Displaying publications 41 - 60 of 129 in total

Abstract:
Sort:
  1. Fujii Y, Tohno S, Ikeda K, Mahmud M, Takenaka N
    Sci Total Environ, 2021 Jan 20;753:142009.
    PMID: 32890879 DOI: 10.1016/j.scitotenv.2020.142009
    In this paper, ambient total suspended particulates (TSP) with a focus on humic-like substances (HULIS) are characterized based on intensive ground-based field samplings collected in Malaysia during non-haze and haze periods caused by peatland fires on the Indonesian island of Sumatra. Furthermore, concentrations of water-soluble organic carbon (WSOC) and carbon content of HULIS (HULIS-C) were determined, and fluorescence spectra of the HULIS samples were recorded by excitation emission matrix (EEM) fluorescence spectroscopy. The concentrations of WSOC and HULIS-C over the entire period ranged from 4.1 to 24 and 1.3 to 18 μgC m-3, respectively. The concentrations of WSOC and HULIS-C during the peatland fire-induced strong haze periods were over 4.3 and 6.1 times higher, respectively, than the average values recorded during the non-haze periods. Even during the light haze periods, the concentrations of WSOC and HULIS-C were significantly higher than their averages during the non-haze periods. These results indicate that peatland fires induce high concentrations of WSOC, particularly HULIS-C, in ambient TSP at receptor sites. EEM fluorescence spectra identified fulvic-like fluorophores at the highest intensity level in the EEM fluorescence spectra of the haze samples. A peak at excitation/emission (Ex/Em) ≈ (290-330)/(375-425) nm is also observed at high intensity, though this peak is normally associated with marine humic-like fluorophores. It is shown that a peak at Ex/Em ≈ (290-330)/(375-425) nm is not derived from marine sources only; furthermore, peatland fires are shown to be important contributors to HULIS around this peak.
    Matched MeSH terms: Coal
  2. Ghani WA, Alias AB, Savory RM, Cliffe KR
    Waste Manag, 2009 Feb;29(2):767-73.
    PMID: 18614348 DOI: 10.1016/j.wasman.2008.03.025
    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.
    Matched MeSH terms: Coal*
  3. Hashim R, Jackson DC
    Trop Life Sci Res, 2009 Dec;20(2):29-47.
    PMID: 24575177 MyJurnal
    A three-year study (July 2000 - June 2003) of fish assemblages was conducted in four tributaries of the Big Black River: Big Bywy, Little Bywy, Middle Bywy and McCurtain creeks that cross the Natchez Trace Parkway, Choctaw County, Mississippi, USA. Little Bywy and Middle Bywy creeks were within watersheds influenced by the lignite mining. Big Bywy and Middle Bywy creeks were historically impacted by channelisation. McCurtain Creek was chosen as a reference (control) stream. Fish were collected using a portable backpack electrofishing unit (Smith-Root Inc., Washington, USA). Insectivorous fish dominated all of the streams. There were no pronounced differences in relative abundances of fishes among the streams (P > 0.05) but fish assemblages fluctuated seasonally. Although there were some differences among streams with regard to individual species, channelisation and lignite mining had no discernable adverse effects on functional components of fish assemblages suggesting that fishes in these systems are euryceous fluvial generalist species adapted to the variable environments of small stream ecosystems.
    Matched MeSH terms: Coal
  4. Hassan H, Lim JK, Hameed BH
    Bioresour Technol, 2016 Dec;221:645-655.
    PMID: 27671343 DOI: 10.1016/j.biortech.2016.09.026
    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.
    Matched MeSH terms: Coal
  5. Hayder Baqer Abdullah, Irmawati Ramli, Ismayadi Ismail, Nor Azah Yusof
    MyJurnal
    The synthesis of carbon nanotubes (CNTs) using a chemical vapour deposition (CVD) method requires the use of hydrocarbon as the carbon precursor. Among the commonly used hydrocarbons are methane and acetylene, which are both light gas-phase substances. Besides that, other carbon-rich sources, such as carbon monoxide and coal, have also been reportedly used. Nowadays, researches have also been conducted into utilising heavier hydrocarbons and petrochemical products for the production of CNTs, such as kerosene and diesel oil. Therefore, this article reviews the different kind of hydrocarbon sources for CNTs production using a CVD method. The method is used for it allows the decomposition of the carbon-rich source with the aid of a catalyst at a temperature in the range 600-1200°C. This synthesis technique gives an advantage as a high yield and high-quality CNTs can be produced at a relatively low cost process. As compared to other processes for CNTs production such as arc discharge and laser ablation, they may produce high quality CNTs but has a disadvantage for use as large scale synthesis routes.
    Matched MeSH terms: Coal
  6. Hermawan AA, Teh KL, Talei A, Chua LHC
    J Environ Manage, 2021 Nov 01;297:113298.
    PMID: 34280854 DOI: 10.1016/j.jenvman.2021.113298
    The discharge of high levels of heavy metals into the environment is of concern due to its toxicity to aquatic life and potential human health impacts. Biofiltration systems have been used in urban environments to address nutrient contamination, but there is also evidence that such systems can be effective in reducing heavy metals concentration in stormwater. However, the accumulation pattern of heavy metals and lifespan of such systems, which are important in engineering design, have not been thoroughly explored. This study investigated the accumulation patterns of lead (Pb), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe), which are common in urban runoff, in non-vegetated filtration columns using three different types of filter media, namely sand (S), and mixtures of sand with fly ash (sand-fly ash mix, SF), and with zeolite (sand-zeolite mix, SZ). The columns were assessed in terms of infiltration rate, the mass of heavy metals accumulation at different depths, and formation of crust layer (schmutzdecke) at the surface. The results show that most of the heavy metals accumulated at the top 5-10 cm of the filter media. However, Zn was found adsorbed to a depth of 15 cm in S and SZ columns, while Mn and Fe were present in column S throughout the entire 30 cm depth of the filter media. The presence especially of Zn, Mn, and Fe in the deeper portions of the filter media before the top 5 cm layer reached its maximum adsorption capacity, hints that transport to the deeper layers is not necessarily dependent on saturation of the upper layers for these heavy metals. SF accumulated heavy metals most at the top 5 cm of the filter media layer, and retained twice the mass of heavy metals in the crust layer, compared to S and SZ columns. SF also yielded the lowest value of infiltration rate of 31 mm/h. Considering both metals accumulation and clogging potential of the filter media, the periodic maintenance of these systems is suggested to be approximately between 1.5 and 3 years.
    Matched MeSH terms: Coal Ash
  7. Hidayu Abdul Rani, Nor Fadilah Mohamad, Sherif Abdulbari Ali, Matali, Sharmeela, Sharifah Aishah Sheikh Abdul kadir
    MyJurnal
    Mercury emission into the atmosphere is a global concern due to its detrimental effects on human health in general. The two main sources of mercury emission are natural sources and anthropogenic sources. Mercury emission from natural sources include volcanic activity, weathering of rocks, water movement and biological processes which are obviously inevitable. The anthropogenic sources of mercury emission are from coal combustion, cement production and waste incineration. Thus, in order to reduce mercury emission it is appropriate to investigate how mercury is released from the anthropogenic sources and consequently the mercury removal technology that can be implemented in order to reduce mercury emission into the atmosphere. Many alternatives have been developed to reduce mercury emission and the recent application of activated carbon showed high potential in the adsorption of elemental mercury. This paper discusses the ability of activated carbon and variable parameters that influence mercury removal efficiency in flue gas.
    Matched MeSH terms: Charcoal; Coal
  8. Ho WW, Ng HK, Gan S
    Bioresour Technol, 2012 Dec;125:158-64.
    PMID: 23026328 DOI: 10.1016/j.biortech.2012.08.099
    Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity.
    Matched MeSH terms: Coal Ash/chemical synthesis*
  9. Idris SS, Rahman NA, Ismail K
    Bioresour Technol, 2012 Nov;123:581-91.
    PMID: 22944493 DOI: 10.1016/j.biortech.2012.07.065
    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value.
    Matched MeSH terms: Coal/analysis*
  10. Idris SS, Abd Rahman N, Ismail K, Alias AB, Abd Rashid Z, Aris MJ
    Bioresour Technol, 2010 Jun;101(12):4584-92.
    PMID: 20153633 DOI: 10.1016/j.biortech.2010.01.059
    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends.
    Matched MeSH terms: Coal/analysis*
  11. Ishak S, Lee HS, Singh JK, Ariffin MAM, Lim NHAS, Yang HM
    Materials (Basel), 2019 Oct 17;12(20).
    PMID: 31627479 DOI: 10.3390/ma12203404
    This paper presents the experimental results on the behavior of fly ash geopolymer concrete incorporating bamboo ash on the desired temperature (200 °C to 800 °C). Different amounts of bamboo ash were investigated and fly ash geopolymer concrete was considered as the control sample. The geopolymer was synthesized with sodium hydroxide and sodium silicate solutions. Ultrasonic pulse velocity, weight loss, and residual compressive strength were determined, and all samples were tested with two different cooling approaches i.e., an air-cooling (AC) and water-cooling (WC) regime. Results from these tests show that with the addition of 5% bamboo ash in fly ash, geopolymer exhibited a 5 MPa (53%) and 5.65 MPa (66%) improvement in residual strength, as well as 940 m/s (76%) and 727 m/s (53%) greater ultrasonic pulse velocity in AC and WC, respectively, at 800 °C when compared with control samples. Thus, bamboo ash can be one of the alternatives to geopolymer concrete when it faces exposure to high temperatures.
    Matched MeSH terms: Coal Ash
  12. Jawatin, Easther Lynn Jolly, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Coal Ash
  13. Jhatial AA, Goh WI, Mastoi AK, Traore AF, Oad M
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2985-3007.
    PMID: 34383212 DOI: 10.1007/s11356-021-15076-x
    Rapid urbanization and 'concretization' have increased the use of concrete as the preferred building material. However, the production of cement and other concrete-related activities, contribute significantly to both the carbon dioxide emissions and climate change. Agro-industrial wastes such as Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) have been utilized in concrete as supplementary cementitious materials, to reduce the cement content, in order to minimize the carbon footprint and the environmental pollution associated with the dumping of waste. Both POFA and ESP have been utilized in ternary binder foamed concrete; however, higher content of cement replacement tends to reduce the concrete's strength significantly. Therefore, this research was conducted to study the influence of ternary binder foamed concrete, incorporating 30% POFA and 5-15% ESP by weight of the total binder, when reinforced with polypropylene (PP) fibres. Based on the results, the ternary binder foamed concrete showed better strength than the control foamed concrete due to the pozzolanic reaction and the addition of PP fibres slightly improved the strength. Furthermore, ternary binder foamed concrete can reduce up to 33.79% of the total CO2 emissions. In terms of cost, all ternary binder foamed concrete mixes reduced the overall cost of the mix. The lowest cost per 1 MPa was achieved by ternary binder foamed concrete mix which incorporated 30% POFA, 5% ESP and 0.20% PP fibres. However, the optimum S5 ternary binder foamed concrete mix, which incorporated 30% POFA, 10% ESP and 0.20% PP fibres, exhibited a cost of $3.74 per 1 MPa strength, which was $1.1 lower than the control foamed concrete. PP reinforced ternary binder foamed concrete is an eco-efficient and cost-effective concrete that can be used in numerous civil engineering applications, mitigating the environmental and the emissions generated by agro-industrial waste.
    Matched MeSH terms: Coal Ash*
  14. Jie Y, Isa ZM, Jie X, Ju ZL, Ismail NH
    PMID: 23625129 DOI: 10.1007/978-1-4614-6898-1_2
    In this review, our aim was to examine the influence of geographic variations on asthma prevalence and morbidity among adults, which is important for improving our understanding, identifying the burden, and for developing and implementing interventions aimed at reducing asthma morbidity. Asthma is a complex inflammatory disease of multifactorial origin, and is influenced by both environmental and genetic factors. The disparities in asthma prevalence and morbidity among the world's geographic locations are more likely to be associated with environmental exposures than genetic differences. In writing this article, we found that the indoor factors most consistently associated with asthma and asthma-related symptoms in adults included fuel combustion, mold growth, and environmental tobacco smoke in both urban and rural areas. Asthma and asthma-related symptoms occurred more frequently in urban than in rural areas, and that difference correlated with environmental risk exposures, SES, and healthcare access. Environmental risk factors to which urban adults were more frequently exposed than rural adults were dust mites,high levels of vehicle emissions, and a westernized lifestyle.Exposure to indoor biological contaminants in the urban environment is common.The main risk factors for developing asthma in urban areas are atopy and allergy to house dust mites, followed by allergens from animal dander. House dust mite exposure may potentially explain differences in diagnosis of asthma prevalence and morbidity among adults in urban vs. rural areas. In addition, the prevalence of asthma morbidity increases with urbanization. High levels of vehicle emissions,Western lifestyles and degree of urbanization itself, may affect outdoor and thereby indoor air quality. In urban areas, biomass fuels have been widely replaced by cleaner energy sources at home, such as gas and electricity, but in most developing countries, coal is still a major source of fuel for cooking and heating, particularly in winter. Moreover, exposure to ETS is common at home or at work in urban areas.There is evidence that asthma prevalence and morbidity is less common in rural than in urban areas. The possible reasons are that rural residents are exposed early in life to stables and to farm milk production, and such exposures are protective against developing asthma morbidity. Even so, asthma morbidity is disproportionately high among poor inner-city residents and in rural populations. A higher proportion of adult residents of nonmetropolitan areas were characterized as follows:aged 55 years or older, no previous college admission, low household income, no health insurance coverage, and could not see a doctor due to healthcare service availability, etc. In rural areas, biomass fuels meet more than 70% of the rural energy needs. Progress in adopting modern energy sources in rural areas has been slow. The most direct health impact comes from household energy use among the poor, who depend almost entirely on burning biomass fuels in simple cooking devices that are placed in inadequately ventilated spaces. Prospective studies are needed to assess the long-term effects of biomass smoke on lung health among adults in rural areas.Geographic differences in asthma susceptibility exist around the world. The reason for the differences in asthma prevalence in rural and urban areas may be due to the fact that populations have different lifestyles and cultures, as well as different environmental exposures and different genetic backgrounds. Identifying geographic disparities in asthma hospitalizations is critical to implementing prevention strategies,reducing morbidity, and improving healthcare financing for clinical asthma treatment. Although evidence shows that differences in the prevalence of asthma do exist between urban and rural dwellers in many parts of the world, including in developed countries, data are inadequate to evaluate the extent to which different pollutant exposures contribute to asthma morbidity and severity of asthma between urban and rural areas.
    Matched MeSH terms: Coal/adverse effects
  15. Jie Y, Ismail NH, Jie X, Isa ZM
    J Formos Med Assoc, 2011 Sep;110(9):555-63.
    PMID: 21930065 DOI: 10.1016/j.jfma.2011.07.003
    This review summarizes the results of epidemiological studies focusing on the detrimental effects of home environmental factors on asthma morbidity in adults. We reviewed the literature on indoor air quality (IAQ), physical and sociodemographic factors, and asthma morbidity in homes, and identified commonly reported asthma, allergic, and respiratory symptoms involving the home environment. Reported IAQ and asthma morbidity data strongly indicated positive associations between indoor air pollution and adverse health effects in most studies. Indoor factors most consistently associated with asthma and asthma-related symptoms in adults included fuel combustion, mold growth, and environmental tobacco smoke. Environmental exposure may increase an adult's risk of developing asthma and also may increase the risk of asthma exacerbations. Evaluation of present IAQ levels, exposure characteristics, and the role of exposure to these factors in relation to asthma morbidity is important for improving our understanding, identifying the burden, and for developing and implementing interventions aimed at reducing asthma morbidity.
    Matched MeSH terms: Coal
  16. Jimmus, Melsie Enn, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Coal Ash
  17. Kanakaraju D, Jasni MAA, Pace A, Ya MH
    Environ Sci Pollut Res Int, 2021 Dec;28(48):68834-68845.
    PMID: 34282548 DOI: 10.1007/s11356-021-15440-x
    The performance of Cu/TiO2/FA composite, a hybrid adsorbent-photocatalyst consisting of copper-doped titania particles supported on fly ash, was optimized, under visible light irradiation, for the removal of the model dye pollutant methyl orange (MO) by using a response surface methodology and Box-Behnken experimental design. Three independent variables were considered for the optimization study: catalyst/solvent dosage (0.5 - 2.0 g/L), irradiation time (30-120 min), and the initial concentration (5- 25 ppm) of the dye. A 99.91% rate of removal was achieved using 2 g/L dosage, 5 ppm initial concentration, and 100 min of irradiation time as the optimal operating conditions. The recorded trends support the hypothesis of a combined and synergic adsorption-photocatalytic degradation process which fully exploits the "capture and destroy" approach for pollutant removal.
    Matched MeSH terms: Coal Ash*
  18. Karunarathne VK, Paul SC, Šavija B
    Materials (Basel), 2019 Aug 17;12(16).
    PMID: 31426501 DOI: 10.3390/ma12162622
    In this study, the use of nano-silica (nano-SiO2) and bentonite as mortar additives for combating reinforcement corrosion is reported. More specifically, these materials were used as additives in ordinary Portland cement (OPC)/fly ash blended mortars in different amounts. The effects of nano-silica and bentonite addition on compressive strength of mortars at different ages was tested. Accelerated corrosion testing was used to assess the corrosion resistance of reinforced mortar specimens containing different amounts of nano-silica and bentonite. It was found that the specimens containing nano-SiO2 not only had higher compressive strength, but also showed lower steel mass loss due to corrosion compared to reference specimens. However, this was accompanied by a small reduction in workability (for a constant water to binder ratio). Mortar mixtures with 4% of nano-silica were found to have optimal performance in terms of compressive strength and corrosion resistance. Control specimens (OPC/fly ash mortars without any additives) showed low early age strength and low corrosion resistance compared to specimens containing nano-SiO2 and bentonite. In addition, samples from selected mixtures were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Finally, the influence of Ca/Si ratio of the calcium silicate hydrate (C-S-H) in different specimens on the compressive strength is discussed. In general, the study showed that the addition of nano-silica (and to a lesser extent bentonite) can result in higher strength and corrosion resistance compared to control specimens. Furthermore, the addition of nano-SiO2 can be used to offset the negative effect of fly ash on early age strength development.
    Matched MeSH terms: Coal Ash
  19. Khairul Nizar Ismail, Kamarudin Hussin, Mohd Sobri Idris
    MyJurnal
    Fly ash is the finely divided mineral residue resulting from the combustion of coal in electric generating plants. Fly ash consists of inorganic, incombustible matter present in the coal that has been fused during combustion into a glassy, amorphous structure. Fly ash particles are generally spherical in shape and range in size from 2 μm to 10 μm. They consist mostly of silicon dioxide (SiO2), aluminium oxide (Al2O3) and iron oxide (Fe2O3). Fly ash like soil contains trace concentrations of the following heavy metals: nickel, vanadium, cadmium, barium, chromium, copper, molybdenum, zinc and lead. The chemical compositions of the sample have been examined and the fly ash are of ASTM C618 Class F.
    Matched MeSH terms: Coal; Coal Ash
  20. Khoo KS, Lim AL, Sukiman Sarmani
    Sains Malaysiana, 2007;36:45-52.
    Characterisation of the leaching behaviour of coal fly ash from Tenaga Nasional Berhad (TNB) by using tank leaching test method has been reported. The leachability of the constituents such as major elements and toxic metals in the coal fly ash was studied. Eight renewed leachant solutions after 6 hours, 1, 2, 5, 8, 21, 36 and 64 days were investigated after filtration. The parameters namely pH, cumulative release regarding the major elements and toxic metals to duration were presented. The results showed that the pH solutions increased from pH 4 to neutral and remained stable during the test. It might have resulted from the large buffering capacity of the coal fly ashes. Five major elements namely Al, Ca, K, Mg and Na were detected with Ca concentration in the leachant solutions was the highest for all samples. Toxic metals such as As, Ba, Co, Cr, Mn, Ni, Pb, Se and Zn were found and the test showed consistent results on the As, Ba, Mn, Se and Zn in leachant solutions. The findings also showed that some of the toxic metal concentrations namely As, Ba, Cr, Pb and Se exceeded the maximum allowance of the guideline of drinking water quality in Malaysia and WHO. Obviously, proper waste management has to be applied in this scenario.
    Matched MeSH terms: Coal; Coal Ash
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links