Displaying publications 41 - 60 of 92 in total

Abstract:
Sort:
  1. Solanki N, Mehta M, Chellappan DK, Gupta G, Hansbro NG, Tambuwala MM, et al.
    Future Med Chem, 2020 11;12(22):2019-2034.
    PMID: 33124483 DOI: 10.4155/fmc-2020-0083
    Aim: In the present study boswellic acids-loaded chitosan nanoparticles were synthesized using ionic gelation technique. The influence of independent variables were studied and optimized on dependent variables using central composite design. Methodology & results: The designed nanoparticles were observed spherical in shape with an average size of 67.5-187.2 nm and have also shown an excellent entrapment efficiency (80.06 ± 0.48). The cytotoxicity assay revealed enhanced cytotoxicity for drug-loaded nanoparticles in contrast to the free drug having an IC50 value of 17.29 and 29.59 μM, respectively. Flow cytometry confirmed that treatment of cells with 40 μg/ml had arrested 22.75 ± 0.3% at SubG0 phase of the cell cycle when compared with untreated A459 cells. The observed results justified the boswellic acids-loaded chitosan nanoparticles were effective due to greater cellular uptake, sustained intercellular drug retention and enhanced antiproliferative effect by inducing apoptosis.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  2. Samad MA, Saiman MZ, Abdul Majid N, Karsani SA, Yaacob JS
    Molecules, 2021 Jan 13;26(2).
    PMID: 33450878 DOI: 10.3390/molecules26020376
    Colorectal cancer (CRC) is the most common cancer among males and females, which is associated with the increment of telomerase level and activity. Some plant-derived compounds are telomerase inhibitors that have the potential to decrease telomerase activity and/or level in various cancer cell lines. Unfortunately, a deeper understanding of the effects of telomerase inhibitor compound(s) on CRC cells is still lacking. Therefore, in this study, the aspects of telomerase inhibitors on a CRC cell line (HCT 116) were investigated. Screening on HCT 116 at 48 h showed that berberine (10.30 ± 0.89 µg/mL) is the most effective (lowest IC50 value) telomerase inhibitor compared to boldine (37.87 ± 3.12 µg/mL) and silymarin (>200 µg/mL). Further analyses exhibited that berberine treatment caused G0/G1 phase arrest at 48 h due to high cyclin D1 (CCND1) and low cyclin-dependent kinase 4 (CDK4) protein and mRNA levels, simultaneous downregulation of human telomerase reverse transcriptase (TERT) mRNA and human telomerase RNA component (TERC) levels, as well as a decrease in the TERT protein level and telomerase activity. The effect of berberine treatment on the cell cycle was time dependent as it resulted in a delayed cell cycle and doubling time by 2.18-fold. Telomerase activity and level was significantly decreased, and telomere erosion followed suit. In summary, our findings suggested that berberine could decrease telomerase activity and level of HCT 116, which in turn inhibits the proliferative ability of the cells.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  3. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Alitheen NB, Hussein MZ, et al.
    J Colloid Interface Sci, 2016 Oct 15;480:146-58.
    PMID: 27428851 DOI: 10.1016/j.jcis.2016.07.011
    In this study, we modulated the anti-cancer efficacy of 5-Fluorouracil (5-FU) using a carrier system with enhanced targeting efficacy towards folate receptors (FRs) expressing malignant tissues. The 5-FU drug was loaded onto Mn-ZnS quantum dots (QDs) encapsulated with chitosan (CS) biopolymer and conjugated with folic acid (FA) based on a simple wet chemical method. The formation of 5-FU drug loaded composite was confirmed using Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore, the in vivo biodistribution and tumor targeting specificity of the 5-FU@FACS-Mn:ZnS in the tumor-bearing mice was conducted based on the Zn(2+) tissue bioaccumulation using inductively coupled plasma (ICP) spectroscopy. In addition to the characterization, the in vitro release profile of 5-FU from the conjugates investigated under diffusion controlled method demonstrated a controlled release behaviour as compared against the release behaviour of free 5-FU drug. The as-synthesized 5-FU@FACS-Mn:ZnS nanoparticle (NP) systemically induced higher level of apoptosis in breast cancer cells in vitro as compared to cells treated with free 5-FU drug following both cell cycle and annexin assays, respectively. Also, the in vivo toxicity assessment of the 5-FU@FACS-Mn:ZnS NPs as compared to the control did not cause any significant increase in the activities of the liver and kidney function biomarkers, malondialdehyde (MDA) and nitric oxide (NO) levels. However, based on the FA-FRs chemistry, the 5-FU@FACS-Mn:ZnS NPs specifically accumulated in the tumor of the tumor-bearing mice and thus contributed to the smaller tumor size and less event of metastasis was observed in the lungs when compared to the tumor-bearing mice groups treated with the free 5-FU drug. In summary, the results demonstrated that the 5-FU@FACS-Mn:ZnS QDs exhibits selective anti-tumor effect in MDA-MB231 breast cancer cells in vitro and 4TI breast cancer cells in vivo, providing a blueprint for improving the 5-FU efficacy and tumor targeting specificity with limited systemic toxicity.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  4. Ikram HM, Rasool N, Zubair M, Khan KM, Abbas Chotana G, Akhtar MN, et al.
    Molecules, 2016 Jul 27;21(8).
    PMID: 27472312 DOI: 10.3390/molecules21080977
    The present study describes several novel 2,5-biaryl-3-hexylthiophene derivatives (3a-i) synthesized via a Pd(0)-catalyzed Suzuki cross-coupling reaction in moderate to good yields. The novel compounds were also analyzed for their anti-thrombolytic, haemolytic, and biofilm inhibition activities. In addition, the anti-tumor activity was also evaluated in vitro for newly-synthesized compounds, where 3-hexyl-2,5-bis(4-(methylthio)phenyl)thiophene exhibited the best anti-tumor activity against 4T1 cells with IC50 value of 16 μM. Moreover, 2,5-bis(4-methylphenyl)-3-hexylthiophene showed the highest activity against MCF-7 cells with an IC50 value of 26.2 μM. On the other hand, the compound 2,5-bis(4-chloropheny)-3-hexylthiophene exhibited excellent biofilm inhibition activity. Furthermore, the compound 2,5-bis(3-chloro-4-fluorophenyl)-3-hexylthiophene also exhibited better anti-thrombolytic and hemolytic activity results as compared to the other newly-synthesized compounds.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*
  5. Sinniah SK, Tan KW, Ng SW, Sim KS
    Anticancer Agents Med Chem, 2017;17(5):741-753.
    PMID: 27671302 DOI: 10.2174/1871520616666160926110929
    BACKGROUND: Thiosemicarbazone (TSC) is a Schiff base that has been receiving considerable attention owing to its promising biological implication and remarkable pharmacological properties. The most promising drug candidate of this class would be Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) which has entered phase II clinical trials as a potent anti-cancer chemotherapeutic agent.

    OBJECTIVE: The current research aimed to synthesize several Schiff base ligands from (3-formyl-4-hydroxyphenyl) methyltriphenylphosphonium (T). Additionally, the current research aimed to study the growth inhibitory effect of triphenylphosphonium containing thiosemicarbazone derivatives on PC-3 cells by deciphering the mechanisms involved in cell death.

    METHOD: The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography) and the results were in conformity with the structure of the targeted compounds. Growth inhibitory effect of the compounds were performed against six human cell lines.

    RESULTS: DM(tsc)T displayed most potent activity against PC-3 cells with IC50 value of 2.64 ± 0.33 μM, surpassing that of the positive control cisplatin (5.47 ± 0.06 μM). There were marked morphological changes observed in DM(tsc)T treated cells stained with acridine orange and ethidium bromide which were indicative of cell apoptosis. Treatment with DM(tsc)T showed that the cell cycle is arrested in the G0/G1 phase after 72 hours. Mitochondrial membrane potential loss was observed in cells treated with DM(tsc)T, indicating the apoptosis could be due to mitochondria mediated pathway.

    CONCLUSION: This study indicates that DM(tsc)T would serve as a lead scaffold for rational anticancer agent development.

    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  6. Hajiaghaalipour F, Faraj FL, Bagheri E, Ali HM, Abdulla MA, Majid NA
    Curr Pharm Des, 2017;23(41):6358-6365.
    PMID: 28325143 DOI: 10.2174/1381612823666170321093345
    BACKGROUND: Colorectal cancer is the third most common form of cancer in both men and women around the world. The chemistry and biological study of heterocyclic compounds have been an interesting area for a long time in pharmaceutical and medicinal chemistry.

    METHODS: A new synthetic compound, 2-(1,1-dimethyl-1H-benzo[e]indol-2-yl)-3-((2-hydroxyphenyl)amino) acrylaldehyde, abbreviated as DBID, was prepared through the reaction of 2-(diformylmethylidene)-1,1- dimethylbenzo[e]indole with 2-aminophenol. The chemical structure of the synthesized compound was characterized by 1H NMR, 13C NMR and APT-NMR spectroscopy and confirmed by elemental analysis (CHN). The compound was screened for the antiproliferation effect against colorectal cancer cell line, HCT 116 and its possible mechanism of action was elucidated. To determine the IC50 value, the MTT assay was used and its apoptosisinducing effect was investigated.

    RESULTS: DBID inhibited the proliferation of HCT 116 cells with an IC50 of 9.32 µg/ml and significantly increased the levels of caspase -8, -9 and -3/7 in the treated cells compared to untreated cells. Apoptosis features in HCT 116 cell was detected in treated cells by using the AO/PI staining that confirmed that the cells had undergone remarkable morphological changes in apoptotic bodies. Furthermore, this changes in expression of caspase -8, -9 and -3 were confirmed by gene and protein quantification using RT-PCR and western blot analysis, respectively.

    CONCLUSION: The current study showed that the DBID compound has demonstrated chemotherapeutic activity which was evidenced by significant increases in the expression and activation of caspase and exploit the apoptotic signaling pathways to trigger cancer cell death.

    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  7. Leong SW, Chia SL, Abas F, Yusoff K
    Eur J Med Chem, 2018 Sep 05;157:716-728.
    PMID: 30138803 DOI: 10.1016/j.ejmech.2018.08.039
    In the present study, a series of forty-five asymmetrical meta-methoxylated diarylpentanoids have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential. Among the forty-five analogs, three compounds (20, 33 and 42) have been identified as lead compounds due to their excellent inhibition against five human cancer cell lines including SW620, A549, EJ28, HT1080 and MCF-7. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-oxygenated phenyl ring played a critical role in enhancing their cytotoxic effects. Compounds 33 and 42 in particular, exhibited strongest cytotoxicity against tested cell lines with the IC50 values ranging from 1.1 to 4.3 μM. Subsequent colony formation assay on SW620 cell line showed that both compounds 33 and 42 possessed strong anti-proliferative activity. In addition, flow cytometry based experiments revealed that these compounds could trigger intracellular ROS production thus inducing G2/M-phase cell arrest and apoptosis. All these results suggested that poly meta-oxygenated diarylpentnoid is a promising scaffold which deserved further modification and investigation in the development of natural product-based anti-cancer drug.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  8. Subramaniam M, Arshad NM, Mun KS, Malagobadan S, Awang K, Nagoor NH
    Biomolecules, 2019 10 18;9(10).
    PMID: 31635311 DOI: 10.3390/biom9100626
    Cancer development and progression are extremely complex due to the alteration of various genes and pathways. In most cases, multiple agents are required to control cancer progression. The purpose of this study is to investigate, using a mouse model, the synergistic interactions of anti-cancer agents, 1'-S-1'-acetoxychavicol acetate (ACA), Mycobacterium indicus pranii (MIP), and cisplatin (CDDP) in double and triple combinations to treat chemo-sensitize and immune-sensitize breast cancer. Changes in tumor volume and body weight were monitored. Organs were harvested and stained using hematoxylin-eosin for histopathological assessment. Milliplex enzyme-linked immunosorbent assay (ELISA) was performed to determine cytokine levels, while immunohistochemistry (IHC) was conducted on tumor biopsies to verify systemic drug effects. In vivo mouse models showed tumor regression with maintenance of regular body weight for all the different treatment regimens. IHC results provided conclusive evidence indicating that combination regimens were able to down-regulate nuclear factor kappa-B activation and reduce the expression of its regulated pro-inflammatory proteins. Reduction of pro-inflammatory cytokines (e.g., IL-6, TNF-α, and IFN-ɣ) levels were observed when using the triple combination, which indicated that the synergistic drug combination was able to significantly control cancer progression. In conclusion, ACA, MIP, and CDDP together serve as promising candidates for further development and for subsequent clinical trials against estrogen-sensitive breast cancer.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  9. Hariharan D, Thangamuniyandi P, Jegatha Christy A, Vasantharaja R, Selvakumar P, Sagadevan S, et al.
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111636.
    PMID: 31739259 DOI: 10.1016/j.jphotobiol.2019.111636
    Titanium dioxide (TiO2) nanoparticles (NPs) have been doped with varying amounts (0.005, 0.010 and 0.015 M) of silver nanoparticles (Ag NPs) using hydrothermal method. Further, in this work, a green approach was followed for the formation of Ag@TiO2 NPs using Aloe vera gel as a capping and reducing agent. The structural property confirmed the presence of anatase phase TiO2. Increased peak intensity was observed while increasing the Ag concentration. Further, the morphological and optical properties have been studied, which confirmed the effective photocatalytic behavior of the prepared Ag@TiO2 NPs. The photocatalytic performance of Ag@TiO2 has been considered for the degradation of picric acid in the visible light region. The concentration at 0.010 M of the prepared Ag@TiO2 has achieved higher photocatalytic performance within 50 min, which could be attributed to its morphological behavior. Similarly, anticancer activity against lung cancer cell lines (A549) was also determined. The Ag@TiO2 NPs generated a large quantity of reactive oxygen species (ROS), resulting in complete cancer cell growth suppression after their systemic in vitro administration. Ag@TiO2 NPs was adsorbed visible light that leads to an enhanced anticancer sensitivity by killing and inhibiting cancer cell reproduction through cell viability assay test. It was clear that 0.015 M of Ag@TiO2 NPs were highly effective against human lung cancer cell lines and showed increased production of ROS in cancer cell lines due to the medicinal behavior of the Aloe vera gel.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  10. Haider MR, Ahmad K, Siddiqui N, Ali Z, Akhtar MJ, Fuloria N, et al.
    Bioorg Chem, 2019 07;88:102962.
    PMID: 31085373 DOI: 10.1016/j.bioorg.2019.102962
    A series of 9-(2-(1-arylethylidene)hydrazinyl)acridine and its analogs were designed, synthesized and evaluated for biological activities. Various biochemical assays were performed to determine the free radical scavenging capacity of synthesized compounds (4a-4j). Anticancer activity of these compounds was assessed against two different human cancer cell lines viz cervical cancer cells (HeLa) and liver cancer cells (HepG2) as well as normal human embryonic kidney cell line (HEK 293). Compounds 4b, 4d and 4e showed potential anti-proliferative effects on HeLa cells. Based on results obtained from antioxidant and cytotoxicity studies, 4b, 4d and 4e were further studied in detail for different biological activities. 4b, 4d and 4e reduced the cell growth, inhibited metastatic activity and declined the potential of cell migration in HeLa cell lines. Topoisomerase1 (Top1) treated with compounds 4b, 4d and 4e exhibited inhibition of Top1 and prevented DNA replication. Molecular docking results validate that interaction of compounds 4b, 4d and 4e with Top1-DNA complex, which might be accountable for their inhibitory effects. Further it was concluded that compounds 4b, 4d and 4e arrests the cells at S phase and consequently induces cell death through DNA damage in HeLa cells.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  11. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1173-1180.
    PMID: 30942109 DOI: 10.1080/21691401.2018.1549064
    Cervical cancer is the third most common highest mortality in women worldwide. The use of standard chemotherapeutic drugs against cervical cancer patients received several side effects. Therefore, we focused phytoconsituents-mediated synthesis of gold nanoparticles (AuNPs) considered as greatest attention in the treatment of cervical cancer. In this present study, we reported that green synthesis of AuNPs by using with Alternanthera Sessilis aqueous extract. Synthesis of AuNPs were characterized by UV visible spectroscopy, energy dispersive X-ray (EDX), selected area diffraction pattern (SAED), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and atomic force microscope. Synthesized AuNPs confirmed by the UV absorption maximum at 535 and crystal structure of gold AuNPs was further confirmed by EDX and SAED. TEM and atomic force microscopy images show the size and morphological distribution of nanoparticles. FTIR analysis was confirmed the hydroxyl groups, amine and alkaline groups of biomolecules are present in the AuNPs. Moreover, AuNPs induce cytotoxicity in cervical cancer cells and also induce apoptosis through modulating intrinsic apoptotic mechanisms in cervical cancer cells. This green synthesis of AuNPs from Alternanthera sessilis approach was easy, large scaled up and eco-friendly.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  12. Zhang X, Tan Z, Jia K, Zhang W, Dang M
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):2171-2178.
    PMID: 31159596 DOI: 10.1080/21691401.2019.1620249
    Nanomedicine is a rapidly emerging field and is reported to be a promising tool for treating various diseases. Green synthesized nanoparticles are documented to possess a potent anticancer effect. Rabdosia rubescens is a Chinese plant which is also one of the components of PC-SPES and used to treat prostate cancer. In the present study, we synthesized the gold nanoparticles from R. rubescens (RR-AuNP) and analyzed its anticancer activity against the lung carcinoma A549 cell lines. Since lung cancer is reported to be with increased morbidity and decreased survival rate. The biosynthesized RR-AuNP were confirmed using UV-Visible spectrophotometer, size and shape of RR-AuNP were assessed by DLS, TEM and EDX. The biomolecules present in RR-AuNP and its topographical structure were detected using FTIR, SAED and AFM analysis. MTT assay was performed to detect the IC50 dose of RR-AuNP and its apoptotic effect was assessed by detecting the caspases activation, ROS generation. The anticancer effect of RR-AuNP was confirmed by DAPI staining, TUNEL assay and its molecular mechanism were confirmed by assessing the apoptotic signalling molecules protein expression. Our results illustrate that RR-AuNP showed a strong absorption peak at 550 nm and the RRAuNP were polydispersed nanospheres with size of 130 nm. RR-AuNP IC50 dose against A549 lung carcinoma cell line was detected to be at 25 µg/ml. The results of DAPI staining, TUNEL and immunoblotting analysis confirms both the 25 µg/ml and 50 µg/ml of RR-AuNP possess potent anticancer and apoptotic effect, suggesting that RR-AuNP that it may be a persuasive molecule to treat lung cancer.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  13. Junaid A, Lim FPL, Tiekink ERT, Dolzhenko AV
    ACS Comb Sci, 2019 07 08;21(7):548-555.
    PMID: 31180634 DOI: 10.1021/acscombsci.9b00079
    A new, effective one-pot synthesis of the 6, N2-diaryl-1,3,5-triazine-2,4-diamines under microwave irradiation was developed. The method involved an initial three-component condensation of cyanoguanidine, aromatic aldehydes, and arylamines in the presence of hydrochloric acid. Without isolation, the resulting 1,6-diaryl-1,6-dihydro-1,3,5-triazine-2,4-diamines were treated with a base to initiate Dimroth rearrangement and spontaneous dehydrogenative aromatization, affording the desired compounds. The developed method was found to be sufficiently general in scope, tolerating various aromatic aldehydes and amines; by using their combinations in the first step, a representative library of 110 compounds was successfully prepared and screened for anticancer properties.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  14. Nazir M, Abbasi MA, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2585-2597.
    PMID: 31969290
    In the study presented here, the nucleophilic substitution reaction of 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazol-2-ylhydrosulfide was carried out with different alkyl/aralkyl halides (5a-r) to form its different S-substituted derivatives (6a-r), as depicted in scheme 1. The structural confirmation of all the synthesized compounds was done by IR, 1H-NMR, 13C-NMR and CHN analysis data. Bacterial biofilm inhibitory activity of all the synthesized compounds was carried out against Bacillus subtilis and Escherichia coli. The anticancer activity of these molecules was ascertained using anti-proliferation (SRB) assay on HCT 116 Colon Cancer Cell lines while the cytotoxicity of these molecules was profiled for their haemolytic potential. From this investigation it was rational that most of the compounds exhibited suitable antibacterial and anticancer potential along with a temperate cytotoxicity.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*
  15. Kambara H, Yamada T, Tsujioka M, Matsunaga S, Tanaka R, Ali HI, et al.
    Chem Biodivers, 2006 Dec;3(12):1301-6.
    PMID: 17193244
    As a part of our chemical studies on Malaysian medicinal plants, five Malaysian plant species were evaluated by cytotoxicity assays using P388 murine leukemia cells. Since Acalypha siamensis exhibited the strongest growth inhibition, its constituents were studied as the object of search for bioactive materials. A novel tetraterpene, acalyphaser A (1), was isolated in the course of the purification. Its structure was elucidated on the basis of 1D- and 2D-NMR techniques, and mass spectrometry.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  16. Safdar MH, Hasan H, Afzal S, Hussain Z
    Mini Rev Med Chem, 2018;18(12):1047-1063.
    PMID: 29173165 DOI: 10.2174/1389557517666171123212039
    The immune system is an intricate and coordinated nexus serving as a natural defense to preclude internal and external pathogenic insults. The deregulation in the natural balance of immunological functions as a consequence of either over expression or under expression of immune cells tends to cause disruption of homeostasis in the body and may lead to development of numerous immune system disorders. Chalcone moieties (1,3-diphenyl-2-propen-1-one) have been well-documented as ideal lead compounds or precursors to design a wide range of pharmacologically active agents to down-regulate various immune disorders. Owing to their unique structural and molecular framework, these α, β-unsaturated carbonyl-based moieties have also gained remarkable recognition due to their other multifarious pharmacological properties including antifungal, anti-inflammatory, anti-malarial, antibacterial, anti-tuberculosis, and anticancer potential. Though a great number of methodologies are currently being employed for their synthesis, this review mainly focuses on the natural and synthetic chalcone derivatives that are exclusively synthesized via Claisen-Schmidt condensation reaction and their immunomodulatory prospects. We have critically reviewed the literature and provided convincing evidence for the promising efficacy of chalcone derivatives to modulate functioning of various innate and adaptive immune players including granulocytes, mast cells, monocytes, macrophages, platelets, dendritic cells, natural killer cells, and T-lymphocytes.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  17. Cheong JE, Zaffagni M, Chung I, Xu Y, Wang Y, Jernigan FE, et al.
    Eur J Med Chem, 2018 Jan 20;144:372-385.
    PMID: 29288939 DOI: 10.1016/j.ejmech.2017.11.037
    Metastases account for more than 90% of all cancer deaths and respond poorly to most therapies. There remains an urgent need for new therapeutic modalities for the treatment of advanced metastatic cancers. The benzimidazole methylcarbamate drugs, commonly used as anti-helmitics, have been suggested to have anticancer activity, but progress has been stalled by their poor water solubility and poor suitability for systemic delivery to disseminated cancers. We synthesized and characterized the anticancer activity of novel benzimidazoles containing an oxetane or an amine group to enhance solubility. Among them, the novel oxetanyl substituted compound 18 demonstrated significant cytotoxicity toward a variety of cancer cell types including prostate, lung, and ovarian cancers with strong activity toward highly aggressive cancer lines (IC50: 0.9-3.8 μM). Compound 18 achieved aqueous solubility of 361 μM. In a mouse xenograft model of a highly metastatic human prostate cancer, compound 18 (30 mg/kg) significantly inhibited the growth of established tumors (T/C: 0.36) without noticeable toxicity.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  18. Yusoh NA, Ahmad H, Gill MR
    ChemMedChem, 2020 Nov 18;15(22):2121-2135.
    PMID: 32812709 DOI: 10.1002/cmdc.202000391
    Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  19. Ashraf Z, Mahmood T, Hassan M, Afzal S, Rafique H, Afzal K, et al.
    Drug Des Devel Ther, 2019;13:1643-1657.
    PMID: 31190743 DOI: 10.2147/DDDT.S178595
    BACKGROUND: The amide derivatives of nonsteroidal anti-inflammatory drugs have been reported to possess antitumor activity. The present work describes the synthesis of dexibuprofen amide analogues (4a-j) as potential anticancer agents.

    METHODS: The title amides (4a-j) were obtained by simple nucleophilic substitution reaction of dexibuprofen acid chloride with substituted amines in good yield and chemical structures were confirmed by FTIR, 1H NMR, 13C NMR and mass spectral data.

    RESULTS: The brine shrimp lethality assay results showed that all of the synthesized compounds are non-toxic to shrimp larvae. The inhibitory effects on tumor growth were evaluated and it was observed that N-(2,5-dichlorophenyl)-2-(4-isobutylphenyl) propionamide (4e) and N-(2-chlorophenyl)-2-(4-isobutylphenyl) propionamide (4g) exhibited excellent antitumor activity compared to all other derivatives. The compound 4e bearing 2,5-dichloro substituted phenyl ring and 4g possesses 2-chloro substituted phenyl ring exhibited 100% inhibition of the tumor growth. The anticancer activity was evaluated against breast carcinoma cell line (MCF-7) and it was observed that derivative 4e exhibited excellent growth inhibition of cancer cells with IC50 value of 0.01±0.002 µm, which is better than the standard drugs. The docking studies against breast cancer type 1 susceptibility protein BRCA1 (PDBID 3K0H) exhibited good binding affinities, which are in good agreement with the wet lab results. The compounds 4e and 4g showed the binding energy values of -6.39 and -6.34 Kcal/mol, respectively. The molecular dynamic (MD) simulation was also carried out to evaluate the residual flexibility of the best docking complexes of compounds 4e and 4g. The MD simulation analysis assured that the 4e formed a more stable complex with the target protein than the 4g. The synthesized amide derivatives exhibited were devoid of gastrointestinal side effects and no cytotoxic effects against human normal epithelial breast cell line (MCF-12A) were found.

    CONCLUSION: Based upon our wet lab and dry lab findings we propose that dexibuprofen analogue 4e may serve as a lead structure for the design of more potent anticancer drugs.

    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  20. Liew SK, Azmi MN, In L, Awang K, Nagoor NH
    Drug Des Devel Ther, 2017;11:2763-2776.
    PMID: 29075101 DOI: 10.2147/DDDT.S130349
    Nine analogs of 1'S-1'-acetoxychavicol acetate (ACA) were hemi-synthesized and evaluated for their anticancer activities against seven human cancer cell lines. The aim of this study was to investigate the anti-proliferative, apoptotic, and anti-migration effects of these compounds and to explore the plausible underlying mechanisms of action. We found that ACA and all nine analogs were non toxic to human mammary epithelial cells (HMECs) used as normal control cells, and only ACA, 1'-acetoxyeugenol acetate (AEA), and 1'-acetoxy-3,5-dimethoxychavicol acetate (AMCA) inhibited the growth of MDA-MB-231 breast cancer cells with a half-maximal inhibitory concentration (IC50) value of <30.0 μM based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results, and were selected for further investigation. DNA fragmentation assays showed that these three compounds markedly induced apoptosis of MDA-MB-231 cells. Western blot analysis revealed increased expression levels of cleaved PARP, p53, and Bax, while decreased expression levels of Bcl-2 and Bcl-xL were seen after treatment, indicating that apoptosis was induced via the mitochondrial pathway. Moreover, ACA, AEA, and AMCA effectively inhibited the migration of MDA-MB-231 cells. They also downregulated the expression levels of pFAK/FAK and pAkt/Akt via the integrin β1-mediated signaling pathway. Collectively, ACA and its hemi-synthetic analogs, AEA and AMCA are seen as potential anticancer agents following their abilities to suppress growth, induce apoptosis, and inhibit migration of breast cancer cells.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links