Displaying publications 401 - 420 of 10373 in total

Abstract:
Sort:
  1. Mukhtar MR, Hadi AH, Litaudon M, Awang K
    Fitoterapia, 2004 Dec;75(7-8):792-4.
    PMID: 15567268
    Five morphinoid alkaloids have been isolated from Dehaasia longipedicellata, namely (-) pallidine, a new alkaloid (+) pallidinine (1), (+)-milonine, (-) 8,14-dehydrosalutaridine and (-) sinoacutine.
    Matched MeSH terms: Alkaloids/chemistry*; Morphinans/chemistry*; Plant Extracts/chemistry*
  2. Hashim SP, Sidek HA, Halimah MK, Matori KA, Yusof WM, Zaid MH
    Int J Mol Sci, 2013;14(1):1022-30.
    PMID: 23296276 DOI: 10.3390/ijms14011022
    A systematic set of borotellurite glasses doped with manganese (1-x) [(B(2)O(3))(0.3)(TeO(2))(0.7)]-xMnO, with x = 0.1, 0.2, 0.3 and 0.4 mol%, were successfully synthesized by using a conventional melt and quench-casting technique. In this study, the remelting effect of the glass samples on their microstructure was investigated through density measurement and FT-IR spectra and evaluated by XRD techniques. Initial experimental results from XRD evaluation show that there are two distinct phases of glassy and crystallite microstructure due to the existence of peaks in the sample. The different physical behaviors of the studied glasses were closely related to the concentration of manganese in each phase. FTIR spectra revealed that the addition of manganese oxide contributes the transformation of TeO(4) trigonal bipyramids with bridging oxygen (BO) to TeO(3) trigonal pyramids with non-bridging oxygen (NBO).
    Matched MeSH terms: Boron/chemistry*; Boron Compounds/chemistry; Glass/chemistry*; Manganese/chemistry*; Oxides/chemistry; Oxygen/chemistry; Tellurium/chemistry*; Manganese Compounds/chemistry
  3. Ahmad R, Shaari K, Lajis NH, Hamzah AS, Ismail NH, Kitajima M
    Phytochemistry, 2005 May;66(10):1141-7.
    PMID: 15924918
    Four new furanoanthraquinones, 2-hydroxymethyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[1'-hydroxy-2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[2'-1-hydroxy-1-methylethyl)-dihydrofurano]anthraquinone and 2-methyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano] anthraquinone or capitellataquinone A-D and four known anthraquinones, rubiadin, anthragallol 2-methyl ether, alizarin 1-methyl ether and digiferruginol, together with scopoletin were isolated from the stems of Hedyotis capitellata Wall (Rubiaceae). Lucidin-3-O-beta-glucoside was isolated from the roots of the plant. Characterization of the new compounds was carried out by extensive NMR studies using FGCOSY, FGHMQC, FGHMBC and DEPT-135 in addition to other spectroscopic methods.
    Matched MeSH terms: Anthraquinones/chemistry*; Plant Stems/chemistry; Hedyotis/chemistry*
  4. Musa KH, Abdullah A, Al-Haiqi A
    Food Chem, 2016 Mar 1;194:705-11.
    PMID: 26471610 DOI: 10.1016/j.foodchem.2015.08.038
    A new computational approach for the determination of 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH-RSA) in food is reported, based on the concept of machine learning. Trolox standard was mix with DPPH at different concentrations to produce different colors from purple to yellow. Artificial neural network (ANN) was trained on a typical set of images of the DPPH radical reacting with different levels of Trolox. This allowed the neural network to classify future images of any sample into the correct class of RSA level. The ANN was then able to determine the DPPH-RSA of cinnamon, clove, mung bean, red bean, red rice, brown rice, black rice and tea extract and the results were compared with data obtained using a spectrophotometer. The application of ANN correlated well to the spectrophotometric classical procedure and thus do not require the use of spectrophotometer, and it could be used to obtain semi-quantitative results of DPPH-RSA.
    Matched MeSH terms: Biphenyl Compounds/chemistry*; Picrates/chemistry*; Free Radical Scavengers/chemistry*
  5. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Carbohydr Polym, 2016 08 01;146:36-45.
    PMID: 27112848 DOI: 10.1016/j.carbpol.2016.03.051
    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging.
    Matched MeSH terms: Polyesters/chemistry*; Starch/chemistry*; Arecaceae/chemistry*
  6. Xiang LY, P Mohammed MA, Samsu Baharuddin A
    Carbohydr Polym, 2016 09 05;148:11-20.
    PMID: 27185110 DOI: 10.1016/j.carbpol.2016.04.055
    Microcrystalline cellulose (MCC) extracted from empty fruit bunches (EFB), stalk and spikelet were characterised through physicochemical and microstructure analyses. Raw stalk fibres yielded the highest cellulose content (42.43%), followed by EFB (32.33%) and spikelet (18.83%). Likewise, lowest lignin and residual oil content was reported in raw stalk fibres compared to EFB and spikelet. SEM revealed significant changes on fibres' surface morphology throughout the extraction process. FTIR analysis showed that main characteristic peaks of hemicellulose and lignin was absent on the extracted MCC. The crystallinity index for MCC extracted from EFB (82.5%), stalk (82.2%) and spikelet (86.5%) was comparable to commercial MCC (81.9%). Results suggested stalk fibres is more preferable for the production of MCC compared to EFB and spikelet. Further rheological studies showed viscoelastic behaviour with no significant differences between commercial and stalk-based MCC, while modelling work showed ability to simulate complex deformation of the MCC-hydrogel/food mixture during processing/handling stage.
    Matched MeSH terms: Cellulose/chemistry*; Fruit/chemistry; Arecaceae/chemistry*
  7. El Zowalaty ME, Hussein Al Ali SH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ
    Int J Nanomedicine, 2015;10:3269-74.
    PMID: 25995633 DOI: 10.2147/IJN.S74469
    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe(2+) and Fe(3+) iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections.
    Matched MeSH terms: Chitosan/chemistry*; Nanocomposites/chemistry*; Magnetite Nanoparticles/chemistry*
  8. Ghasemzadeh A, Jaafar HZ, Juraimi AS, Tayebi-Meigooni A
    Molecules, 2015 Jun 11;20(6):10822-38.
    PMID: 26111171 DOI: 10.3390/molecules200610822
    Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05) were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.
    Matched MeSH terms: Ethanol/chemistry; Antioxidants/chemistry*; Flavonoids/chemistry*; Plant Extracts/chemistry; Oryza/chemistry*; Solvents/chemistry; Free Radical Scavengers/chemistry; Phytochemicals/chemistry*
  9. Mahmoodian R, Hamdi M, Hassan MA, Akbari A
    PLoS One, 2015;10(6):e0130836.
    PMID: 26111217 DOI: 10.1371/journal.pone.0130836
    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Rietveld refinement, nanoindentation, and micro-hardness to determine the product's properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials.
    Matched MeSH terms: Alloys/chemistry*; Graphite/chemistry*; Titanium/chemistry*
  10. Mohamed A, Anas AK, Bakar SA, Ardyani T, Zin WM, Ibrahim S, et al.
    J Colloid Interface Sci, 2015 Oct 1;455:179-87.
    PMID: 26070188 DOI: 10.1016/j.jcis.2015.05.054
    Here is presented a systematic study of the dispersibility of multiwall carbon nanotubes (MWCNTs) in natural rubber latex (NR-latex) assisted by a series of single-, double-, and triple-sulfosuccinate anionic surfactants containing phenyl ring moieties. Optical polarising microscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy have been performed to obtain the dispersion-level profiles of the MWCNTs in the nanocomposites. Interestingly, a triple-chain, phenyl-containing surfactant, namely sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3-phenylpropoxy)carbonyl) pentane-2-sulfonate (TCPh), has a greater capacity the stabilisation of MWCNTs than a commercially available single-chain sodium dodecylbenzenesulfonate (SDBS) surfactant. TCPh provides significant enhancements in the electrical conductivity of nanocomposites, up to ∼10(-2) S cm(-1), as measured by a four-point probe instrument. These results have allowed compilation of a road map for the design of surfactant architectures capable of providing the homogeneous dispersion of MWCNTs required for the next generation of polymer-carbon-nanotube materials, specifically those used in aerospace technology.
    Matched MeSH terms: Benzenesulfonates/chemistry; Latex/chemistry*; Polymers/chemistry; Succinates/chemistry*; Surface-Active Agents/chemistry*; Alkanesulfonic Acids/chemistry*; Nanotubes, Carbon/chemistry*; Nanocomposites/chemistry*
  11. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Yusoff NA, Bustam Khalil MA, et al.
    Bioresour Technol, 2015 Sep;192:212-8.
    PMID: 26038325 DOI: 10.1016/j.biortech.2015.05.029
    The objective of this study is to extract and characterize lignin from oil palm biomass (OPB) by dissolution in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), followed by the lignin extraction through the CO2 gas purging prior to addition of aluminum potassium sulfate dodecahydrate (AlK(SO4)2 · 12H2O). The lignin yield, Y(L) (%wt.) was found to be dependent of the types of OPB observed for all precipitation methods used. The lignin recovery, RL (%wt.) obtained from CO2-AlK(SO4)2 · 12H2O precipitation was, however dependent on the types of OPB, which contradicted to that of the acidified H2SO4 and HCl solutions of pH 0.7 and 2 precipitations. Only about 54% of lignin was recovered from the OPB. The FTIR results indicate that the monodispersed lignin was successfully extracted from the OPT, OPF and OPEFB having a molecular weight (MW) of 1331, 1263 and 1473 g/mol, and degradation temperature of 215, 207.5 and 272 °C, respectively.
    Matched MeSH terms: Alum Compounds/chemistry*; Carbon Dioxide/chemistry; Imidazoles/chemistry; Ions/chemistry; Lignin/chemistry*; Plant Oils/chemistry*; Solutions/chemistry; Ionic Liquids/chemistry*
  12. Jahurul MH, Zaidul IS, Ghafoor K, Al-Juhaimi FY, Nyam KL, Norulaini NA, et al.
    Food Chem, 2015 Sep 15;183:173-80.
    PMID: 25863626 DOI: 10.1016/j.foodchem.2015.03.046
    The large amount of waste produced by the food industries causes serious environmental problems and also results in economic losses if not utilized effectively. Different research reports have revealed that food industry by-products can be good sources of potentially valuable bioactive compounds. As such, the mango juice industry uses only the edible portions of the mangoes, and a considerable amount of peels and seeds are discarded as industrial waste. These mango by-products come from the tropical or subtropical fruit processing industries. Mango by-products, especially seeds and peels, are considered to be cheap sources of valuable food and nutraceutical ingredients. The main uses of natural food ingredients derived from mango by-products are presented and discussed, and the mainstream sectors of application for these by-products, such as in the food, pharmaceutical, nutraceutical and cosmetic industries, are highlighted.
    Matched MeSH terms: Fruit/chemistry*; Plant Extracts/chemistry*; Mangifera/chemistry*
  13. Campana M, Hosking SL, Petkov JT, Tucker IM, Webster JR, Zarbakhsh A, et al.
    Langmuir, 2015 May 26;31(20):5614-22.
    PMID: 25875917 DOI: 10.1021/acs.langmuir.5b00646
    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.
    Matched MeSH terms: Oils/chemistry*; Serum Albumin, Bovine/chemistry*; Water/chemistry*
  14. Lee MF, Chan ES, Tam KC, Tey BT
    J Chromatogr A, 2015 May 15;1394:71-80.
    PMID: 25836051 DOI: 10.1016/j.chroma.2015.03.034
    A thermo-responsive random copolymer, POEGMA (poly(oligoethylene glycol) methacrylate) grafted on cationized agarose adsorbent was used for size selective protein adsorption. The effects of OEGMA300 ((oligoethylene glycol) methyl ether methacrylate, Mn=300g/mol) content and temperature on the adsorption of bovine serum albumin (BSA) were evaluated. Increasing the content of OEGMA300 resulted a reduction in BSA adsorption due to the enhanced shielding effect of OEGMA300 chains. Grafting of POEGMA chains onto cationized agarose adsorbent reduced the BSA adsorption by more than 95% at 26.5°C, which is below the LCST (lower critical solution temperature) of POEGMA. The BSA adsorption capacities for adsorbents grafted with 10 and 20mol% of OEGMA300 decreased by 48% and 46% respectively at 38°C, a temperature higher than their LCSTs. The temperature-dependent adsorption of BSA on the adsorbents was attributed to changes in the polymer conformation. The thermal transition of grafted POEGMA conformation exposed the ligand when the temperature was increased. Myoglobin (Myo), which was smaller than BSA, its adsorption behavior was less dependent on the polymer conformation. The adsorption of myoglobin onto the adsorbent with and without POEGMA showed similar percentage of reduction whereas the adsorption of BSA onto the adsorbent with POEGMA decreased by 7.6 times compared to the one without POEGMA. The packed bed of POEGMA grafted adsorbent was used for flow through separation of a protein mixture consisted of virus-like particle, Hepatitis B virus-like particle (HBVLP), BSA and insulin aspart. The recovery of HBVLP in 20mol% of OEGMA300 grafted adsorbent was increased by 19% compared to ungrafted adsorbent. The flow through of BSA can be reduced by increasing the operating temperature above LCST of 20mol% of OEGMA300 while the smaller protein, insulin aspart, remained adsorbed onto the cationized surface. Hence, this thermo-responsive adsorbent has a potential for size-selective separation of protein especially for the recovery of large biomolecule.
    Matched MeSH terms: Hepatitis B virus/chemistry; Methacrylates/chemistry*; Myoglobin/chemistry; Polyethylene Glycols/chemistry*; Proteins/chemistry*; Serum Albumin, Bovine/chemistry; Virion/chemistry; Insulin Aspart/chemistry
  15. Tursun M, Kumar CS, Bilge M, Rhyman L, Fun HK, Parlak C, et al.
    PMID: 25829021 DOI: 10.1016/j.saa.2015.03.022
    Molecular structure and properties of 2-fluoro-4-bromobenzaldehyde (FBB, C7H4BrFO) was experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of FBB were supported with computational studies using the density functional theory, with the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Molecular dimer formed by the intermolecular hydrogen bonding was investigated. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. FBB crystallizes in orthorhombic space group P2(1)2(1)2(1) with the O-trans conformation. In order to investigate halogen effect, the chloro- (CBB) and bromo- (BBB) analogs of FBB have also been studied theoretically. It is observed that all compounds prefer the stable O-trans conformation. Although the free energy difference between the O-cis and O-trans conformers is less than 2.5 kcal/mol, the free energy rotational barrier is at least 7.4 kcal/mol. There is a good agreement between the experimentally determined structural parameters, and vibrational frequencies of FBB and those predicted theoretically.
    Matched MeSH terms: Benzaldehydes/chemistry*; Hydrocarbons, Brominated/chemistry*; Hydrocarbons, Chlorinated/chemistry*
  16. He Z, Tan JS, Lai OM, Ariff AB
    Food Chem, 2015 Aug 15;181:19-24.
    PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166
    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
    Matched MeSH terms: Glycoproteins/chemistry*; Metals/chemistry*; Synsepalum/chemistry*
  17. Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2019 Aug 01;68(8):803-808.
    PMID: 31292345 DOI: 10.5650/jos.ess19098
    Refined palm-pressed mesocarp fibre oil (PPFO), which can be obtained from one of the by-products of palm oil milling, palm-pressed mesocarp fibre, is categorized as palm sludge oil. So far, it has been given less attention and underutilized until some recent scientific reports revealing its high content of phytonutrients, carotenoids and vitamin E, which have been proven scientifically to possess anti-oxidant activity. The study evaluated the stability of PPFO as a carrier for plant-based emulsion. PPFO was extracted and examined for its positional distribution of fatty acids, saturation levels and iodine value (IV) using NMR spectroscopy. The PPFO-based emulsion was then prepared and subjected to stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point for 28 days. Phase separation was observed from PPFO-based emulsion stored at 40℃ from day-21 onwards while no creaming found in all the palm olein-based emulsions stored at the three storage temperatures. Nevertheless, results indicated that the PPFO-based emulsion passed all the tests above showing insignificant phase separation (p > 0.05) compared with those of palm olein commonly used in emulsion preparation. The findings suggested that PPFO enriched with valuable phytonutrients could be used as an alternative carrier oil in emulsion formulation, which is an important component in personal care products.
    Matched MeSH terms: Emulsions/chemistry*; Fruit/chemistry; Arecaceae/chemistry
  18. Abd Maurad Z, Abdullah LC, Anuar MS, Abdul Karim Shah NN, Idris Z
    Molecules, 2020 Jun 05;25(11).
    PMID: 32516971 DOI: 10.3390/molecules25112629
    Methyl ester sulphonates (MES) have been considered as an alternative green surfactant for the detergent market. Investigation on the purification of methyl ester sulphonates (MES) with various carbon chains of C12, C14, C16 and C16-18 derived from palm methyl ester is of great interest. These MES powders have been repeatedly crystallized with ethanol and the purity of MES has increased to a maximum of 99% active content and 96% crystallinity index without changing the structure. These crystallized MES with high active content have 1.0% to 2.3% moisture content and retained its di-salt content in the range of 5%. The crystallized MES C16 and C16-18 attained excellent flow characteristics. Morphology, structural and its crystallinity analyses showed that the crystals MES had good solubility properties, stable crystal structure (β polymorphic) and triclinic lateral structure when it is in high active content. The brittleness of MES crystals increased from a β' to a β subcell. Crystal with high brittleness has the potential to ease production of powder, which leads to a reduction in the cost of production and improves efficiency.
    Matched MeSH terms: Alkanesulfonates/chemistry*; Esters/chemistry*; Surface-Active Agents/chemistry*
  19. Kamarudin AF, Hizaddin HF, El-Blidi L, Ali E, Hashim MA, Hadj-Kali MK
    Molecules, 2020 Nov 03;25(21).
    PMID: 33152997 DOI: 10.3390/molecules25215093
    Deep eutectic solvents (DESs) are green solvents developed as an alternative to conventional organic solvents and ionic liquids to extract nitrogen compounds from fuel oil. DESs based on p-toluenesulfonic acid (PTSA) are a new solvent class still under investigation for extraction/separation. This study investigated a new DES formed from a combination of tetrabutylphosphonium bromide (TBPBr) and PTSA at a 1:1 molar ratio. Two sets of ternary liquid-liquid equilibrium experiments were performed with different feed concentrations of nitrogen compounds ranging up to 20 mol% in gasoline and diesel model fuel oils. More than 99% of quinoline was extracted from heptane and pentadecane using the DES, leaving the minutest amount of the contaminant. Selectivity was up to 11,000 for the heptane system and up to 24,000 for the pentadecane system at room temperature. The raffinate phase's proton nuclear magnetic resonance (1H-NMR) spectroscopy and GC analysis identified a significantly small amount of quinoline. The selectivity toward quinoline was significantly high at low solute concentrations. The root-mean-square deviation between experimental data and the non-random two-liquid (NRTL) model was 1.12% and 0.31% with heptane and pentadecane, respectively. The results showed that the TBPBr/PTSADES is considerably efficient in eliminating nitrogen compounds from fuel oil.
    Matched MeSH terms: Benzenesulfonates/chemistry*; Solvents/chemistry; Ionic Liquids/chemistry
  20. Mohd Syukri MS, A Rahman R, Mohamad Z, Md Illias R, Nik Mahmood NA, Jaafar NR
    Int J Biol Macromol, 2021 Jan 01;166:876-883.
    PMID: 33144251 DOI: 10.1016/j.ijbiomac.2020.10.244
    Enzyme immobilization has been known to be one of the methods to improve the stability and reusability of enzyme. In this study, a strategy to optimize laccase immobilization on polyethylene terephthalate grafted with maleic anhydride electrospun nanofiber mat (PET-g-MAH ENM) was developed. The development involves the screening and optimization processes of the crucial factors that influence the immobilization yield such as enzyme concentration, pH values, covalent bonding (CV) time, CV temperature, crosslinking (CL) time, CL temperature and glutaraldehyde concentration using two-level factorial design and Box-Behnken design (BBD), respectively. It was found that laccase concentration, pH values and glutaraldehyde concentration play important role in enhancing the immobilization yield of laccase on PET-g-MAH ENM in the screening process. Subsequently, the optimization result showed at 0.28 mg/ml laccase concentration, pH 3 and 0.45% (v/v) glutaraldehyde concentrations gave the highest immobilization yield at 87.64% which was 81.2% increment from the immobilization yield before optimization. Under the optimum condition, the immobilized laccase was able to oxidize 2, 2-azino-bis 3-ethylbenzothiazoline-6- sulfonic acid (ABTS) in a broad range of pH (pH 3-6) and temperature (20- 70 °C). Meanwhile, the kinetic parameters for Km and Vmax were 1.331 mM and 0.041 mM/min, respectively. It was concluded that the optimization of immobilized laccase on PET-g-MAH ENM enhance the performance of this biocatalyst.
    Matched MeSH terms: Cross-Linking Reagents/chemistry; Enzymes, Immobilized/chemistry*; Maleic Anhydrides/chemistry; Polyethylene Terephthalates/chemistry*; Sulfonic Acids/chemistry; Laccase/chemistry*; Benzothiazoles/chemistry; Nanofibers/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links