Displaying publications 4661 - 4680 of 10396 in total

Abstract:
Sort:
  1. Teh SS, Ee GC, Mah SH, Yong YK, Lim YM, Rahmani M, et al.
    Biomed Res Int, 2013;2013:517072.
    PMID: 24089682 DOI: 10.1155/2013/517072
    The in vitro cytotoxicity tests on the extracts of Mesua beccariana, M. ferrea, and M. congestiflora against Raji, SNU-1, HeLa, LS-174T, NCI-H23, SK-MEL-28, Hep-G2, IMR-32, and K562 were achieved using MTT assay. The methanol extracts of Mesua beccariana showed its potency towards the proliferation of B-lymphoma cell (Raji). In addition, only the nonpolar to semipolar extracts (hexane to ethyl acetate) of the three Mesua species indicated cytotoxic effects on the tested panel of human cancer cell lines. Antioxidant assays were evaluated using DPPH scavenging radical assay and Folin-Ciocalteu method. The methanol extracts of M. beccariana and M. ferrea showed high antioxidant activities with low EC₅₀ values of 12.70 and 9.77  μg/mL, respectively, which are comparable to that of ascorbic acid (EC₅₀ = 5.62  μg/mL). Antibacterial tests were carried out using four Gram positive and four Gram negative bacteria on Mesua beccariana extracts. All the extracts showed negative results in the inhibition of Gram negative bacteria. Nevertheless, methanol extracts showed some activities against Gram positive bacteria which are Bacillus cereus, methicillin-sensitive Staphylococcus aureus (MSSA), and methicillin-resistant Staphylococcus aureus (MRSA), while the hexane extract also contributed some activities towards Bacillus cereus.
    Matched MeSH terms: Anti-Infective Agents/chemistry; Antioxidants/chemistry; Cytotoxins/chemistry; Plant Extracts/chemistry; Euphorbiaceae/chemistry
  2. Liew KB, Peh KK, Fung Tan YT
    Pak J Pharm Sci, 2013 Sep;26(5):961-6.
    PMID: 24035953
    An easy, fast and validated RV-HPLC method was invented to quantify donepezil hydrochloride in drug solution and orally disintegrating tablet. The separation was carried out using reversed phase C-18 column (Agilent Eclipse Plus C-18) with UV detection at 268 nm. Method optimization was tested using various composition of organic solvent. The mobile phase comprised of phosphate buffer (0.01M), methanol and acetonitrile (50:30:20, v/v) adjusted to pH 2.7 with phosphoric acid (80%) was found as the optimum mobile phase. The method showed intraday precision and accuracy in the range of 0.24% to -1.83% and -1.83% to 1.99% respectively, while interday precision and accuracy ranged between 1.41% to 1.81% and 0.11% to 1.90% respectively. The standard calibration curve was linear from 0.125 μg/mL to 16 μg/mL, with correlation coefficient of 0.9997±0.00016. The drug solution was stable under room temperature at least for 6 hours. System suitability studies were done. The average plate count was > 2000, tailing factor <1, and capacity factor of 3.30. The retention time was 5.6 min. The HPLC method was used to assay donepezil hydrochloride in tablet and dissolution study of in-house manufactured donepezil orally disintegrating tablet and original Aricept.
    Matched MeSH terms: Acetonitriles/chemistry; Methanol/chemistry; Chemistry, Pharmaceutical; Phosphoric Acids/chemistry; Solvents/chemistry
  3. Atangwho IJ, Egbung GE, Ahmad M, Yam MF, Asmawi MZ
    Food Chem, 2013 Dec 15;141(4):3428-34.
    PMID: 23993503 DOI: 10.1016/j.foodchem.2013.06.047
    The antioxidant and anti-diabetic properties of the sequential extracts of Vernonia amygdalina based on the chemical composition of the most effective anti-diabetic extract were studied. Using DPPH and ABTS radical scavenging as well as FRAP assays, the extracts showed a consistent dose-dependent trend of potent antioxidant activity in the following solvents: water extract>methanol extract>chloroform extract>and petroleum ether extracts. In the oral glucose tolerance test, the chloroform extract exerted the highest response (33.3%), similar to metformin (27.2%), after 2h compared to the control (50.8%, P<0.05). After a 14-day administration in diabetic rats, the chloroform extract recorded the highest blood (23.5%) and serum (21.4%) glucose-lowering effects (P<0.05). GC-MS analysis of the chloroform extract revealed high levels of linoleic acid (4.72%), α-linolenic acid (10.8%) and phytols (12.0%), as well as other compounds.
    Matched MeSH terms: Antioxidants/chemistry; Plant Extracts/chemistry; Plant Leaves/chemistry; Anti-Obesity Agents/chemistry; Vernonia/chemistry*
  4. Rahman HS, Rasedee A, How CW, Abdul AB, Zeenathul NA, Othman HH, et al.
    Int J Nanomedicine, 2013;8:2769-81.
    PMID: 23946649 DOI: 10.2147/IJN.S45313
    Zerumbone, a natural dietary lipophilic compound with low water solubility (1.296 mg/L at 25°C) was used in this investigation. The zerumbone was loaded into nanostructured lipid carriers using a hot, high-pressure homogenization technique. The physicochemical properties of the zerumbone-loaded nanostructured lipid carriers (ZER-NLC) were determined. The ZER-NLC particles had an average size of 52.68 ± 0.1 nm and a polydispersity index of 0.29 ± 0.004 μm. Transmission electron microscopy showed that the particles were spherical in shape. The zeta potential of the ZER-NLC was -25.03 ± 1.24 mV, entrapment efficiency was 99.03%, and drug loading was 7.92%. In vitro drug release of zerumbone from ZER-NLC was 46.7%, and for a pure zerumbone dispersion was 90.5% over 48 hours, following a zero equation. Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human T-cell acute lymphoblastic leukemia (Jurkat) cells, the half maximal inhibitory concentration (IC50) of ZER-NLC was 5.64 ± 0.38 μg/mL, and for free zerumbone was 5.39 ± 0.43 μg/mL after 72 hours of treatment. This study strongly suggests that ZER-NLC have potential as a sustained-release drug carrier system for the treatment of leukemia.
    Matched MeSH terms: Antineoplastic Agents/chemistry*; Drug Carriers/chemistry*; Lipids/chemistry*; Sesquiterpenes/chemistry*; Nanoparticles/chemistry*
  5. Mahdi-Pour B, Jothy SL, Latha LY, Chen Y, Sasidharan S
    Asian Pac J Trop Biomed, 2012 Dec;2(12):960-5.
    PMID: 23593576 DOI: 10.1016/S2221-1691(13)60007-6
    To investigate the antioxidant activity of methanolic extracts of Lantana camara (L. camara) various parts and the determination of their total phenolics content.
    Matched MeSH terms: Plants, Medicinal/chemistry; Plant Leaves/chemistry; Plant Roots/chemistry; Plant Stems/chemistry; Lantana/chemistry*
  6. Amini R, Jalilian FA, Abdullah S, Veerakumarasivam A, Hosseinkhani H, Abdulamir AS, et al.
    Appl Biochem Biotechnol, 2013 Jun;170(4):841-53.
    PMID: 23615733 DOI: 10.1007/s12010-013-0224-0
    Leukemic cells are hard-to-transfect cell lines. Many transfection reagents which can provide high gene transfer efficiency in common adherent cell lines are not effective to transfect established blood cell lines or primary leukemic cells. This study aims to examine a new class of cationic polymer non-viral vector, PEGylated-dextran-spermine (PEG-D-SPM), to determine its ability to transfect the leukemic cells. Here, the optimal conditions of the complex preparation (PEG-D-SPM/plasmid DNA (pDNA)) were examined. Different weight-mixing (w/w) ratios of PEG-D-SPM/pDNA complex were prepared to obtain an ideal mixing ratio to protect encapsulated pDNA from DNase degradation and to determine the optimal transfection efficiency of the complex. Strong complexation between polymer and pDNA in agarose gel electrophoresis and protection of pDNA from DNase were detected at ratios from 25 to 15. Highest gene expression was detected at w/w ratio of 18 in HL60 and K562 cells. However, gene expression from both leukemic cell lines was lower than the control MCF-7 cells. The cytotoxicity of PEG-D-SPM/pDNA complex at the most optimal mixing ratios was tested in HL60 and K562 cells using MTS assay and the results showed that the PEG-D-SPM/pDNA complex had no cytotoxic effect on these cell lines. Spherical shape and nano-nature of PEG-D-SPM/pDNA complex at ratio 18 was observed using transmission electron microscopy. As PEG-D-SPM showed modest transfection efficiency in the leukemic cell lines, we conclude that further work is needed to improve the delivery efficiency of the PEG-D-SPM.
    Matched MeSH terms: Plasmids/chemistry; Polyethylene Glycols/chemistry; Spermine/chemistry; Macromolecular Substances/chemistry; Nanoparticles/chemistry*
  7. Abedini F, Hosseinkhani H, Ismail M, Domb AJ, Omar AR, Chong PP, et al.
    Int J Nanomedicine, 2012;7:4159-68.
    PMID: 22888250 DOI: 10.2147/IJN.S29823
    The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP) levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer.
    Matched MeSH terms: Cations/chemistry; Dextrans/chemistry*; Immunohistochemistry; Spermine/chemistry; RNA, Small Interfering/chemistry*; Nanocapsules/chemistry*
  8. Jantan I, Saputri FC
    Phytochemistry, 2012 Aug;80:58-63.
    PMID: 22640928 DOI: 10.1016/j.phytochem.2012.05.003
    Three benzophenones, 2,6,3',5'-tetrahydroxybenzophenone (1), 3,4,5,3',5'-pentahydroxybenzophenone (3) and 3,5,3',5'-tetrahydroxy-4-methoxybenzophenone (4), as well as a xanthone, 1,3,6-trihydroxy-5-methoxy-7-(3'-methyl-2'-oxo-but-3'-enyl)xanthone (9), were isolated from the twigs of Garcinia cantleyana var. cantleyana. Eight known compounds, 3,4,5,3'-tetrahydroxy benzophenone (2), 1,3,5-trihydroxyxanthone (5), 1,3,8-trihydroxyxanthone (6), 2,4,7-trihydroxyxanthone (7), 1,3,5,7-tetrahydroxyxanthone (8), quercetin, glutin-5-en-3β-ol and friedelin were also isolated. The structures of the compounds were elucidated by spectroscopic methods. The compounds were investigated for their ability to inhibit low-density lipoprotein (LDL) oxidation and platelet aggregation in human whole blood in vitro. Most of the compounds showed strong antioxidant activity with compound 8 showing the highest inhibition with an IC₅₀ value of 0.5 μM, comparable to that of probucol. Among the compounds tested, only compound 4 exhibited strong inhibitory activity against platelet aggregation induced by arachidonic acid (AA), adenosine diphosphate (ADP) and collagen. Compounds 3, 5 and 8 showed selective inhibitory activity on platelet aggregation induced by ADP.
    Matched MeSH terms: Antioxidants/chemistry; Benzophenones/chemistry; Platelet Aggregation Inhibitors/chemistry; Garcinia/chemistry*; Xanthones/chemistry
  9. Mohd Zain Z, Ab Ghani S, O'Neill RD
    Amino Acids, 2012 Nov;43(5):1887-94.
    PMID: 22865247 DOI: 10.1007/s00726-012-1365-0
    This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring D-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were D-amino acid oxidase for D-serine sensitivity (linear region slope, 61 ± 7 μA cm(-2) mM(-1); limit of detection, 20 nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1 s, ideal for 'real-time' monitoring, and detection of systemically administered D-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of D-serine in excitotoxicity, and modulation of N-methyl-D-aspartate receptor function by D-serine and glycine in the central nervous system.
    Matched MeSH terms: Brain Chemistry/drug effects*; D-Amino-Acid Oxidase/chemistry; Phenylenediamines/chemistry; Extracellular Fluid/chemistry
  10. Pang YL, Abdullah AZ
    Ultrason Sonochem, 2012 May;19(3):642-51.
    PMID: 22000097 DOI: 10.1016/j.ultsonch.2011.09.007
    Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO(2) was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO(2) was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO(2) nanotubes could be up to four times as compared to TiO(2) powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO(2) nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO(2) nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO(2) nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO(2) nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes.
    Matched MeSH terms: Coloring Agents/chemistry*; Organic Chemicals/chemistry*; Titanium/chemistry; Water Pollutants, Chemical/chemistry; Nanotubes/chemistry*
  11. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, et al.
    Microbiol Res, 2012 Oct 12;167(9):550-7.
    PMID: 22281521 DOI: 10.1016/j.micres.2011.12.006
    In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
    Matched MeSH terms: Acetyl-CoA C-Acetyltransferase/chemistry; Acyltransferases/chemistry; Alcohol Oxidoreductases/chemistry; Bacterial Proteins/chemistry; Comamonas/chemistry
  12. Hendra R, Ahmad S, Sukari A, Shukor MY, Oskoueian E
    Int J Mol Sci, 2011;12(6):3422-31.
    PMID: 21747685 DOI: 10.3390/ijms12063422
    Phaleria macrocarpa (Scheff.) Boerl (Thymelaceae) is commonly known as 'Crown of God', 'Mahkota Dewa', and 'Pau'. It originates from Papua Island, Indonesia and it grows in tropical areas. Empirically, it is potent in treating the hypertensive, diabetic, cancer and diuretic patients. It has a long history of ethnopharmacological usage, and the lack of information about its biological activities led us to investigate the possible biological activities by characterisation of flavonoids and antimicrobial activity of various part of P. macrocarpa against pathogenic bacteria and fungi. The results showed that kaempferol, myricetin, naringin, and rutin were the major flavonoids present in the pericarp while naringin and quercetin were found in the mesocarp and seed. Furthermore, the antibacterial activity of different parts of P. macrocarpa fruit showed a weak ability to moderate antibacterial activity against pathogenic tested bacteria (inhibition range: 0.93-2.17 cm) at concentration of 0.3 mg/disc. The anti fungi activity was only found in seed extract against Aspergillus niger (1.87 cm) at concentration of 0.3 mg/well. From the results obtained, P. macrocarpa fruit could be considered as a natural antimicrobial source due to the presence of flavonoid compounds.
    Matched MeSH terms: Anti-Infective Agents/chemistry*; Flavonoids/chemistry*; Fruit/chemistry*; Plant Extracts/chemistry*; Thymelaeaceae/chemistry*
  13. Nagappan T, Segaran TC, Wahid ME, Ramasamy P, Vairappan CS
    Molecules, 2012 Dec 05;17(12):14449-63.
    PMID: 23519245 DOI: 10.3390/molecules171214449
    The traditional use of Murraya koenigii as Asian folk medicine prompted us to investigate its wound healing ability. Three carbazole alkaloids (mahanine (1), mahanimbicine (2), mahanimbine (3)), essential oil and ethanol extract of Murraya koenigii were investigated for their efficacy in healing subcutaneous wounds. Topical application of the three alkaloids, essential oil and crude extract on 8 mm wounds created on the dorsal skin of rats was monitored for 18 days. Wound contraction rate and epithelialization duration were calculated, while wound granulation and collagen deposition were evaluated via histological method. Wound contraction rates were obvious by day 4 for the group treated with extract (19.25%) and the group treated with mahanimbicine (2) (12.60%), while complete epithelialization was achieved on day 18 for all treatment groups. Wounds treated with mahanimbicine (2) (88.54%) and extract of M. koenigii (91.78%) showed the highest rate of collagen deposition with well-organized collagen bands, formation of fibroblasts, hair follicle buds and with reduced inflammatory cells compared to wounds treated with mahanine (1), mahanimbine (3) and essential oil. The study revealed the potential of mahanimbicine (2) and crude extract of M. koenigii in facilitation and acceleration of wound healing.
    Matched MeSH terms: Alkaloids/chemistry; Carbazoles/chemistry; Heterocyclic Compounds with 4 or More Rings/chemistry; Plant Leaves/chemistry; Murraya/chemistry*
  14. Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA
    Int J Nanomedicine, 2011;6:331-41.
    PMID: 21383858 DOI: 10.2147/IJN.S16964
    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*; Silver/chemistry*; Zeolites/chemistry*; Nanocomposites/chemistry*; Metal Nanoparticles/chemistry*
  15. Hashim P, Sidek H, Helan MH, Sabery A, Palanisamy UD, Ilham M
    Molecules, 2011;16(2):1310-22.
    PMID: 21278681 DOI: 10.3390/molecules16021310
    Leaves of Centella asiatica (Centella) were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18) column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL) and asiaticoside (1.97 ± 2.65 mg/mL), but was low in asiatic and madecassic acid. The highest collagen synthesis was found at 50 mg/mL of Centella extracts. The antioxidant activity of Centella (84%) was compared to grape seed extract (83%) and Vitamin C (88%). Its lipolytic activity was observed by the release of glycerol (115.9 µmol/L) at 0.02% concentration. Centella extracts exhibited similar UV protection effect to OMC at 10% concentration. In view of these results, the potential application of Centella in food and pharmaceutical industries is now widely open.
    Matched MeSH terms: Antioxidants/chemistry; Plant Extracts/chemistry*; Triterpenes/chemistry*; Plant Leaves/chemistry*; Centella/chemistry*
  16. Shimokawa Y, Akao Y, Hirasawa Y, Awang K, Hadi AH, Sato S, et al.
    J Nat Prod, 2010 Apr 23;73(4):763-7.
    PMID: 20192242 DOI: 10.1021/np9007987
    Gneyulins A (1) and B (2), two new stilbene trimers consisting of oxyresveratrol constituent units, and noidesols A (3) and B (4), two new dihydroflavonol-C-glucosides, were isolated from the bark of Gnetum gnemonoides. The structures and configurations of 1-4 were elucidated on the basis of 2D NMR correlations and X-ray analysis. Gneyulins A (1) and B (2) showed inhibition of Na(+)-glucose transporters (SGLT-1 and SGLT-2).
    Matched MeSH terms: Glucosides/chemistry; Stilbenes/chemistry; Plant Bark/chemistry; Gnetum/chemistry*; Flavonols/chemistry
  17. Gan CY, Robinson WT, Etoh T, Hayashi M, Komiyama K, Kam TS
    Org. Lett., 2009 Sep 3;11(17):3962-5.
    PMID: 19708704 DOI: 10.1021/ol9016172
    A cytotoxic bisindole alkaloid possessing an unprecedented structure constituted from the union of an eburnan half and a novel vinylquinoline alkaloid has been isolated from Leuconotis griffithii. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway to the novel quinolinic coupling partner is presented from an Aspidosperma precursor.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry; Plants, Medicinal/chemistry*; Plant Bark/chemistry; Indole Alkaloids/chemistry; Apocynaceae/chemistry*
  18. Wahab HA, Choong YS, Ibrahim P, Sadikun A, Scior T
    J Chem Inf Model, 2009 Jan;49(1):97-107.
    PMID: 19067649 DOI: 10.1021/ci8001342
    The continuing rise in tuberculosis incidence and the problem of drug resistance strains have prompted the research on new drug candidates and the mechanism of drug resistance. Molecular docking and molecular dynamics simulation (MD) were performed to study the binding of isoniazid onto the active site of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) in an attempt to address the mycobacterial resistance against isoniazid. Results show that isonicotinic acyl-NADH (INADH) has an extremely high binding affinity toward the wild type InhA by forming stronger interactions compared to the parent drug (isoniazid) (INH). Due to the increase of hydrophobicity and reduction in the side chain's volume of A94 of mutant type InhA, both INADH and the mutated protein become more mobile. Due to this reason, the molecular interactions of INADH with mutant type are weaker than that observed with the wild type. However, the reduced interaction caused by the fluctuation of INADH and the mutant protein only inflected minor resistance in the mutant strain as inferred from free energy calculation. MD results also showed there exists a water-mediated hydrogen bond between INADH and InhA. However, the bridged water molecule is only present in the INADH-wild type complex, reflecting the putative role of the water molecule in the binding of INADH to the wild type protein. The results support the assumption that the conversion of prodrug isoniazid into its active form INADH is mediated by KatG as a necessary step prior to target binding on InhA. Our findings also contribute to a better understanding of INH resistance in mutant type.
    Matched MeSH terms: Bacterial Proteins/chemistry; Isoniazid/chemistry*; NAD/chemistry; Oxidoreductases/chemistry; Water/chemistry
  19. Shiran MS, Isa MR, Mohd Sidik S, Rampal L, Hairuszah I, Sabariah AR
    Malays J Pathol, 2006 Dec;28(2):87-92.
    PMID: 18376797 MyJurnal
    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and its diagnosis on routine stains is usually straightforward, except in some cases where there may be difficulty in distinguishing HCCs from metastatic carcinomas (MC) and cholangiocarcinomas (CC). Hepatocyte Paraffin 1 antibody (Hep Par 1) is a new monoclonal antibody which reacts with normal and neoplastic hepatocytes, and this study aims to determine its specificity and sensitivity in distinguishing hepatocellular carcinoma (HCC) from cholangiocarcinoma (CC) and metastatic carcinomas (MC). Hep Par 1 antibody was applied to 28 cases of HCC, 22 cases of MC from varying sites and 8 CCs, and produced a strong, diffuse, granular, cytoplasmic staining of all benign hepatocytes. 23 out of 28 cases of HCC showed heterogeneously positive staining for Hep Par 1 irrespective of their degree of differentiation, while 2 out of 8 cases of cholangiocarcinoma were positive for Hep Par 1, and all 22 cases of metastatic carcinoma were negative. The sensitivity and specificity of Hep Par 1 for HCC was 82.1% and 93.3% respectively; whereby the antibody was noted to show occasional false positivity in cases of cholangiocarcinoma and non-neoplastic bowel mucosa, while its variable staining in HCC produced false negative results in some small biopsies. Thus, Hep Par 1 should be used in a panel with other antibodies to obtain useful information in distinguishing HCC from CC and MC.
    Matched MeSH terms: Bile Duct Neoplasms/chemistry; Bile Ducts, Intrahepatic/chemistry; Carcinoma, Hepatocellular/chemistry; Cholangiocarcinoma/chemistry; Hepatocytes/chemistry
  20. Wan Ibrahim WA, Hermawan D, Sanagi MM
    J Chromatogr A, 2007 Nov 2;1170(1-2):107-13.
    PMID: 17915239
    A method for the chiral separation of propiconazole using cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) with hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as chiral selector is reported. The use of a mixture of 30 mM HP-gamma-CD, 50mM SDS, methanol-acetonitrile 10%:5% (v/v) in 25 mM phosphate buffer solution was able to separate two enantiomeric pairs of propiconazole. Stacking- and sweeping-CD-MEKC under neutral pH (pH 7) and under acidic condition (pH 3.0) were used as two on-line preconcentration methods to increase detection sensitivity of propiconazole. Good repeatabilities in the migration time, peak area and peak height were obtained in terms of relative standard deviation (RSD). A sensitivity enhancement factor of 100-fold was achieved using sweeping-CD-MEKC at acidic pH. This is the first report on the separation of two pairs of propiconazole enantiomers and all the enantiomers of fenbuconazole and tebuconazole using sweeping-CD-MEKC. The limit of detection (S/N=3) for the three triazole fungicides ranged from 0.09 to 0.1 microg/mL, which is well below the maximum residue limits (MRL) set by Codex Alimentarius Commission (CAC). Combination of solid-phase extraction (SPE) pretreatment and sweeping-CD-MEKC procedure was applied to the determination of selected triazole fungicides in grapes samples spiked at concentration 10-40 times lower than the MRL established by the CAC. The average recoveries of the selected fungicides in spiked grapes samples were good, ranging from 73% to 109% with RSD of 9-12% (n=3).
    Matched MeSH terms: Cyclodextrins/chemistry*; Sodium Dodecyl Sulfate/chemistry; Triazoles/chemistry; Vitis/chemistry; gamma-Cyclodextrins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links