Displaying publications 41 - 60 of 1265 in total

Abstract:
Sort:
  1. Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT
    Br J Nutr, 2012 Oct;108(7):1194-201.
    PMID: 22152092
    Zingiber officinale (ZO), commonly known as ginger, has been traditionally used in the treatment of diabetes mellitus. Several studies have reported the hypoglycaemic properties of ginger in animal models. The present study evaluated the antihyperglycaemic effect of its aqueous extract administered orally (daily) in three different doses (100, 300, 500 mg/kg body weight) for a period of 30 d to streptozotocin (STZ)-induced diabetic rats. A dose-dependent antihyperglycaemic effect revealed a decrease of plasma glucose levels by 38 and 68 % on the 15th and 30th day, respectively, after the rats were given 500 mg/kg. The 500 mg/kg ZO significantly (P<0·05) decreased kidney weight (% body weight) in ZO-treated diabetic rats v. control rats, although the decrease in liver weight (% body weight) was not statistically significant. Kidney glycogen content increased significantly (P<0·05) while liver and skeletal muscle glycogen content decreased significantly (P<0·05) in diabetic controls v. normal controls. ZO (500 mg/kg) also significantly decreased kidney glycogen (P<0·05) and increased liver and skeletal muscle glycogen in STZ-diabetic rats when compared to diabetic controls. Activities of glucokinase, phosphofructokinase and pyruvate kinase in diabetic controls were decreased by 94, 53 and 61 %, respectively, when compared to normal controls; and ZO significantly increased (P<0·05) those enzymes' activities in STZ-diabetic rats. Therefore, the present study showed that ginger is a potential phytomedicine for the treatment of diabetes through its effects on the activities of glycolytic enzymes.
    Matched MeSH terms: Rats, Sprague-Dawley
  2. Ablat A, Mohamad J, Awang K, Shilpi JA, Arya A
    ScientificWorldJournal, 2014;2014:786130.
    PMID: 24688431 DOI: 10.1155/2014/786130
    The ethanol extract of B. javanica seed was fractionated with solvents of different polarities and tested for antioxidant activities by several assays including DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), ferrous ion chelating activity (FCA), and nitric oxide radical scavenging activity (NORSA) along with their polyphenolic contents. Antidiabetic activity was evaluated both in vitro and in vivo using a glycogen phosphorylase α (GPα) inhibition assay and oral glucose tolerance test (OGTT) in nondiabetic rats. The ethyl acetate fraction (EAF), rich in tannin, exhibited the strongest antioxidant activities to DPPH, FRAP, and NORSA, except for FCA. The EAF also exerted a dose-depended inhibition of GPα (IC50 = 0.75 mg/ml). Further evaluation of hypoglycemic effect on OGGT indicated that rats treated with EAF (125 mg/kg bw) showed a 39.91% decrease (P < 0.05) in blood glucose levels at 30 min, and continuous fall (P < 0.05) of 28.89% and 20.29% was observed in the following hours (60 and 90 min) compared to the normal control during OGTT. The EAF was applied to polyamide column chromatography, and the resulting tannin-free fraction was tested for both GPα inhibition and antioxidant (DPPH only) activity. The GP α inhibitory activity was retained, while antioxidant activity was lost (4.6-fold) after tannin removal. These results concluded that the GPα inhibitory activity initially detected was primarily due to the compounds other than tannins, whereas antioxidant activity was mainly due to the tannins.
    Matched MeSH terms: Rats, Sprague-Dawley
  3. Ablat A, Halabi MF, Mohamad J, Hasnan MH, Hazni H, Teh SH, et al.
    BMC Complement Altern Med, 2017 Feb 06;17(1):94.
    PMID: 28166749 DOI: 10.1186/s12906-017-1610-x
    Brucea javanica (B. javanica) seeds, also known as "Melada pahit" in Indo-Malay region are traditionally used to treat diabetes. The objective of this study was to determine antidiabetic, antioxidant and anti-inflammatory effects of B. javanica seeds on nicotinamide (NA)-streptozotocin (STZ) induced type 2 diabetic (T2D) rats and to analyze its chemical composition that correlate with their pharmacological activities.
    Matched MeSH terms: Rats, Sprague-Dawley
  4. Abood WN, Al-Henhena NA, Najim Abood A, Al-Obaidi MM, Ismail S, Abdulla MA, et al.
    Bosn J Basic Med Sci, 2015 05 12;15(2):25-30.
    PMID: 26042509 DOI: 10.17305/bjbms.2015.39
    The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.
    Matched MeSH terms: Rats, Sprague-Dawley
  5. Abrika OS, Yam MF, Asmawi MZ, Sadikun A, Dieng H, Hussain EA
    J Acupunct Meridian Stud, 2013 Aug;6(4):199-207.
    PMID: 23972242 DOI: 10.1016/j.jams.2013.01.020
    There is currently a great deal of research interest in utilizing plant compounds against human diseases, including hypertension. The present study investigated the effects of different extracts and fractions from leaves of Gynura procumbens Merr. on rat atrial contraction in vitro. Isolated left and right atria, mounted in a 20-ml organ bath, were allowed to equilibrate for 15 min before the application of the extracts or fractions. The extracts (petroleum-ether extract (PE) and methanol extract (ME)) and the fractions (chloroform fraction (CHL), ethyl-acetate fraction (EA), n-butanol fraction (NB) and water fraction (WA) of the methanol extract) were tested at three concentrations (0.25, 0.5 and 1.0 mg/ml), with a β-adrenergic agonist (isoprenaline) as a control. All data on contraction responses were log-transformed and analyzed. When exposed to the different extracts, both atria tended to exhibit greater contractive responses with the NB whereas cardiac contractions had a tendency to be reduced with most other extracts. For a given extract, the contraction responses were particularly greater at 0.5 mg/ml for the right atrium and at 1 mg/ml for the left atrium. Further analysis focusing on the NB fraction revealed that positive inotropism was greater in left atria exposed to highly-concentrated F2 and F3 sub-fractions. Taken together, our results suggest that NB extracts and fractions from the G. procumbens-leaf methanol extract have positive inotropic activities and, hence, can be considered as an alternative/traditional medicine against increased blood pressure in humans or can be used in strategies aimed at finding antihypertensive biomolecules from an accessible source.
    Matched MeSH terms: Rats, Sprague-Dawley
  6. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: Rats, Sprague-Dawley
  7. Abu Bakar Sajak A, Mediani A, Maulidiani, Ismail A, Abas F
    Appl Biochem Biotechnol, 2017 Jun;182(2):653-668.
    PMID: 27995574 DOI: 10.1007/s12010-016-2352-9
    Diabetes mellitus (DM) is considered as a complex metabolic disease because it affects the metabolism of glucose and other metabolites. Although many diabetes studies have been conducted in animal models throughout the years, the pathogenesis of this disease, especially between lean diabetes (ND + STZ) and obese diabetes (OB + STZ), is still not fully understood. In this study, the urine from ND + STZ, OB + STZ, lean/control (ND), and OB + STZ rats were collected and compared by using (1)H NMR metabolomics. The results from multivariate data analysis (MVDA) showed that the diabetic groups (ND + STZ and OB + STZ) have similarities and dissimilarities for a certain level of metabolites. Differences between ND + STZ and OB + STZ were particularly noticeable in the synthesis of ketone bodies, branched-chain amino acid (BCAA), and sensitivity towards the oral T2DM diabetes drug metformin. This finding suggests that the ND + STZ group was more similar to the T1DM model and OB + STZ to the T2DM model. In addition, we also managed to identify several pathways and metabolism aspects shared by obese (OB) and OB + STZ. The results from this study are useful in developing drug target-based research as they can increase understanding regarding the cause and effect of DM.
    Matched MeSH terms: Rats, Sprague-Dawley
  8. Abu Bakar Sajak A, Mediani A, Maulidiani, Mohd Dom NS, Machap C, Hamid M, et al.
    Phytomedicine, 2017 Dec 01;36:201-209.
    PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011
    BACKGROUND: Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown.

    PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.

    METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.

    RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.

    CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.

    Matched MeSH terms: Rats, Sprague-Dawley
  9. Abu N, Akhtar MN, Yeap SK, Lim KL, Ho WY, Zulfadli AJ, et al.
    PLoS One, 2014;9(10):e105244.
    PMID: 25286005 DOI: 10.1371/journal.pone.0105244
    INTRODUCTION: The kava-kava plant (Piper methsyticum) is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis.

    METHODS: MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.

    RESULTS: We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.

    CONCLUSIONS: FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.

    Matched MeSH terms: Rats, Sprague-Dawley
  10. Abubakar K, Muhammad Mailafiya M, Danmaigoro A, Musa Chiroma S, Abdul Rahim EB, Abu Bakar Zakaria MZ
    Biomolecules, 2019 09 06;9(9).
    PMID: 31489882 DOI: 10.3390/biom9090453
    Lead (Pb) is a toxic, environmental heavy metal that induces serious clinical defects in all organs, with the nervous system being its primary target. Curcumin is the main active constituent of turmeric rhizome (Curcuma longa) with strong antioxidant and anti-inflammatory properties. This study is aimed at evaluating the therapeutic potentials of curcumin on Pb-induced neurotoxicity. Thirty-six male Sprague Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and 6 rats in each of groups, i.e., the lead-treated group (LTG) (50 mg/kg lead acetate for four weeks), recovery group (RC) (50 mg/kg lead acetate for four weeks), treatment group 1 (Cur100) (50 mg/kg lead acetate for four weeks, followed by 100 mg/kg curcumin for four weeks) and treatment group 2 (Cur200) (50 mg/kg lead acetate for four weeks, followed by 200 mg/kg curcumin for four weeks). All experimental groups received oral treatment via orogastric tube on alternate days. Motor function was assessed using a horizontal bar method. The cerebellar concentration of Pb was evaluated using ICP-MS technique. Pb-administered rats showed a significant decrease in motor scores and Superoxide Dismutase (SOD) activity with increased Malondialdehyde (MDA) levels. In addition, a marked increase in cerebellar Pb concentration and alterations in the histological architecture of the cerebellar cortex layers were recorded. However, treatment with curcumin improved the motor score, reduced Pb concentration in the cerebellum, and ameliorated the markers of oxidative stress, as well as restored the histological architecture of the cerebellum. The results of this study suggest that curcumin attenuates Pb-induced neurotoxicity via inhibition of oxidative stress and chelating activity.
    Matched MeSH terms: Rats, Sprague-Dawley
  11. Abubakar K, Mailafiya MM, Chiroma SM, Danmaigoro A, Zyoud TYT, Abdul Rahim E, et al.
    J Biochem Mol Toxicol, 2020 Jun;34(6):e22483.
    PMID: 32125074 DOI: 10.1002/jbt.22483
    INTRODUCTION: Lead (Pb) is a ubiquitous toxic heavy metal that inflicts numerous clinical consequences on humans. Curcumin is the principal component of turmeric, which is reported to have antioxidative properties. This study aimed at evaluating the ameliorative effects of curcumin on Pb-induced hepatorenal toxicity in a rat model.

    METHODS: Thirty-six male Sprague-Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and six rats each for the lead-treated group (LTG) (50 mg/kg lead acetate [Pb acetate] for 4 weeks), recovery group (50 mg/kg Pb acetate for 4 weeks and left with no treatment for another 4 weeks), treatment group 1 (Cur100) (50 mg/kg Pb acetate for 4 weeks, followed by 100 mg/kg curcumin for 4 weeks), and treatment group 2 (Cur200) (50 mg/kg Pb acetate for 4 weeks, followed by 200 mg/kg curcumin for 4 weeks). All the experimental groups received oral treatments via orogastric-tube on alternate days. Pb concentration in the liver and kidney of the rats were evaluated using inductive-coupled plasma mass spectrometry techniques.

    RESULTS: Pb-administered rats revealed significant alteration in oxidative status and increased Pb concentration in their liver and kidney with obvious reduction of hemogram and increased in leukogram as well as aberration in histological architecture of the liver and kidney. However, treatment with curcumin reduces the tissue Pb concentrations and ameliorates the above mention alterations.

    CONCLUSIONS: The results in this study suggested that curcumin attenuates Pb-induced hepatorenal toxicity via chelating activity and inhibition of oxidative stress.

    Matched MeSH terms: Rats, Sprague-Dawley
  12. Abubakar S, Al-Mansoub MA, Murugaiyah V, Chan KL
    Phytother Res, 2019 Mar;33(3):660-675.
    PMID: 30653753 DOI: 10.1002/ptr.6255
    The Dillenia suffruticosa leaves (Dilleniaceae), a folk medicine recommended in Southeast Asia for treating inflammation, were phytochemically studied for the first time and assessed for suppression of λ-carrageenan-induced paw oedema in rats. The crude methanolic extract orally administered at 5,000 mg/kg, displayed no toxicity and at 250 to 1,000 mg/kg significantly suppressed the paw oedema. Two-isolated triterpenoids, betulinic acid (1) and koetjapic acid (2) orally administered at 50 mg/kg, significantly reduced the paw oedema, (p 
    Matched MeSH terms: Rats, Sprague-Dawley
  13. Abujazia MA, Muhammad N, Shuid AN, Soelaiman IN
    PMID: 22927879 DOI: 10.1155/2012/525079
    Virgin coconut oil (VCO) was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX) control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was assessed by measuring the index of lipid peroxidation, which is malondialdehyde (MDA) concentration, as well as the endogenous antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the tibia at the end of the study. The results showed that there was a significant decrease in MDA levels in the OVX-VCO group compared to control group. Ovariectomised rats treated with VCO also had significantly higher GPX concentration. The SOD level seemed to be increased in the OVX-VCO group compared to OVX-control group. In conclusion, VCO prevented lipid peroxidation and increased the antioxidant enzymes in the osteoporotic rat model.
    Matched MeSH terms: Rats, Sprague-Dawley
  14. Achike FI, Kwan CY
    Acta Pharmacol Sin, 2002 Aug;23(8):698-704.
    PMID: 12147191
    In an attempt to pharmacologically characterize the Chinese antihypertensive drug, tetrandrine, we observed in rat-tail arteries, an unusual contraction in tissues that were stimulated with high [KCl] and not those stimulated with phenylephrine. The characteristics of this contraction were studied.
    Matched MeSH terms: Rats, Sprague-Dawley
  15. Achin NA, Kit TJ, Ngah WZW, Makpol S, Mazlan M, Hamezah HS, et al.
    Curr Aging Sci, 2018;11(3):182-194.
    PMID: 30338748 DOI: 10.2174/1874609811666181019141217
    BACKGROUND: Cognitive frailty emerges as one of the threats to healthy aging. It is in continuum with advancing of age with uncertain indicator between pathological and physiological changes. Alterations in pathways associated with the aging process have been observed including oxidative stress, lipid metabolism, and inflammation. However, the exact mechanisms leading to cognitive decline are still unclear.

    OBJECTIVE: This study was sought to assess the level of cognitive functions and linked with blood oxidative status during normal aging in rats.

    METHODS: A longitudinal study using male Sprague Dawley rats was performed starting from the age of 14 months old to 27 months old. Cognitive functions tests such as open field, Morris water maze and object recognition were determined at the age of 14, 18, 23, and 27 months old and were compared with group 3 months old. Blood was collected from the orbital venous sinus and oxidative status was determined by measuring the level of DNA damage, lipid peroxidation, protein oxidation and antioxidant enzymes activity.

    RESULTS: Aged rats showed declining exploratory behavior and increased in the level of anxiety as compared to the young rats. The level of DNA damage increased with increasing age. Interestingly, our study found that both levels of malondialdehyde and plasma carbonyl content decreased with age. In addition, the level of superoxide dismutase activity was significantly decreased with age whereas catalase activity was significantly increased from 18 months of age. However, no significant difference was found in glutathione peroxidase activity among all age groups.

    CONCLUSION: The progressions of cognitive impairment in normal aging rats are linked to the increment in the level of DNA damage.

    Matched MeSH terms: Rats, Sprague-Dawley
  16. Adam SH, Giribabu N, Rao PV, Sayem AS, Arya A, Panichayupakaranant P, et al.
    Eur J Pharmacol, 2016 Jan 15;771:173-90.
    PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028
    Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
    Matched MeSH terms: Rats, Sprague-Dawley
  17. Adam SK, Das S, Jaarin K
    Int J Exp Pathol, 2009 Jun;90(3):321-7.
    PMID: 19563614 DOI: 10.1111/j.1365-2613.2009.00658.x
    Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague-Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis.
    Matched MeSH terms: Rats, Sprague-Dawley
  18. Adam SK, Das S, Soelaiman IN, Umar NA, Jaarin K
    Tohoku J. Exp. Med., 2008 Jul;215(3):219-26.
    PMID: 18648182
    Repeated heating of soy oil may promote lipid peroxidation. Oxidized unsaturated fatty acids may contribute to the pathogenesis of atherosclerosis, especially in estrogen-deficient states. This study was performed to explore the deleterious effects of repeatedly heated soy oil on the development of atherosclerosis using ovariectomized rats, which represent an estrogen-deficient state. Twenty-four female Sprague-Dawley rats were ovariectomized and were divided equally into four groups. The control group was fed with 2% cholesterol diet without any oil. The three treatment groups each received 2% cholesterol diet fortified with fresh, once-heated or five-times-heated (repeatedly heated) soy oil, respectively. Serum thiobarbituric acid reactive substances (TBARS), lipid profile and homocysteine levels were measured prior to ovariectomy and at the end of four months. Ovariectomized rats treated with repeatedly heated soy oil showed significant increases in lipid peroxidation and low-density lipoprotein (LDL) levels. Treatment with once-heated or repeatedly heated soy oil caused a significant increase in total cholesterol, while fresh soy oil caused significant reduction in homocysteine level as compared to other groups. Repeatedly heated soy oil caused significant increases in TBARS and LDL as compared to fresh oil. The higher level of homocysteine in the ovariectomized rats fed with repeatedly heated oil, as compared to those fed with fresh oil, also suggests the repeatedly heated oil contributes to the development of atherosclerosis. Importantly, the protective effect of the soy oil may be lost once it was being repeatedly heated. In conclusion, the consumption of repeatedly heated oil may predispose to atherosclerosis in estrogen-deficient states.
    Matched MeSH terms: Rats, Sprague-Dawley
  19. Adam SK, Das S, Othman F, Jaarin K
    Clinics (Sao Paulo), 2009;64(11):1113-9.
    PMID: 19936186 DOI: 10.1590/S1807-59322009001100012
    To observe the effects of consuming repeatedly heated soy oil on the aortic tissues of estrogen-deficient rats.
    Matched MeSH terms: Rats, Sprague-Dawley
  20. Adam Y, Somchit MN, Sulaiman MR, Nasaruddin AA, Zuraini A, Bustamam AA, et al.
    J Ethnopharmacol, 2009 Jul 6;124(1):154-8.
    PMID: 19375494 DOI: 10.1016/j.jep.2009.04.014
    Orthosiphon stamineus has been used in traditional medicine for centuries especially to treat diseases of the urinary system.
    Matched MeSH terms: Rats, Sprague-Dawley
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links