Budin SB
    Int J Mol Sci, 2020 Aug 22;21(17).
    PMID: 32842567 DOI: 10.3390/ijms21176043
    As the powerhouse of the cells, mitochondria play a very important role in ensuring that cells continue to function. Mitochondrial dysfunction is one of the main factors contributing to the development of cardiomyopathy in diabetes mellitus. In early development of diabetic cardiomyopathy (DCM), patients present with myocardial fibrosis, dysfunctional remodeling and diastolic dysfunction, which later develop into systolic dysfunction and eventually heart failure. Cardiac mitochondrial dysfunction has been implicated in the development and progression of DCM. Thus, it is important to develop novel therapeutics in order to prevent the progression of DCM, especially by targeting mitochondrial dysfunction. To date, a number of studies have reported the potential of phenolic acids in exerting the cardioprotective effect by combating mitochondrial dysfunction, implicating its potential to be adopted in DCM therapies. Therefore, the aim of this review is to provide a concise overview of mitochondrial dysfunction in the development of DCM and the potential role of phenolic acids in combating cardiac mitochondrial dysfunction. Such information can be used for future development of phenolic acids as means of treating DCM by alleviating the cardiac mitochondrial dysfunction.
    Matched MeSH terms: Hydroxybenzoates/pharmacology*; Hydroxybenzoates/therapeutic use
  10. Yew YP, Shameli K, Mohamad SE, Lee KX, Teow SY
    Int J Mol Sci, 2020 Jul 09;21(14).
    PMID: 32659939 DOI: 10.3390/ijms21144851
    Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50-0.734 mg/mL) compared to the unloaded NCs (IC50-1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
    Matched MeSH terms: Hydroxybenzoates/pharmacology; Hydroxybenzoates/chemistry*
  11. Buskaran K, Hussein MZ, Mohd Moklas MA, Fakurazi S
    Int J Mol Sci, 2020 Aug 16;21(16).
    PMID: 32824281 DOI: 10.3390/ijms21165874
    The development of nanocomposites has swiftly changed the horizon of drug delivery systems in defining a new platform. Major understanding of the interaction of nanocomposites with cells and how the interaction influences intracellular uptake is an important aspect to study in order to ensure successful utilisation of the nanocomposites. Studies have suggested that the nanocomposites' ability to permeate into biological cells is attributable to their well-defined physicochemical properties with nanoscale size, which is relevant to the nanoscale components of biology and cellular organelles. The functionalized graphene oxide coated with polyethylene glycol, loaded with protocatechuic acid and folic acid (GOP-PCA-FA) nanocomposite intracellular uptake was analysed using transmission electron microscope. The accumulation of fluorescent-labelled nanocomposites in the HepG2 cell was also analysed using a fluorescent microscope. In vitro cellular uptake showed that there was uptake of the drug from 24 h into the cells and the release study using fluorescently tagged nanocomposite demonstrated that release and accumulation were observed at 24 h and 48 h. Moreover, the migration ability of tumor cells is a key step in tumor progression which was observed 48 h after treatment. The GOP serves as a potential nanocarrier system which is capable of improving the therapeutic efficacy of drugs and biomolecules in medical as well as pharmaceutical applications through the enhanced intracellular release and accumulation of the encapsulated drugs. Nonetheless, it is essential to analyse the translocation of our newly developed GOP-PCA-FA, and its efficiency for drug delivery, effective cellular uptake, and abundant intracellular accumulation would be compromised by possible untoward side effects.
    Matched MeSH terms: Hydroxybenzoates/administration & dosage*; Hydroxybenzoates/chemistry
  12. Musa M, Wan Ibrahim WA, Mohd Marsin F, Abdul Keyon AS, Rashidi Nodeh H
    Food Chem, 2018 Nov 01;265:165-172.
    PMID: 29884368 DOI: 10.1016/j.foodchem.2018.04.020
    Graphene-magnetite composite (G-Fe3O4) was successfully synthesized and applied as adsorbent for magnetic solid phase extraction (MSPE) of two phenolic acids namely 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) from stingless bee honey prior to analysis using high performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/Vis). Several MSPE parameters affecting extraction of these two acids were optimized. Optimum MSPE conditions were 50 mg of G-Fe3O4 adsorbent, 5 min extraction time at 1600 rpm, 30 mL sample volume, sample solution pH 0.5, 200 µL methanol as desorption solvent (5 min sonication assisted) and 5% w/v NaCl. The LODs (3 S/N) calculated for 4-HB and 3,4-DHB were 0.08 and 0.14 µg/g, respectively. Good relative recoveries (72.6-110.6%) and reproducibility values (RSD 
    Matched MeSH terms: Hydroxybenzoates/analysis*; Hydroxybenzoates/isolation & purification
  13. Bullo S, Buskaran K, Baby R, Dorniani D, Fakurazi S, Hussein MZ
    Pharm Res, 2019 Apr 24;36(6):91.
    PMID: 31020429 DOI: 10.1007/s11095-019-2621-8
    BACKGROUND: The chemotherapy of cancer has been complicated by poor bioavailability, adverse side effects, high dose requirement, drug resistance and low therapeutic indices. Cancer cells have different ways to inhibit the chemotherapeutic drugs, use of dual/multiple anticancer agents may be achieve better therapeutic effects in particular for drug resistant tumors. Designing a biocompatible delivery system, dual or multiple drugs could addressing these chemotherapy drawbacks and it is the focus of many current biomedical research.

    METHODS: In the present study, graphene oxide-polyethylene glycol (GOPEG) nanocarrier is designed and loaded with two anticancer drugs; Protocatechuic acid (PCA) and Chlorogenic acid (CA). The designed anticancer nanocomposite was further coated with folic acid to target the cancer cells, as their surface membranes are overexpressed with folate receptors.

    RESULTS: The particle size distribution of the designed nanocomposite was found to be narrow, 9-40 nm. The release profiles of the loaded drugs; PCA and CA was conducted in human body simulated PBS solutions of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). Anticancer properties were evaluated against cancerous cells i.e. liver cancer, HEPG2 and human colon cancer, HT-29 cells. The cytocompatbility was assessed on normal 3T3 fibroblasts cells.

    CONCLUSION: The size of the final designed anticancer nanocomposite formulation, GOPEG-PCACA-FA was found to be distributed at 9-40 nm with a median of 8 nm. The in vitro release of the drugs PCA and CA was found to be of sustained manner which took more than 100 h for the release. Furthermore, the designed formulation was biocompatible with normal 3T3 cells and showed strong anticancer activity against liver and colon cancer cells.

    Matched MeSH terms: Hydroxybenzoates/pharmacology; Hydroxybenzoates/chemistry*
  14. Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    Molecules, 2018 Feb 24;23(2).
    PMID: 29495251 DOI: 10.3390/molecules23020500
    We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
    Matched MeSH terms: Hydroxybenzoates/administration & dosage*; Hydroxybenzoates/chemistry
  15. Zahid NA, Jaafar HZE, Hakiman M
    Plants (Basel), 2021 Mar 26;10(4).
    PMID: 33810290 DOI: 10.3390/plants10040630
    'Bentong' ginger is the most popular variety of Zingiber officinale in Malaysia. It is vegetatively propagated and requires a high proportion of rhizomes as starting planting materials. Besides, ginger vegetative propagation using its rhizomes is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied in many plant species to produce their disease-free planting materials. As 'Bentong' ginger is less known for its micropropagation, this study was conducted to investigate the effects of Clorox (5.25% sodium hypochlorite (NaOCl)) on explant surface sterilization, effects of plant growth regulators, and basal media on shoots' multiplication and rooting. The secondary metabolites and antioxidant activities of the micropropagated plants were evaluated in comparison with conventionally propagated plants. Rhizome sprouted buds were effectively sterilized in 70% Clorox for 30 min by obtaining 75% contamination-free explants. Murashige and Skoog (MS) supplemented with 10 µM of zeatin was the suitable medium for shoot multiplication, which resulted in the highest number of shoots per explant (4.28). MS medium supplemented with 7.5 µM 1-naphthaleneacetic acid (NAA) resulted in the highest number of roots per plantlet. The in vitro-rooted plantlets were successfully acclimatized with a 95% survival rate in the ex vitro conditions. The phytochemical analysis showed that total phenolic acid and total flavonoid content and antioxidant activities of the micropropagated plants were not significantly different from the conventionally propagated plants of 'Bentong' ginger. In conclusion, the present study's outcome can be adopted for large-scale propagation of disease-free planting materials of 'Bentong' ginger.
    Matched MeSH terms: Hydroxybenzoates
  16. Sun, J., Jiang, Y., Amin, I., Li, Z., Prasad, K.N., Duan, X., et al.
    MyJurnal
    This research was to determine nutritional composition, essential and toxic elemental content, and major phenolic acid with antioxidant activity in Kadsura coccinea fruit. The results indicated that Kadsura coccinea fruit exhibited the high contents of total protein, total fat, ash and essential elements such as calcium (Ca), ferrum (Fe) and phosphorus (P). The levels of four common toxic elements, i.e. cadmium (Cd), mercury (Hg), arsenic (As) and lead (Pb), were lower than legal limits. By high-performance liquid chromatography (HPLC) analysis, gallic acid was identified as major phenolic acid in peel and pulp tissues. Its contents were no significant difference in both tissues. In comparison with two commercial antioxidants, the major phenolic acid extracted from Kadsura coccinea exhibited stronger 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity and reducing power. Kadsura coccinea fruit is a good source of nutrition and natural antioxidant. It is worthwhile to popularize this exotic fruit around the world.
    Matched MeSH terms: Hydroxybenzoates
  17. Saifullah B, Buskaran K, Shaikh RB, Barahuie F, Fakurazi S, Mohd Moklas MA, et al.
    Nanomaterials (Basel), 2018 Oct 11;8(10).
    PMID: 30314340 DOI: 10.3390/nano8100820
    The treatment of cancer through chemotherapy is limited by its toxicity to healthy tissues and organs, and its inability to target the cancer site. In this study, we have designed an anticancer nanocomposite delivery system for protocatechuic acid (PCA) using graphene oxide⁻polyethylene glycol as the nanocarrier, and coated with folic acid (GO⁻PEG⁻PCA⁻FA) for targeting the cancer cells. The designed anticancer delivery system was found to show much better anticancer activity than the free drug PCA against liver cancer HEP-G2 cells and human colon cancer HT-29 cells; at same time, it was found to be less toxic to normal fibroblast 3T3 cells. The folate-coated anticancer delivery system was found to show better activity then the free drug and the uncoated anticancer delivery system. The in vitro release of the PCA was found to be sustained in human physiological pHs, i.e., blood pH 7.4 and intracellular lysosomal pH 4.8. These in vitro findings are highly encouraging for further in vivo evaluation studies.
    Matched MeSH terms: Hydroxybenzoates
  18. Fatariah Z, Zulkhairuazha TT, Wan Rosli W
    Sains Malaysiana, 2014;43:1181-1187.
    Ash gourd (Benincasa hispida, Bh) is traditionally claimed useful in treating asthma, cough, diabetes, haemoptysis and hemorrhages from internal organs, epilepsy, fever and balancing of the body heat. One of the major phenolic acids presented in Benincasa hispida is gallic acid, a phenolic compound which is linked with its ability in reducing Type II diabetes. The aim of the present study was to investigate the effect of different extraction techniques on the concentration of gallic acid in Bh. The Bh extracts were prepared with three different techniques namely; fresh extract (FE), low heating (LH) and drying and heating (DH). The gallic acid has been detected and quantified using high performance liquid chromatography (HPLC) coupled with uv-Vis detector. The amount of gallic acid detected in FE, LH and DH were 0.036, 0.050 and 0 272 mg1100 g, respectively. The limits of detection was 0.75 liglmL while the limit of quantification and recovery were 2.50 liglmL and 95 .53% , respectively. In summary, HPLC technique coupled with vv detector systems able to quantify gallic acid in Bh extracts. The gallic acid were present at higher concentration in Bh extracted using drying and heating, followed by low heating and fresh extract methods.
    Matched MeSH terms: Hydroxybenzoates
  19. Leow SS, Luu A, Shrestha S, Hayes KC, Sambanthamurthi R
    Exp Gerontol, 2018 Mar 15;106:198-221.
    PMID: 29550564 DOI: 10.1016/j.exger.2018.03.013
    Palm fruit juice (PFJ) containing oil palm phenolics is obtained as a by-product from oil palm (Elaeis guineensis) fruit milling. It contains shikimic acid, soluble fibre and various phenolic acids including p-hydroxybenzoic acid and three caffeoylshikimic acid isomers. PFJ has also demonstrated beneficial health properties in various biological models. Increasing concentrations of PFJ and different PFJ fractions were used to assess growth dynamics and possible anti-ageing properties in fruit flies (Drosophila melanogaster) genotype w1118. Microarray gene expression analysis was performed on whole fruit fly larvae and their fat bodies, after the larvae were fed a control Standard Brandeis Diet (SBD) with or without PFJ. Transcripts from Affymetrix GeneChips were utilised to identify the possible mechanisms involved, with genes having fold changes > |1.30| and p 
    Matched MeSH terms: Hydroxybenzoates
  20. Buskaran K, Hussein MZ, Moklas MAM, Masarudin MJ, Fakurazi S
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071389 DOI: 10.3390/ijms22115786
    Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.
    Matched MeSH terms: Hydroxybenzoates/administration & dosage; Hydroxybenzoates/pharmacokinetics; Hydroxybenzoates/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links