Displaying publications 421 - 440 of 4035 in total

Abstract:
Sort:
  1. Mohd Nasir N, Mohd Yunos FH, Wan Jusoh HH, Mohammad A, Lam SS, Jusoh A
    J Environ Manage, 2019 Nov 01;249:109373.
    PMID: 31415924 DOI: 10.1016/j.jenvman.2019.109373
    Microalgae have been increasingly used to generate biofuel, thus a sustainable technique should be implemented to harvest the biomass to ensure its existence in the environment. Aspergillus niger was used as bio-flocculant to harvest microalgae from aquaculture wastewater via flocculation technique over a range of pH and mixing rate. The bio-flocculant showed ability to adapt at a wide range of pH from 3.0 to 9.0 and at a mixing rate of 100-150 rpm, producing a harvesting efficiency of higher than 90%. The treated water possessed low concentration of chlorophyll-a (0.3-0.6 mg L-1) and cell density (2 × 106-3 × 106 cell mL-1). These indicate that Aspergillus niger is a promising bio-flocculant to be used in harvesting microalgae, thus promoting the use of flocculation as a green technology in aquaculture wastewater treatment.
    Matched MeSH terms: Water; Waste Water
  2. Mahmoud khaki, Ismail Yusoff, Nur Islami, Nur Hayati Hussin
    Sains Malaysiana, 2016;45:19-28.
    Forecasting of groundwater level variations is a significantly needed in groundwater resource management. Precise water level prediction assists in practical and optimal usage of water resources. The main objective of using an artificial neural network (ANN) was to investigate the feasibility of feed-forward, Elman and Cascade forward neural networks with different algorithms to estimate groundwater levels in the Langat Basin from 2007 to 2013. In order to examine the accuracy of monthly water level forecasts, effectiveness of the steepness coefficient in the sigmoid function of a developed ANN model was evaluated in this research. The performance of the models was evaluated using the mean squared error (MSE) and the correlation coefficient (R). The results indicated that the ANN technique was well suited for forecasting groundwater levels. All models developed had shown acceptable results. Based on the observation, the feed-forward neural network model optimized with the Levenberg-Marquardt algorithms showed the most beneficial results with the minimum MSE value of (0.048) and maximum R value of (0.839), obtained for simulation of groundwater levels. The present research conclusively showed the capability of ANNs to provide excellent estimation accuracy and valuable sensitivity analyses.
    Matched MeSH terms: Water; Groundwater; Water Resources
  3. Tan WK, Cheah SC, Parthasarathy S, Rajesh RP, Pang CH, Manickam S
    Chemosphere, 2021 Jul;274:129702.
    PMID: 33529956 DOI: 10.1016/j.chemosphere.2021.129702
    This investigation explores the efficacy of employing ultrasonic cavitation and coupling it with advanced oxidation processes (hydrogen peroxide and Fenton's reagent) for reducing the levels of total ammonia nitrogen in fish pond water containing Tilapia fishes. Ultrasonic cavitation is a phenomenon where the formation, growth and collapse of vaporous bubbles occur in a liquid medium producing highly reactive free radicals. Ultrasonic probe system (20 kHz with 750 W and 1000 W) was used to induce cavitation. Besides, to intensify the process, ultrasonic cavitation was coupled with hydrogen peroxide and Fenton's reagent. Using SERA colour indicator test kits, the levels of ammonium, nitrite and carbonate hardness were measured. The results obtained from this study clearly show that the advanced oxidation processes are more efficient in reducing the ammonium and nitrite levels in fish pond water than using ultrasound alone. The pH and carbonate hardness levels were not affected significantly by ultrasonic cavitation. The optimal treatment time and ultrasound power to treat the water samples were also established. Energy efficiency and cost analysis of this treatment have also been presented, indicating that ultrasonic cavitation coupled with hydrogen peroxide appears to be a promising technique for reducing total ammonia nitrogen levels in the fish pond water.
    Matched MeSH terms: Water Purification*
  4. Sirinupong, T., Tirawat, D., Lau, W. J., Youravong, W.
    MyJurnal
    The experimental water flux of the forward osmosis (FO) process is much lower than the
    theoretical flux due to the existence of the internal concentration polarisation (ICP), external
    concentration polarisation (ECP), and membrane fouling. In the present work, vibration was
    integrated with the FO process to enhance water flux in water and Mao (Antidesma bunius L.
    Spreng) juice concentration. In addition, the capability of the FO process in preserving
    phytochemicals was studied. The use of the vibration assisted technique could enhance the
    water flux up to 23% during the FO process of distilled water due to the reduction of ICP, and
    a much higher water flux enhancement (up to 70%) was attained during the FO of Mao juice
    due to the reduction of ICP, ECP, and fouling. Phytochemicals including total phenolic
    compounds, anthocyanin, and ascorbic acid were preserved up to 82.7, 72.6, and 95.9%,
    respectively. These results suggest that membrane vibration is a promising technique for the
    enhancement of the FO process performance.
    Matched MeSH terms: Water; Water Purification
  5. Ahmed MF, Lim CK, Mokhtar MB, Khirotdin RPK
    PMID: 34360286 DOI: 10.3390/ijerph18157997
    Chemical pollution in the transboundary Langat River in Malaysia is common both from point and non-point sources. Therefore, the water treatment plants (WTPS) at the Langat River Basin have experienced frequent shutdown incidents. However, the Langat River is one of the main sources of drinking water to almost one-third of the population in Selangor state. Meanwhile, several studies have reported a high concentration of Arsenic (As) in the Langat River that is toxic if ingested via drinking water. However, this is a pioneer study that predicts the As concentration in the Langat River based on time-series data from 2005-2014 to estimate the health risk associated with As ingestion via drinking water at the Langat River Basin. Several time-series prediction models were tested and Gradient Boosted Tree (GBT) gained the best result. This GBT model also fits better to predict the As concentration until December 2024. The mean concentration of As in the Langat River for both 2014 and 2024, as well as the carcinogenic and non-carcinogenic health risks of As ingestion via drinking water, were within the drinking water quality standards proposed by the World Health Organization and Ministry of Health Malaysia. However, the ingestion of trace amounts of As over a long period might be detrimental to human health because of its non-biodegradable characteristics. Therefore, it is important to manage the drinking water sources to minimise As exposure risks to human health.
    Matched MeSH terms: Water Purification*
  6. Tiyasha T, Tung TM, Bhagat SK, Tan ML, Jawad AH, Mohtar WHMW, et al.
    Mar Pollut Bull, 2021 Sep;170:112639.
    PMID: 34273614 DOI: 10.1016/j.marpolbul.2021.112639
    Dissolved oxygen (DO) is an important indicator of river health for environmental engineers and ecological scientists to understand the state of river health. This study aims to evaluate the reliability of four feature selector algorithms i.e., Boruta, genetic algorithm (GA), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost) to select the best suited predictor of the applied water quality (WQ) parameters; and compare four tree-based predictive models, namely, random forest (RF), conditional random forests (cForest), RANdom forest GEneRator (Ranger), and XGBoost to predict the changes of dissolved oxygen (DO) in the Klang River, Malaysia. The total features including 15 WQ parameters from monitoring site data and 7 hydrological components from remote sensing data. All predictive models performed well as per the features selected by the algorithms XGBoost and MARS in terms applied statistical evaluators. Besides, the best performance noted in case of XGBoost predictive model among all applied predictive models when the feature selected by MARS and XGBoost algorithms, with the coefficient of determination (R2) values of 0.84 and 0.85, respectively, nonetheless the marginal performance came up by Boruta-XGBoost model on in this scenario.
    Matched MeSH terms: Water*
  7. Palani G, Arputhalatha A, Kannan K, Lakkaboyana SK, Hanafiah MM, Kumar V, et al.
    Molecules, 2021 May 10;26(9).
    PMID: 34068541 DOI: 10.3390/molecules26092799
    In the recent decades, development of new and innovative technology resulted in a very high amount of effluents. Industrial wastewaters originating from various industries contribute as a major source of water pollution. The pollutants in the wastewater include organic and inorganic pollutants, heavy metals, and non-disintegrating materials. This pollutant poses a severe threat to the environment. Therefore, novel and innovative methods and technologies need to adapt for their removal. Recent years saw nanomaterials as a potential candidate for pollutants removal. Nowadays, a range of cost-effective nanomaterials are available with unique properties. In this context, nano-absorbents are excellent materials. Heavy metal contamination is widespread in underground and surface waters. Recently, various studies focused on the removal of heavy metals. The presented review article here focused on removal of contaminants originated from industrial wastewater utilizing nanomaterials.
    Matched MeSH terms: Water Pollution; Waste Water
  8. Su W, Liu P, Cai C, Ma H, Jiang B, Xing Y, et al.
    J Hazard Mater, 2021 01 15;402:123541.
    PMID: 32745873 DOI: 10.1016/j.jhazmat.2020.123541
    The dispersion of hyperaccumulators used in the phytoremediation process has caused environmental concerns because of their heavy metal (HM) richness. It is important to reduce the environmental risks and prevent the HM to reenter the ecological cycle and thereby the human food web. In this work, supercritical water gasification (SCWG) technology was used to convert Sedum plumbizincicola into hydrogen (H2) gas and to immobilize HMs into biochar. The H2 production correlated with temperature ranging from 380 to 440 ℃ with the highest H2 yield of 2.74 mol/kg at 440 ℃. The free-radical reaction and steam reforming reaction at high temperatures were likely to be the mechanism behind the H2 production. The analyses of bio-oil by the Gas Chromatography-Mass Spectrometer (GC-MS) and Nuclear magnetic resonance spectroscopy (NMR) illustrated that the aromatic compounds, oxygenated compounds, and phenols were degraded into H2-rich gases. The increase of temperature enhanced the HM immobilization efficiency (>99.2 % immobilization), which was probably due to the quickly formed biochar that helped adsorb HMs. Then those HMs were chemically converted into stable forms through complexation with inorganic components on biochar, e.g., silicates, SiO2, and Al2O3. Consequently, the SCWG process was demonstrated as a promising approach for dispersing hyperaccumulators by immobilizing the hazardous HMs into biochar and simultaneously producing value-added H2-rich gases.
    Matched MeSH terms: Water*
  9. Leder K, Openshaw JJ, Allotey P, Ansariadi A, Barker SF, Burge K, et al.
    BMJ Open, 2021 01 08;11(1):e042850.
    PMID: 33419917 DOI: 10.1136/bmjopen-2020-042850
    INTRODUCTION: Increasing urban populations have led to the growth of informal settlements, with contaminated environments linked to poor human health through a range of interlinked pathways. Here, we describe the design and methods for the Revitalising Informal Settlements and their Environments (RISE) study, a transdisciplinary randomised trial evaluating impacts of an intervention to upgrade urban informal settlements in two Asia-Pacific countries.

    METHODS AND ANALYSIS: RISE is a cluster randomised controlled trial among 12 settlements in Makassar, Indonesia, and 12 in Suva, Fiji. Six settlements in each country have been randomised to receive the intervention at the outset; the remainder will serve as controls and be offered intervention delivery after trial completion. The intervention involves a water-sensitive approach, delivering site-specific, modular, decentralised infrastructure primarily aimed at improving health by decreasing exposure to environmental faecal contamination. Consenting households within each informal settlement site have been enrolled, with longitudinal assessment to involve health and well-being surveys, and human and environmental sampling. Primary outcomes will be evaluated in children under 5 years of age and include prevalence and diversity of gastrointestinal pathogens, abundance and diversity of antimicrobial resistance (AMR) genes in gastrointestinal microorganisms and markers of gastrointestinal inflammation. Diverse secondary outcomes include changes in microbial contamination; abundance and diversity of pathogens and AMR genes in environmental samples; impacts on ecological biodiversity and microclimates; mosquito vector abundance; anthropometric assessments, nutrition markers and systemic inflammation in children; caregiver-reported and self-reported health symptoms and healthcare utilisation; and measures of individual and community psychological, emotional and economic well-being. The study aims to provide proof-of-concept evidence to inform policies on upgrading of informal settlements to improve environments and human health and well-being.

    ETHICS: Study protocols have been approved by ethics boards at Monash University, Fiji National University and Hasanuddin University.

    TRIAL REGISTRATION NUMBER: ACTRN12618000633280; Pre-results.

    Matched MeSH terms: Water*
  10. Ab Hamid S, Md Rawi CS
    Trop Life Sci Res, 2017 Jul;28(2):143-162.
    PMID: 28890767 MyJurnal DOI: 10.21315/tlsr2017.28.2.11
    The Ephemeroptera, Plecoptera and Trichoptera (EPT) community structure and the specific sensitivity of certain EPT genera were found to be influenced by water parameters in the rivers of Gunung Jerai Forest Reserve (GJFR) in the north of peninsular Malaysia. The scores of EPT taxa richness of >10 in all rivers indicated all rivers' habitats were non-impacted, having good water quality coinciding with Class I and Class II of Malaysian water quality index (WQI) classification of potable water. The abundance of EPT was very high in Teroi River (9,661 individuals) but diversity was lower (22 genera) than Tupah River which was highly diverse (28 genera) but lower in abundance (4,263 individuals). The lowest abundance and moderate diversity was recorded from Batu Hampar River (25 genera). Baetis spp. and Thalerosphyrus spp., Neoperla spp. and Cheumatopsyche spp. were the most common genera found. Classification for all rivers using EPT taxa Richness Index and WQI gave different category of water quality, respectively. The WQI classified Tupah and Batu Hampar rivers into Class II and Teroi River (Class I) was two classes above the classification of the EPT taxa Richness Index.
    Matched MeSH terms: Water Quality; Drinking Water
  11. Pillai P, Dharaskar S, Khalid M
    Chemosphere, 2021 Dec;284:131317.
    PMID: 34216929 DOI: 10.1016/j.chemosphere.2021.131317
    The current novel work presents the optimization of factors affecting defluoridation by Al doped ZnO nanoparticles using response surface methodology (RSM). Al doped ZnO nanoparticles were synthesized by the sol-gel method and validated by FTIR, XRD, TEM/EDS, TGA, BET, and particle size analysis. Moreover, a central composite design (CCD) was developed for the experimental study to know the interaction between Al doped ZnO adsorbent dosage, initial concentration of fluoride, and contact time on fluoride removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was achieved to discover the importance of the individual and the effect of variables on the response. The model predicted that the response significantly correlated with the experimental response (R2 = 0.97). Among the factors, the effect of adsorbent dose and contact time was considered to have more influence on the response than the concentration. The optimized process parameters by RSM presented the adsorbent dosage: 0.005 g, initial concentration of fluoride: 1.5 g/L, and contact time: 5 min, respectively. Kinetic, isotherm, and thermodynamic studies were also investigated. The co-existing ions were also studied. These results demonstrated that Al doped ZnO could be a promising adsorbent for effective defluoridation for water.
    Matched MeSH terms: Water Purification*
  12. Sinha, P.C., Jena, G.K., Rao, A.D., Mohd Lokman Husain, Jain, Indu
    MyJurnal
    A depth-averaged numerical model was developed to study tidal circulation and suspended sediment transport in the gulf of Khambhat along the west coast of India. The spatial resolution of the model is 750m x 750m. A 2-D fine resolution (150 m x 150 m) model for the lower part of the Narmada estuary is coupled with the coarser gulf model to simulate the flow features in the lower estuary. The model dynamics and basic formulation remain the same for both the gulf model and the estuary model. The models are barotropic, based on the shallow water equations and neglect horizontal diffusion and wind stress terms in the momentum equations. The models are fully non-linear and use a semi-explicit finite difference scheme to solve mass, momentum, and advection- diffusion equation for suspended sediments in a horizontal plane. The erosion and deposition have been computed by an empirically developed source and sink term in the suspended sediment equation. The tide in the gulf is mainly represented in the model by the semi-diurnal M2 constituent. Meanwhile, fresh water discharge from the rivers joining the gulf had also been considered. Numerical experiments were carried out to study the circulation and suspended sediment concentrations in the gulf and estuarine region.
    Matched MeSH terms: Fresh Water; Water
  13. Pramanik BK, Pramanik SK, Sarker DC, Suja F
    Environ Technol, 2017 Jun;38(11):1383-1389.
    PMID: 27587007 DOI: 10.1080/09593330.2016.1228701
    The effects of ozonation, anion exchange resin (AER) and UV/H2O2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H2O2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H2O2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.
    Matched MeSH terms: Water Pollutants/radiation effects; Water Pollutants/chemistry; Water Purification/instrumentation; Water Purification/methods*; Drinking Water/chemistry
  14. Hamidreza Salemi, Mohd Amin Mohd Soom, Lee, Teang Shui, Mohd Kamil Yusoff
    MyJurnal
    One of the most interesting water management case studies in Iran is the case of Zayandehrud River, the main river that supplies water to Isfahan Province which is located in Gavkhuni River Basin (GRB). This paper examines the present and future demands for water and determines the extent to which water will be available for agricultural use by the year 2020. Although demand and supply conditions in 2000 were more or less in balance, there was an increase in the supply of some 28% by 2010 due to the completion of the third trans-basin diversion and the development of other local water sources. However, the demand exceeded its supply in 2010 and the basin fell into severe deficit. In this condition, the only way to keep supply and demand in balance is to reduce allocations to agriculture. By 2020, agriculture would only have 5% more water than the present and water supply is only 90% that of the normal, and this would then shrink from 2025 onwards. In other words, agriculture would have to be sacrificed in order to ensure full supplies of water for the other sectors. The scenarios examined reveal that a sustainable agriculture can only be accomplished by water saving practices and management measures, which may further lead to reduced demand, control supplies, and improve the efficiency of water use.
    Matched MeSH terms: Water; Water Supply
  15. Mohammed, Thamer Ahmed, Abdul Halim Ghazali
    MyJurnal
    In Malaysia, the use of groundwater can help to meet the increasing water demand. The utilization of the aquifers is currently contributing in water supplies, particularly for the northern states. In this study, quantitative and qualitative assessments were carried out for the groundwater exploitation in the states of Kelantan, Melaka, Terengganu and Perak. The relevant data was acquired from the Department of Mineral and Geoscience, Malaysia. The quantitative assessment mainly included the determination of the use to yield ratio (UTY). The formula was proposed to determine the UTY ratio for aquifers in Malaysia. The proposed formula was applied to determine the maximum UTY ratios for the aquifers located in the states of Kelantan, Melaka, and Terengganu, and were found to be 4.2, 5.2 and 0.6, respectively. This indicated that exploitation of groundwater was beyond the safe limit in the states of Kelantan and Melaka. The qualitative assessment showed that the groundwater is slightly acidic. In addition, the concentrations of iron and manganese were found to be higher than the allowable limits, but the chloride concentration was found within the allowable limit.
    Matched MeSH terms: Water; Water Supply; Groundwater
  16. Yuhani Jamian, Zainap Lamat, Nurazura Rali
    MyJurnal
    Sungai Sarawak is the most important river in Sarawak. This study was aimed at assessing water quality in the selected stations from Satok bridge to the downstream, Muara Tebas, located along Sungai Sarawak. Water quality trend analysis was conducted to determine the correlation between the water quality parameters. Trend analysis was carried out using Mann-Kendall Test because data collected was non-parametric. Next, Spearman rank was used in order to determine the correlation between parameters. The results obtained and the observation made in this study reveals that the trend exists only for Chemical Oxygen Value (COD). But there are trends for Biochemical Oxygen Demand, (BOD), Dissolved Oxygen (DO), Total Suspended Solid (TSS), Ammoniacal Nitrogen (NH4N) and Turbidity to decrease or increase with no trends between 2007 and 2011. The correlation between parameters is not very strong because there are many determinants of water quality parameters. The result from this study would provide useful information for water quality management in order to maintain and improve the water quality of Sungai Sarawak.
    Matched MeSH terms: Water Pollution, Chemical; Water Quality
  17. Akazawa, Noriaki, Eguchi, Mitsuru
    MyJurnal
    Microcosm experiments simulating the occurrence of early mortality syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) in white shrimp production ponds were performed in 30-L aquariums. Healthy white shrimp, Litopenaeus vannamei, were reared in aquariums containing EMS/AHPND-free hatchery or pond water. Raw pond sludge, collected from shrimp ponds where EMS/AHPND had occurred, was added to some test aquariums, while others were treated with sterilized pond sludge. In some aquariums, water pH was increased from 7.5 to 8.8. Microcosms with stable pH (around 7.5) and/or autoclaved sludge served as controls. The combination of raw sludge and increased pH induced EMS/AHPND and killed white shrimp, whereas raw sludge/stable pH and autoclaved sludge/increased pH combinations did not affect healthy shrimp. Thus, EMS/AHPND outbreaks are due not only to the causative agent but also to environmental stresses such as pH fluctuation. These findings contribute to improved management in shrimp production farms.
    Matched MeSH terms: Fresh Water; Water
  18. Hafiz AFA, Keat YW, Ali A
    J Food Sci Technol, 2017 Jun;54(7):2181-2185.
    PMID: 28720977 DOI: 10.1007/s13197-017-2645-1
    The shelf life of rambutan is often limited due to rapid water loss from the spinterns and browning of the pericarp. An integrated approach, which combined hot water treatment (HWT) (56 °C for 1 min), oxalic acid (OA) dip (10% for 10 min) and modified atmosphere packaging (MAP), was used to study their effectiveness on the quality of rambutan during storage (10 °C, 90-95% relative humidity). Significant differences were observed in rambutan quality with the combination of MAP + HWT + OA after 20 days of storage. This treatment combination resulted into better retention of firmness and colour (L and a* values) than in the control. Change in the total soluble solid content was significantly delayed however the titratable acidity showed no significant change in comparison to the control at the end of storage.
    Matched MeSH terms: Water; Water Purification
  19. Mahboubeh Ebrahimian, Ahmad Ainuddin Nuruddin, Mohd Amin Mohd Soom, Alias Mohd Sood, Liew Juneng
    MyJurnal
    The hydrological effects of climate variation and land use conversion can occur at various spatial scales, but the most important sources of these changes are at the regional or watershed scale. In addition, the managerial and technical measures are primarily implemented at local and watershed scales in order to mitigate adverse impacts of human activities on the renewable resources of the watershed. Therefore, quantitative estimation of the possible hydrological consequences of potential land use and climate changes on hydrological regime at watershed scale is of tremendous importance. This paper focuses on the impacts of climate change as well as land use change on the hydrological processes of river basin based on pertinent published literature which were precisely scrutinized. The various causes, forms, and consequences of such impacts were discussed to synthesize the key findings of literature in reputable sources and to identify gaps in the knowledge where further research is required. Results indicate that the watershed-scale studies were found as a gap in tropical regions. Also, these studies are important to facilitate the application of results to real environment. Watershed scale studies are essential to measure the extent of influences made to the hydrological conditions and understanding of causes and effects of climate variation and land use conversion on hydrological cycle and water resources.
    Matched MeSH terms: Water Cycle; Water Resources
  20. Aziz A, Agamuthu P, Fauziah SH
    Waste Manag Res, 2018 Dec;36(12):1146-1156.
    PMID: 30067147 DOI: 10.1177/0734242X18789062
    The widespread distribution of persistent organic pollutants (POPs) in landfill leachate is problematic due to their acute toxicity, carcinogenicity and genotoxicity effects, which could be detrimental to public health and ecological systems. The objective of this study was to evaluate the effective removal of POPs - namely, p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- - from landfill leachate using locust bean gum (LBG), and in comparison with commonly used alum. The response surface methodology coupled with a Box-Behnken design was employed to optimize the operating factors for optimal POPs removal. A quadratic polynomial model was fitted into the data with the R2 values of 0.97 and 0.96 for the removal of p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl), (S)-, respectively. The physicochemical characteristics of the flocs produced by LBG and alum were evaluated with Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The infrared spectra of LBG-treated floc were identical with LBG powder, but there was some variation in the peaks of the functional groups, signifying the chemical interactions between flocculants and pollutant particles resulting from POPs removal. The results showed that p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- obtained 96% and 100% removal using 500 mg/L of LBG at pH 4. pH have a significant effect on POPs removal in leachate. It is estimated that treating one million gallons of leachate using alum (at 1 g/L dosage) would cost US$39, and using LBG (at 500 mg/L dosage) would cost US$2. LBG is eco-friendly, biodegradable and non-toxic and, hence, strongly recommended as an alternative to inorganic coagulants for the treatment of POPs in landfill leachate.
    Matched MeSH terms: Water Pollutants, Chemical*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links