Several types of water treatment technologies including adsorption are now being used to treat polluted water. In this paper the removal of phenol by adsorption will be discussed. Activated carbons are successfully applied for purification of potable water and the removal of organic pollutants in wastwater. This paper is concerned with a low cost approach to treating waste water that is significant especially for those countries where oil palm is an available agricultural product like Malaysia, Ivory Coast, Nigeria, Thailand, Papua New Guinea. In the coastal region coconut is an available agricultural product and activated carbon prepared using coconut shell is also an economical method of water treatment. The materials used in this study were Commercial Activated Carbon (CAC), prepared from coconut shell and Modified Oil Palm Shell (MOPAS) of 1 to 2 mm diameters. The surface area of CAC and MOPAS was 38.5 m2/g and 38.2 m2/g respectively and the iodine number was determined as 674 and 454 for CAC and MOPAS, respectively. From the study the result shows above 70% removal efficiency for 5 mg/L and 40% removal efficiency for 20 mg/L of phenol solution. The performance efficiency will be discussed based on batch test, following Freundlich adsorption isotherm. The results indicate that CAC exhibits a higher adsorptive capacity (Kf of 0.079) as compared to MOPAS (Kf of 0.048). Hence a better removal efficiency for CAC at lower concentration of phenol. Results from column tests show a better adsorptive capacity for CAC (2.73) as compared to MOPAS (2.48).
The removal of natural organic matter (NOM) using a continuous flow fixed bed granular activated carbon (GAC) column was studied and the results were then fitted with the Adams-Bohart, Bed-Depth-Service-Time and Clarks models. The GAC, KI-6070 and KI-8085 used in the study had external surface areas of 277 m2/g and 547 m2/g, respectively. Adsorption of NOM by the GAC was complex and involved more than one rate-limiting step. The critical bed depths for KI-6070 and KI-8085 were 0.24 m and 0.3 m, respectively. The Clark model was more effective in simulating the absorbent breakthrough process as compared to the Adams-Bohart model. The lower empty bed contact time (EBCT) i.e. 15 minutes gave a better fit to the Clark Model as compared to EBCT of 20 and 30 minutes.
Laboratory studies utilizing radioisotopic techniques were conducted to determine the adsorption, desorption, and mobility of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxanthiepin3-oxide) and methamidophos (O,S-dimethyl phosphorothioate) in sandy loam and clay soils of the Cameron Highlands and the Muda rice-growing area, respectively. High Freundlich adsorption distribution coefficients [Kads(f)] for endosulfan (6.74 and 18.75) and low values for methamidophos (0.40 and 0.98) were obtained in the sandy loam and clay soils, respectively. The observed Koc values for endosulfan were 350.85 (sandy loam) and 1143.19 (clay) while Koc values of 20.92 (sandy loam) and 59.63 (clay) were obtained for methamidophos. Log Kow of 0.40 and 1.25 were calculated for endosulfan as well as -1.96 and -1.21 for methamidophos in the sandy loam and clay soils, respectively. Desorption was common to both pesticides but the desorption capacity of methamidophos from each soil type far exceeded that of endosulfan. Soil thin layer chromatography (TLC) and column studies showed that while methamidophos was very mobile in both soils, endosulfan displayed zero mobility in clay soil.
Trypsin has been immobilized by adsorption onto Amberlite XAD-7 beads. The Michaelis constant (Km) of the enzyme was increased about sevenfold following the immobilization. Its rate of penetration into the porous beads was determined by staining the beads, which had been split, with naphthol blue black. The extent of diffusional rate limitation of immobilized trypsin was related to the penetration depth of the enzyme into the beads. This can be controlled by manipulating the conditions during the preparation of the immobilized enzyme.
The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.
Effective treatment of wastewater is crucial in order to achieve a sustainable development. For instance, highly efficient treatment processes with low capital requirements are the major prerequisite for implementation of the advanced wastewater treatment operations. Among various available treatment methods, the application of coagulation-flocculation process by using natural coagulant; chitosan has vast advantages such as low operating cost, environmental friendly and highly effective in the wastewater treatment operations. The application of nanotechnology in numerous treatment techniques are considered as the most significant advances in water and wastewater treatment practices. The utilization of magnesium oxide (MgO) as nano-adsorbent has recently gained attention as a potential treatment method in water remediation particularly for treating effluents with high amount of organic dyes and heavy metals due to its high treatment efficiency, low cost, versatility and environment compatibility. The purpose of this study was to determine the effectiveness of coagulation-flocculation process when using novel coagulant in which MgO coated with chitosan by investigating the percentage removal of several significant parameters which were turbidity, chemical oxygen demand (COD) and suspended solid. The removal efficiencies were determined throughout a series of experiments carried out using a standard jar test procedure in which three different coagulants; chitosan, MgO coated with chitosan and MgO were tested on water samples taken from Sg. Pusu. In addition, a set of experiments was designed using response surface methodology (RSM) in order to optimize adsorption of chitosan into MgO. The experiments were conducted at various concentrations of chitosan (10-30 mg/ml) and selected MgO dosage ranges (10-30 mg). From the obtained results, it was found that chitosan-MgO coagulant has good removal efficiencies of turbidity, chemical oxygen demand (COD) and suspended solids at 92%, 91%, and 98% respectively from the optimization of adsorption of chitosan-MgO. The MgO coated with chitosan is the best coagulant in this study compared to chitosan and MgO alone because of the ability of treating the river water with up to 90 % removal for all the main parameters. The results showed that coagulation-flocculation is effective as a treatment for treating river water.
Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
In the present study, magnetic oil palm empty fruits bunch cellulose nanofiber (M-OPEFB-CNF) composite was isolated by sol-gel method using cellulose nanofiber (CNF) obtained from oil palm empty fruits bunch (OPEFB) and Fe3O4 as magnetite. Several analytical methods were utilized to characterize the mechanical, chemical, thermal, and morphological properties of the isolated CNF and M-OPEFB-CNF. Subsequently, the isolated M-OPEFB-CNF composite was utilized for the adsorption of Cr(VI) and Cu(II) from aqueous solution with varying parameters, such as pH, adsorbent doses, treatment time, and temperature. Results showed that the M-OPEFB-CNF as an effective bio-sorbent for the removal of Cu(II) and Cr(VI) from aqueous solution. The adsorption isotherm modeling revealed that the Freundlich equation better describes the adsorption of Cu(II) and Cr(VI) on M-OPEFB-CNF composite. The kinetics studies revealed the pseudo-second-order kinetics model was a better-described kinetics model for the removal of Cu(II) and Cr(VI) using M-OPEFB-CNF composite as bio-sorbent. The findings of the present study showed that the M-OPEFB-CNF composite has the potential to be utilized as a bio-sorbent for heavy metals removal.
In recent years, there are increasing interest on applying ultrasonic irradiation for the synthesis of zeolite due to its advantages including remarkable shortened synthesis duration. In this project, the potential of ultrasonic irradiation treatment on the synthesis of zeolite RHO was investigated. Ultrasonic irradiation treatment time was varied from 30 to 120 minutes for the synthesis of zeolite RHO. The zeolite RHO solid samples were characterized with X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and nitrogen adsorption-desorption analysis. The application of ultrasonic irradiation treatment in this study has accelerated the synthesis of zeolite RHO where the synthesis duration has been significantly shortened to 2 days compared to 8 days required by conventional hydrothermal heating without ultrasonic irradiation treatment. Highly crystalline zeolite RHO crystals in truncated octahedron morphology were successfully formed.
Glyphosate (GLY) is a major herbicide used throughout the world, and its continuous application has become an environmental issue. Adsorption is an important mechanism for removing organic contaminant in water. The present study characterized cow dung (CD) and rice husk ash (RHA), and determined the adsorption-desorption of GLY and its metabolite, aminomethylphoshonic acid (AMPA), on to them. The results revealed that both CD and RHA were alkaline and had no or low content of arsenic, cadmium, chromium and lead. The CD had lower surface area (13.104 mg2g-1) than RHA (21.500 m2g-1). The CD contained amines, phenol, ethers and carboxylic functional groups, while in addition to carboxylic and ether, RHA contains siloxane. Both CD and RHA had high affinities for GLY and AMPA. The Freundlich sorption coefficient (Kf) on AMPA were 2.915 and 2.660 for CD and RHA, respectively, while the values on GLY were 1.168 and 1.166 (mg g-1) for CD and RHA, respectively. Desorption of GLY only occurred at lower concentrations, while no desorption of AMPA was recorded, indicating their strong adsorption on CD and RHA. Considering their availabilities and affordable prices, both CD and RHA can be recommended as economical adsorbent for the removal of GLY and AMPA.
Lysozyme from crude chicken egg white (CEW) feedstock was successfully purified using a stirred fluidized bed adsorption system ion exchange chromatography where STREAMLINE SP and SP-XL high density adsorbents were selected as the adsorption carrier. The thermodynamic and kinetic studies were carried out to understand the characteristics of lysozyme adsorption by adsorbents under various conditions, including adsorption pH, temperature, lysozyme concentration and salt concentrations. Results showed that SP and SP-XL adsorbents achieved optimum lysozyme adsorption at pH 9 with capacity of ~139.77 and ~251.26 mg/mL, respectively. The optimal conditions obtained from batch studies were directly employed to operate in SFBA process. For SP-XL adsorbent, the recovery yield and purification factor of lysozyme were 93.78% and ~40 folds, respectively. For SP adsorbent, lysozyme can be eluted ~100% with purification factor of ~26 folds. These two adsorbents are highly suitable for use in direct recovery of lysozyme from crude CEW.
In this study, simultaneous adsorption of cationic dyes was investigated by using binary component solutions. Thiourea-modified poly(acrylonitrile-co-acrylic acid) (TMPAA) polymer was used as an adsorbent for uptake of cationic dyes (malachite green, MG and methylene blue, MB) from aqueous solution in a binary system. Adsorption tests revealed that TMPAA presented high adsorption of MG and MB at higher pH and higher dye concentrations. It suggested that there are strong electrostatic attractions between the surface functional groups of the adsorbent and cationic dyes. The equilibrium analyses explain that both extended Langmuir and extended models are suitable for the description of adsorption data in the binary system. An antagonistic effect was found, probably due to triangular (MG) and linear (MB) molecular structures that mutually hinder the adsorption of both dyes on TMPAA. Besides, the kinetic studies for sorption of MG and MB dyes onto adsorbent were better represented by a pseudo-second-order model, which demonstrates chemisorption between the polymeric TMPAA adsorbent and dye molecules. According to experimental findings, TMPAA is an attractive adsorbent for treatment of wastewater containing multiple cationic dyes.
Contaminant removal from water involves various technologies among which adsorption is considered to be simple, effective, economical, and sustainable. In recent years, nanocomposites prepared by combining clay minerals and polymers have emerged as a novel technology for cleaning contaminated water. Here, we provide an overview of various types of clay-polymer nanocomposites focusing on their synthesis processes, characteristics, and possible applications in water treatment. By evaluating various mechanisms and factors involved in the decontamination processes, we demonstrate that the nanocomposites can overcome the limitations of individual polymer and clay components such as poor specificity, pH dependence, particle size sensitivity, and low water wettability. We also discuss different regeneration and wastewater treatment options (e.g., membrane, coagulant, and barrier/columns) using clay-polymer nanocomposites. Finally, we provide an economic analysis of the use of these adsorbents and suggest future research directions.
Efforts to improve water quality have led to the development of green and sustainable water treatment approaches. Herein, nitrogen-doped magnetized hydrochar (mSBHC-N) was synthesized, characterized, and used for the removal of post-transition and transition heavy metals, viz. Pb2+ and Cd2+ from aqueous environment. mSBHC-N was found to be mesoporous (BET surface area - 62.5 m2/g) and paramagnetic (saturation magnetization - 44 emu/g). Both, FT-IR (with peaks at 577, 1065, 1609 and 3440 cm-1 corresponding to Fe - O stretching vibrations, C - N stretching, N - H in-plane deformation and stretching) and XPS analyses (with peaks at 284.4, 400, 530, 710 eV due to C 1s, N 1s, O 1s, and Fe 2p) confirmed the presence of oxygen and nitrogen containing functional groups on mSBHC-N. The adsorption of Pb2+ and Cd2+ was governed by oxygen and nitrogen functionalities through electrostatic and co-ordination forces. 75-80% of Pb2+ and Cd2+ adsorption at Co: 25 mg/L, either from deionized water or humic acid solution was accomplished within 15 min. The data was fitted to pseudo-second-order kinetic and Langmuir isotherm models, with maximum monolayer adsorption capacities being 323 and 357 mg/g for Cd2+and Pb2+ at 318 K, respectively. Maximum Cd2+ (82.6%) and Pb2+ (78.7%) were eluted with 0.01 M HCl, simultaneously allowing minimum iron leaching (2.73%) from mSBHC-N. In conclusion, the study may provide a novel, economical, and clean route to utilize agro-waste, such as sugarcane bagasse (SB), for aquatic environment remediation.
Multi-walled carbon nanotubes (CNTs) functionalized with a deep eutectic solvent (DES) were utilized to remove mercury ions from water. An artificial neural network (ANN) technique was used for modelling the functionalized CNTs adsorption capacity. The amount of adsorbent dosage, contact time, mercury ions concentration and pH were varied, and the effect of parameters on the functionalized CNT adsorption capacity is observed. The (NARX) network, (FFNN) network and layer recurrent (LR) neural network were used. The model performance was compared using different indicators, including the root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute percentage error (MAPE), mean square error (MSE), correlation coefficient (R2) and relative error (RE). Three kinetic models were applied to the experimental and predicted data; the pseudo second-order model was the best at describing the data. The maximum RE, R2 and MSE were 9.79%, 0.9701 and 1.15 × 10-3, respectively, for the NARX model; 15.02%, 0.9304 and 2.2 × 10-3 for the LR model; and 16.4%, 0.9313 and 2.27 × 10-3 for the FFNN model. The NARX model accurately predicted the adsorption capacity with better performance than the FFNN and LR models.
Inadequately treated or untreated wastewater greatly contribute to the release of unwanted toxic contaminants into water bodies. Some of these contaminants are persistent and bioaccumulative, becoming a great concern as they are released into the environment. Despite the abundance of wastewater treatment technologies, the adsorption method overall has proven to be an excellent way to treat wastewater from multiple industry sources. Because of its significant benefits, i.e., easy availability, handling, and higher efficiency with a low cost relative to other treatments, adsorption is opted as the best method to be used. However, biosorption using naturally found seaweeds has been proven to have promising results in removing pollutants, such as dyes from textile, paper, and the printing industry, nitrogen, and phosphorous and phenolic compounds, as well as heavy metals from various sources. Due to its ecofriendly nature together with the availability and inexpensiveness of raw materials, biosorption via seaweed has become an alternative to the existing technologies in removing these pollutants from wastewater effectively. In this article, the use of low-cost adsorbent (seaweed) for the removal of pollutants from wastewater has been reviewed. An extensive table summarises the applicability of seaweed in treating wastewater. Literature reported that the majority of research used simulated wastewater and minor attention has been given to biosorption using seaweed in the treatment of real wastewater.
In this study, the impact of different oxidizing agents on the structural integrity of activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) was studied for the removal of BTX from aqueous solution. Seven different combinations of green oxidizing agents (mild organic acids) in conjugation with NaOCl (basic oxidizing agent) were used. The modified adsorbents were analyzed by Brunauer, Emmett, and Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR), Boehm titration, Raman spectroscopy, thermal gravimetric analysis (TGA), x-ray diffraction (XRD), zeta potential, and variable pressure field emission scanning electron microscope (VPFESEM). The results suggested that the carbonaceous sorbents modified with combination of citric acid tartaric acid, malic acid and salicylic acid (CTMS-I) showed increased surface area (O-AC: 871.67 m2/g, O-MWCNTs: 336.37 m2/g) and total pore volume (O-AC: 0.59 cm3/g, O-MWCNTs: 0.04 cm3/g), with the significantly improved thermal stability. Preliminary batch adsorption experiments conducted using the present prepared O-AC and O-MWCNTs, showed an improved performance towards the adsorption of BTX, compared with other available reported adsorbents in the literature.
Coconut Shell (CS) as agricultural lignocellulosic biomaterial and agro-waste is predominantly available in India, Malaysia, Nigeria, Thailand, Sri Lanka, and Indonesia. It has proven to have effective durability characteristic, good abstractive resistance, high toughness, and good adsorption properties, and is most suitable for long standing use in many applications such as reinforcement, source of energy, fillers as well as activated carbon and its performance, efficiency and effectiveness depend wholly on whether is in form of nano-, micro-, and macro- particles. In this data, effects of milling time on morphological characteristics was experimented using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and X-Ray Fluorescence (XRF) analyses. The SEM images were taken at magnifications of 1.00kx, 2.00kx and 5.00kx which gives respective 50 µm, 20 µm and 10 µm in different milling time of 0, 20, 40 and 60 mins. Digital Vibratory Disc Milling Machine (VDMM) rated 380 V/50 Hz at 940 rpm was employed for the grinding and the morphology of the milled nanoparticles were characterised. It was revealed from the data collected that 0 min (i.e. 75 µm sieved) has the highest mean area value of 16.105 µm2 and area standard deviation of 200.738 µm2 with least value of a number of particle size distribution of 809 µm. In contrast, 60 mins milled has the lowest values for mean area and area standard deviation of 8.945 µm2 and 115.851 µm2 respectively with the highest number of particle size distribution of 2032 µm. It was observed that milling time increases the number of particle sizes distributions and reduces the area of particle size.
High concentration of fluoride in wastewater discharge from various industries is threatening the environment due to its hazardous effects and properties. This research work aims to develop an efficient adsorbent for fluoride removal in wastewater. Graphite oxide (GO) was impregnated
with ZnO nanoparticles as an adsorbent, and the effect of synthesis parameters of GO-ZnO adsorbent for fluoride removal were studied (sonication temperature, synthesis time, and ratio of GO to ZnO). The surface functional groups of these synthesized adsorbents were analyzed by
using FTIR. The synthesis parameters that contribute to the highest adsorption capacity and percentage removal are 5:1 ratio of GO-ZnO, 45 ºC of sonication temperature and 60 minutes of synthesis time, respectively. The highest value of adsorption capacity obtained from the fluoride
removal is 55.5 mg/g. The functional groups contained in the GO-ZnO adsorbent are hydroxyl group (O-H), C=O group, aromatics group, carboxyl group (C-O), epoxy group and alkoxy group. These functional groups showed significant impact towards fluoride adsorption due to the bonding of fluoride ion to the functional groups.