PURPOSE: The aim was to determine the metabolic fingerprint that predicts warfarin response based on the international normalized ratio (INR) in patients who are already receiving warfarin (phase I: identification) and to ascertain the metabolic fingerprint that discriminates stable from unstable INR in patients starting treatment with warfarin (phase II: validation).
EXPERIMENTAL APPROACH: A total of 94 blood samples were collected for phase I: 44 patients with stable INR and 50 with unstable INR. Meanwhile, 23 samples were collected for phase II: nine patients with stable INR and 14 with unstable INR. Data analysis was performed using multivariate analysis including principal component analysis and partial least square-discriminate analysis (PLS-DA), followed by univariate and multivariate logistic regression (MVLR) to develop a model to identify unstable INR biomarkers.
KEY RESULTS: For phase I, the PLS-DA model showed the following results: sensitivity 93.18%, specificity 91.49% and accuracy 92.31%. In the MVLR analysis of phase I, ten regions were associated with unstable INR. For phase II, the PLS-DA model showed the following results: sensitivity 66.67%, specificity 61.54% and accuracy 63.64%.
CONCLUSIONS AND IMPLICATIONS: We have shown that the pharmacometabonomics technique was able to differentiate between unstable and stable INR with good accuracy. NMR-based pharmacometabonomics has the potential to identify novel biomarkers in plasma, which can be useful in individualizing treatment and controlling warfarin side effects, thus, minimizing undesirable effects in the future.
OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.
METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.
RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50 = 190.43 ± 12.26 μg/mL, P