Displaying publications 41 - 60 of 108 in total

Abstract:
Sort:
  1. Panneerselvam P, Morad N, Tan KA
    J Hazard Mater, 2011 Feb 15;186(1):160-8.
    PMID: 21146294 DOI: 10.1016/j.jhazmat.2010.10.102
    The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe(3)O(4)-TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe(3)O(4)) were prepared by chemical precipitation of a Fe(2+) and Fe(3+) salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe(3)O(4) were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90×10(-2) min(-1) at 100 mg L(-1) and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L(-1). It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Q°, was found to be (38.3)mgg(-1). The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.
    Matched MeSH terms: Tea/chemistry*
  2. Noor-Aini, M.Y., Pon, L.W., Ong, F.B., Adeeb, N., Seri, S.S., Shamsuddin, K., et al.
    Malays J Nutr, 2006;12(2):125-146.
    MyJurnal
    Lifestyle has been shown to exert a major impact on the quality of life and health in mid-life women coping with menopausal changes. This study aimed to assess the efficacy of a lifestyle intervention package in improving nutritional knowledge and composition, dietary habits and related health status in mid-life women. Between Nov 1999 to Oct 2001, 360 disease free women, non users of HRT, aged 45 years and above with intact uterus were recruited into the study. The women were randomised into three groups - I (control), II (lifestyle intervention) and III (lifestyle intervention with HRT) respectively. After 12 months, 85.6% completed the study. The lifestyle intervention programme, well accepted by the participants, brought about an improved dietary composition, better eating habits, more exercise participation and increment in knowledge with concomitant improvement of the health status. The benefits observed were significant reduction in energy, fat and carbohydrate intake with increased intake of legumes; milk and cheese/yogurt; and reduction of tea and coffee. Body weight was reduced and more importantly preventing abdominal obesity in the intervention groups with HRT was more effective. Further adaptations of the dietary component with advice on obtaining micronutrients from local produce would contribute towards a more balanced diet in midlife women as dairy products were not popular and these women had low meat intake.
    Matched MeSH terms: Tea
  3. Md Nesran ZN, Shafie NH, Md Tohid SF, Norhaizan ME, Ismail A
    PMID: 32280356 DOI: 10.1155/2020/7958041
    In many studies, green tea epigallocatechin-3-gallate (EGCG) has already shown its therapeutic effects in colorectal cancer cells (CRC). However, its mechanism of actions in CRC is poorly elucidated. Hence, this study attempts to elucidate the mechanism of actions of green tea ECGG via iron chelation activity in CRC. In order to investigate this property, HT-29 cell lines (CRC) were treated with EGCG for 24 h, 48 h, and 72 h. From western blot analysis, EGCG had upregulated transferrin receptor (TfR) protein and downregulated Ferritin-H (FtH) protein indicating that iron chelation activity has occurred in CRC. Meanwhile, the molecular docking study demonstrated that EGCG is able to strongly interact the ferritin protein with a high binding affinity (-7.3 kcal/mol) via strong hydrogen bindings to glutamic acid 64 and lysine 71; two moderate hydrogen bindings to asparagine 74 and a hydrophobic interaction to the hydrophobic pocket of lysine 71. The strong interaction predicted between EGCG to ferritin may lead to inhibition of ferritin by EGCG, thus supporting the downregulation of FtH observed in in vitro studies. Molecular docking study of TfR to EGCG cannot be modulated based on the in vitro results. In conclusion, EGCG possesses iron chelator property in CRC and this potential could be further exploited for CRC treatment.
    Matched MeSH terms: Tea
  4. Bhoo-Pathy N, Uiterwaal CS, Dik VK, Jeurnink SM, Bech BH, Overvad K, et al.
    Clin Gastroenterol Hepatol, 2013 Nov;11(11):1486-92.
    PMID: 23756220 DOI: 10.1016/j.cgh.2013.05.029
    BACKGROUND & AIMS: Few modifiable risk factors have been implicated in the etiology of pancreatic cancer. There is little evidence for the effects of caffeinated coffee, decaffeinated coffee, or tea intake on risk of pancreatic cancer. We investigated the association of total coffee, caffeinated coffee, decaffeinated coffee, and tea consumption with risk of pancreatic cancer.

    METHODS: This study was conducted within the European Prospective Investigation into Nutrition and Cancer cohort, comprising male and female participants from 10 European countries. Between 1992 and 2000, there were 477,312 participants without cancer who completed a dietary questionnaire and were followed up to determine pancreatic cancer incidence. Coffee and tea intake was calibrated with a 24-hour dietary recall. Adjusted hazard ratios (HRs) were computed using multivariable Cox regression.

    RESULTS: During a mean follow-up period of 11.6 y, 865 first incidences of pancreatic cancers were reported. When divided into fourths, neither total intake of coffee (HR, 1.03; 95% confidence interval [CI], 0.83-1.27; high vs low intake), decaffeinated coffee (HR, 1.12; 95% CI, 0.76-1.63; high vs low intake), nor tea were associated with risk of pancreatic cancer (HR, 1.22, 95% CI, 0.95-1.56; high vs low intake). Moderately low intake of caffeinated coffee was associated with an increased risk of pancreatic cancer (HR, 1.33; 95% CI, 1.02-1.74), compared with low intake. However, no graded dose response was observed, and the association attenuated after restriction to histologically confirmed pancreatic cancers.

    CONCLUSIONS: Based on an analysis of data from the European Prospective Investigation into Nutrition and Cancer cohort, total coffee, decaffeinated coffee, and tea consumption are not related to the risk of pancreatic cancer.

    Matched MeSH terms: Tea/adverse effects*
  5. Amarra MS, Khor GL, Chan P
    Asia Pac J Clin Nutr, 2016;25(2):227-40.
    PMID: 27222405 DOI: 10.6133/apjcn.2016.25.2.13
    The term 'added sugars' refers to sugars and syrup added to foods during processing or preparation, and sugars and syrups added at the table. Calls to limit the daily intakes of added sugars and its sources arose from evidence analysed by WHO, the American Heart Association and other organizations. The present review examined the best available evidence regarding levels of added sugar consumption among different age and sex groups in Malaysia and sources of added sugars. Information was extracted from food balance sheets, household expenditure surveys, nutrition surveys and published studies. Varying results emerged, as nationwide information on intake of sugar and foods with added sugar were obtained at different times and used different assessment methods. Data from the 2003 Malaysian Adult Nutrition Survey (MANS) using food frequency questionnaires suggested that on average, Malaysian adults consumed 30 grams of sweetened condensed milk (equivalent to 16 grams sugar) and 21 grams of table sugar per day, which together are below the WHO recommendation of 50 grams sugar for every 2000 kcal/day to reduce risk of chronic disease. Published studies suggested that, for both adults and the elderly, frequently consumed sweetened foods were beverages (tea or coffee) with sweetened condensed milk and added sugar. More accurate data should be obtained by conducting population-wide studies using biomarkers of sugar intake (e.g. 24-hour urinary sucrose and fructose excretion or serum abundance of the stable isotope 13C) to determine intake levels, and multiple 24 hour recalls to identify major food sources of added sugar.
    Matched MeSH terms: Tea
  6. Salleh MN, Runnie I, Roach PD, Mohamed S, Abeywardena MY
    J Agric Food Chem, 2002 Jun 19;50(13):3693-7.
    PMID: 12059144
    Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.
    Matched MeSH terms: Tea/chemistry
  7. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Bacterial Adhesion/drug effects*; Catechin/analogs & derivatives; Catechin/pharmacology; Stem Cells; Tea*
  8. Swaminathan, D., Moran, John, Addy, Martin
    Ann Dent, 1996;3(1):-.
    MyJurnal
    Side effects such as abrasion of the dental hard tissue have been frequently observed following the extensive use of mechanical cleansing. As promising antiseptics like chlorhexidine produces extrinsic dental staining on long term usage, there has been increasing interest and research generated towards chemically based stain removing agents. This invitro studyexamined whether some commercial oral hygiene products could inhibit chlorhexidine derived stain independent of any mechanical cleansing action. Perspex blocks were soaked in triplicate in chlorhexidine solution for 2 minutesand stain inhibition by these products was determined by further soaking the blocks in productl water slurries for 2 minutes and finally in tea solution for I hourly periods. The optical density (OD) of each specimen was determined at each hourly interval by spectrophotometry at 395 nm and the mean values obtained. At the end of the study, most of the products inhibited stain compared to water control and there was a variation in the stain inhibitingefficacyof the products. It is thus concluded that oral hygiene products like dentifricesand mouthrinses can inhibit chlorhexidine derived extrinsic dental stain to a variable degree through a chemical action by contained ingredients.
    Matched MeSH terms: Tea
  9. Hussain Zaki UK, Fryganas C, Trijsburg L, Feskens EJM, Capuano E
    Food Chem, 2023 Mar 15;404(Pt A):134607.
    PMID: 36272303 DOI: 10.1016/j.foodchem.2022.134607
    This research assessed the influence of pickling, fermentation, germination, and tea brewing on lignan content of a variety of food highly consumed in Malaysia. Lignans have been measured by a validated LC-MS/MS method. Secoisolariciresinol (SECO) was the most abundant compound in fermented and germinated samples. Pickling significantly decreased larisiresinol content by approximately 86 %. Fermentation increased lignan content in a mixture of flaxseed and mung beans (799.9 ± 67.4 mg/100 g DW) compared to the unfermented counterpart (501.4 ± 134.6 mg/100 g DW), whereas the fermentation of soybeans and mung beans did not significantly affect the SECO content. Germination increased lignan content, which reached its peak on day 6 of germination for all the tested matrixes. In tea brew, lignans concentration increased with brewing time reaching its highest concentration at 10 min of brewing. The results of this study expand the knowledge on the effect of processing on lignan content in food.
    Matched MeSH terms: Tea
  10. Raguraj S, Kasim S, Jaafar NM, Nazli MH
    Environ Sci Pollut Res Int, 2023 Mar;30(13):37017-37028.
    PMID: 36564696 DOI: 10.1007/s11356-022-24758-z
    Modern agriculture prioritizes eco-friendly and sustainable strategies to enhance crop growth and productivity. The utilization of protein hydrolysate extracted from chicken feather waste as a plant biostimulant paves the path to waste recycling. A greenhouse experiment was performed to evaluate the implications of different doses (0, 1, 2, and 3 g L-1) of chicken feather protein hydrolysate (CFPH), application method (soil and foliar), and fertilizer rate (50% and 100%) on the growth performance of tea nursery plants. The highest dose of CFPH (3 g L-1) increased the shoot and root dry weights by 43% and 70%, respectively over control. However, no significant differences were observed between 2 and 3 g L-1 doses in plant dry weight, biometric, and root morphological parameters. Foliar application of CFPH significantly increased all the growth parameters compared to soil drenching except N, P, and K concentrations in leaves and roots. Plants grown under 100% fertilizer rate showed better growth performance than 50% fertilizer rate. Tea nursery plants treated with foliar 2 g L-1 dose and grown under full fertilizer rate recorded the highest plant dry weight, root length, and root surface area. However, tea plants under 50% fertilizer rate and treated with foliar 2 and 3 g L-1 doses sustained the growth similar to untreated plants under 100% fertilizer rate. The significantly higher N, P, and K concentrations in leaves were observed in plants treated with soil drenching of 2 and 3 g L-1 CFPH doses under 100% fertilizer rate. Our results indicate that the application of CFPH as a foliar spray is highly effective in producing vigorous tea nursery plants suitable for field planting, eventually capable of withstanding stress and higher yield.
    Matched MeSH terms: Tea
  11. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: Tea/chemistry*
  12. Nwidu LL, Elmorsy E, Carter WG
    Malays J Med Sci, 2018 Mar;25(2):27-39.
    PMID: 30918453 DOI: 10.21315/mjms2018.25.2.4
    Background: Polyherbal standardised extracts used in ethnomedicine of Eastern Nigeria for memory improvements were evaluated for anti-cholinesterases and anti-oxidant properties.

    Methods: Anti-cholinesterase, anti-oxidant, and total phenolic and flavonoid contents were established using standard procedures.

    Results: The three polyherbal extracts exhibited significant concentration dependent acetylcholinesterase (AChE) inhibitory activity (P = 0.001). The highest AChE inhibition was observed with the Neocare Herbal Tea (NHT) with 99.7% (IC50 = 324 μg/mL); whereas the Herbalin Complex Tea (HCT) and Phytoblis Herbal Tea (PHT) exhibited 73.8% (IC50 = 0.2 μg/mL) and 60.6% (IC50 = 0.7 μg/mL) inhibition, respectively, relative to eserine at 100% inhibition (IC50 = 0.9 μg/mL) at 200 μg/mL. The order of percentage increase in inhibition of AChE was NHT > HCT > PHT; while the order of decrease in potency was HCT > PHT > NHT.Radical scavenging activities of HCT, NHT and PHT were 82.13% (IC50 = 0.08 μg/mL), 77.43% (IC50 = 0.01 μg/mL) and 76.28% (IC50 = 0.3 μg/mL), respectively, at 1 mg/mL concentrations. The reducing power revealed a dose-dependent effect, with NHT > PHT > HCT. The order of total phenolics content in the extracts were PHT > HCT > NHT, and for total flavonoids content: PHT > NHT > HCT.

    Conclusion: The three polyherbal standardised products possess significant acetylcholinesterase inhibitory activity and secondary metabolites that could collectively contribute to their memory-enhancing effects.

    Matched MeSH terms: Teas, Herbal; Tea
  13. Poddar, Sandeep
    MyJurnal
    Hepatitis C is a liver disease caused by the hepatitis C virus: the virus can cause both acute and chronic hepatitis infection. Patients with chronic hepatitis C virus (HCV) infection appear to have an excellent chance of responding to 6 months of standard therapy with interferon (IFN) and frequently develop systemic iron overload, which exacerbates morbidity. The iron excess in hepatitis C may be due to hereditary hemochromatosis, hematologic diseases, multiple transfusions, porphyria cutanea tarda and chronic alcohol abuse. Different mechanisms proposed to explain the relation between HCV infection and hepatic iron overload. Some revealed that hepatic iron accumulation results from release of iron from damaged liver cells. Consumption of coffee, tea also reduces iron absorption and thereby decrease iron overload in Liver and thereby reduces the oxidative stress of iron overload in liver. The global scenario of this problem has been discussed in the article.
    Matched MeSH terms: Tea
  14. Amirdivani S, Baba AS
    J Food Sci Technol, 2015 Jul;52(7):4652-60.
    PMID: 26139940 DOI: 10.1007/s13197-014-1670-6
    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p tea-yogurt (MGT) followed by steam-treated green tea (JGT) and plain yogurts. Four major compounds in MGTY and JGTY were detected. The highest concentration of major phenolic compounds in both samples was related to quercetin-rhamnosylgalactoside and quercetin-3-O-galactosyl-rhamnosyl-glucoside for MGTY and JGTY respectively during first 7 day of storage. Diphenyl picrylhydrazyl and ferric reducing antioxidant power methods showed highest antioxidant capacity in MGTY, JGTY and PY. Streptococcus thermophillus and Lactobacillus spp. were highest in MGTY followed by JGTY and PY. This paper evaluates the implementation of green tea yogurt as a new product with functional properties and valuable component to promote the growth of beneficial yogurt bacteria and prevention of oxidative stress by enhancing the antioxidant activity of yogurt.
    Matched MeSH terms: Steam; Tea
  15. Nordin AH, Ngadi N, Ilyas RA, Abd Latif NAF, Nordin ML, Mohd Syukri MS, et al.
    Environ Sci Pollut Res Int, 2023 Dec;30(60):125048-125065.
    PMID: 36795217 DOI: 10.1007/s11356-023-25816-w
    This study investigates the feasibility of spent tea waste extract (STWE) as a green modifying agent for the modification of chitosan adsorbent towards aspirin removal. Response surface methodology based on Box-Behnken design was employed to find the optimal synthesis parameters (chitosan dosage, spent tea waste concentration, and impregnation time) for aspirin removal. The results revealed that the optimum conditions for preparing chitotea with 84.65% aspirin removal were 2.89 g of chitosan, 18.95 mg/mL of STWE, and 20.72 h of impregnation time. The surface chemistry and characteristics of chitosan were successfully altered and improved by STWE, as evidenced by FESEM, EDX, BET, and FTIR analysis. The adsorption data were best fitted to pseudo 2nd order, followed by chemisorption mechanisms. The maximum adsorption capacity of chitotea was 157.24 mg/g, as fitted by Langmuir, which is impressive for a green adsorbent with a simple synthesis method. Thermodynamic studies demonstrated the endothermic nature of aspirin adsorption onto chitotea.
    Matched MeSH terms: Tea
  16. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
    Matched MeSH terms: Tea/chemistry*
  17. Lubanga N, Massawe F, Mayes S, Gorjanc G, Bančič J
    Plant Genome, 2023 Mar;16(1):e20282.
    PMID: 36349831 DOI: 10.1002/tpg2.20282
    Tea [Camellia sinensis (L.) O. Kuntze] is mainly grown in low- to middle-income countries (LMIC) and is a global commodity. Breeding programs in these countries face the challenge of increasing genetic gain because the accuracy of selecting superior genotypes is low and resources are limited. Phenotypic selection (PS) is traditionally the primary method of developing improved tea varieties and can take over 16 yr. Genomic selection (GS) can be used to improve the efficiency of tea breeding by increasing selection accuracy and shortening the generation interval and breeding cycle. Our main objective was to investigate the potential of implementing GS in tea-breeding programs to speed up genetic progress despite the low cost of PS in LMIC. We used stochastic simulations to compare three GS-breeding programs with a Pedigree and PS program. The PS program mimicked a practical commercial tea-breeding program over a 40-yr breeding period. All the GS programs achieved at least 1.65 times higher genetic gains than the PS program and 1.4 times compared with Seed-Ped program. Seed-GSc was the most cost-effective strategy of implementing GS in tea-breeding programs. It introduces GS at the seedlings stage to increase selection accuracy early in the program and reduced the generation interval to 2 yr. The Seed-Ped program outperformed PS by 1.2 times and could be implemented where it is not possible to use GS. Our results indicate that GS could be used to improve genetic gain per unit time and cost even in cost-constrained tea-breeding programs.
    Matched MeSH terms: Tea
  18. Brza MA, Aziz SB, Anuar H, Al Hazza MHF
    Int J Mol Sci, 2019 Aug 11;20(16).
    PMID: 31405255 DOI: 10.3390/ijms20163910
    The present work proposed a novel approach for transferring high-risk heavy metals tometal complexes via green chemistry remediation. The method of remediation of heavy metals developed in the present work is a great challenge for global environmental sciences and engineering because it is a totally environmentally friendly procedure in which black tea extract solution is used. The FTIR study indicates that black tea contains enough functional groups (OH and NH), polyphenols and conjugated double bonds. The synthesis of copper complex was confirmed by the UV-vis, XRD and FTIR spectroscopic studies. The XRD and FTIR analysis reveals the formation of complexation between Cu metal complexes and Poly (Vinyl Alcohol) (PVA) host matrix. The study of optical parameters indicates that PVA-based hybrids exhibit a small optical band gap, which is close to inorganic-based materials. It was noted that the absorption edge shifted to lower photon energy. When Cu metal complexes were added to PVA polymer, the refractive index was significantly tuned. The band gap shifts from 6.2 eV to 1.4 eV for PVA incorporated with 45 mL of Cu metal complexes. The nature of the electronic transition in hybrid materials was examined based on the Taucs model, while a close inspection of the optical dielectric loss was also performed in order to estimate the optical band gap. The obtained band gaps of the present work reveal that polymer hybrids with sufficient film-forming capability could be useful to overcome the drawbacks associated with conjugated polymers. Based on the XRD results and band gap values, the structure-property relationships were discussed in detail.
    Matched MeSH terms: Tea/chemistry*
  19. Tung SEH, Ch'ng YZ, Karnan TV, Chong PN, Zubaidah JO, Chin YS
    Nutr Res Pract, 2020 Oct;14(5):490-500.
    PMID: 33029289 DOI: 10.4162/nrp.2020.14.5.490
    BACKGROUND/OBJECTIVES: A cross-sectional study was undertaken to evaluate fluid intake and hydration status in association with cognitive function among 230 adolescents (10-14 years of age) in Petaling Perdana, Selangor, Malaysia.

    SUBJECTS/METHODS: Urine color was used to measure hydration status, while fluid intake was assessed using the 15-item beverage intake questionnaire. Cognitive function was assessed using the Wechsler Intelligence Scale for Children, Fourth Edition.

    RESULTS: More than half of the adolescents were mildly or moderately dehydrated (59.6%) and only one-third (33.0%) were well hydrated. Among the daily fluid types, intakes of soft drinks (r = -0.180; P = 0.006), sweetened tea (r = -0.184; P = 0.005) and total sugar-sweetened beverages (SSBs) (r = -0.199; P = 0.002) were negatively correlated with cognitive function. In terms of hydration status, cognitive function score was significantly higher (F-ratio = 4.102; P = 0.018) among hydrated adolescents (100.38 ± 12.01) than in dehydrated (92.00 ± 13.63) counterparts. Hierarchical multiple linear regression analysis, after adjusting for socio-demographic factors, showed that soft drinks (β = -0.009; P < 0.05) and sweetened tea (β = -0.019; P < 0.05) negatively predicted cognitive function (ΔR2 = 0.044). When further control for sources of fluid, hydration status (β = -2.839; P < 0.05) was shown to negatively predict cognitive function (ΔR2 = 0.021). The above variables contributed 20.1% of the variance in cognitive function.

    CONCLUSIONS: The results highlight the links between fluid intake (soft drinks, sweetened tea, total SSBs) and hydration status with cognitive function in adolescents. Interventions aimed at decreasing the consumption of SSBs and increasing hydration status through healthy fluid choices, such as water, could improve cognitive performance in adolescents.

    Matched MeSH terms: Tea
  20. Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR
    Front Pharmacol, 2019;10:1295.
    PMID: 31749703 DOI: 10.3389/fphar.2019.01295
    Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.
    Matched MeSH terms: Tea
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links