AIM OF THE REVIEW: The present review aims to collate and analyze the available data and information on distribution, traditional uses, chemical constituents and pharmacological activities of Blepharis.
METHODS: Scientific information of genus Blepharis was retrieved from the online bibliographic databases such as MEDLINE/PubMed, SciFinder, Web of Science and Google Scholar and secondary resources including books and proceedings.
RESULTS: Seven species of Blepharis were found to be reported frequently as useful in folklore in African and Asian countries. B. maderaspatensis was found to be widely used in Indian traditional medicines whereas the B. ciliaris and B. edulis were common in folklore of Egypt, Jordan, and Arabia. Active phytochemicals of Blepharis are flavonoids from B. ciliaris, alkaloids from B. sindica, phenolic acid derivatives, and phytosterols, and derivatives of hydroxamic acids from B. edulis resulted in possessing diverse biological properties such as anti-microbial, anti-inflammatory, and anti-cancer.
CONCLUSIONS: Various species of Blepharis were found to be used in traditional medicine systems in African and Asian countries. Few of these species were studied for their bioactive chemical constituents however the activity guided isolation studies are not performed. Similarly, detailed pharmacological studies in animal models to explore their mechanism of action are also not reported. Future studies should focus on these aspects related to the medicinally used species of Blepharis. The detailed and comprehensive comparative analysis presented here gives valuable information of the currently used Blepharis species and pave the way to investigate other useful species of Blepharis pertaining to ethnobotany, phytochemistry and discovery of new drugs.
METHODS: A systematic literature search was conducted in January 2021 using Pubmed, Scopus and Web of Science from the inception of these databases. Original studies reporting the effects of tanshinones on bone through cell cultures, animal models and human clinical trials were considered.
RESULTS: The literature search found 158 unique articles on this topic, but only 20 articles met the inclusion criteria and were included in this review. The available evidence showed that tanshinones promoted osteoblastogenesis and bone formation while reducing osteoclastogenesis and bone resorption.
CONCLUSIONS: Tanshinones modulates bone remodelling by inhibiting osteoclastogenesis and osteoblast apoptosis and stimulating osteoblastogenesis. Therefore, it might complement existing strategies to prevent bone loss.
MATERIALS AND METHODS: T24 cells treated with various concentrations of mitomycin (MC), 5-ALA and an MC/5-ALA mixture were evaluated to determine the role of 5-ALA on MC cytotoxicity. Cell cycle analysis was conducted, and apoptosis was analyzed by flow cytometry. Caspase 3 enzyme and reactive oxygen species were measured.
RESULTS: Our initial studies exploring the impact of combination therapy on cell viability demonstrated improved cytotoxic effects on T24 and RT cells with relatively low doses of 5-ALA/MC in conjunction with MC alone. Indicated no significant difference between the IC50 of MC and MC/5-ALA in T24 cells, while IC50 value was decreased by 25 % in RT4 cells in 5-ALA/MC in comparing with MC alone. However, examination of cell cycle phase arrests by flow cytometry revealed significant PreG1 apoptosis and cell growth arrest in G2/M in T24 cells treated with the MC/5-ALA mixture compared with MC treatment. In addition, caspase 3 enzyme was increased by 1.15-fold in T24 cells treated with MC/5-ALA in comparison with MC alone.
CONCLUSION: These results suggest that 5-ALA might possess anti-cancer properties and is not only a photo diagnostic element.