Displaying publications 41 - 60 of 106 in total

Abstract:
Sort:
  1. Ahamad Bustamam MS, Pantami HA, Shaari K, Min CC, Mediani A, Ismail IS
    Fish Shellfish Immunol, 2023 Jan;132:108455.
    PMID: 36464078 DOI: 10.1016/j.fsi.2022.108455
    Tilapia is one of the most common fish species that is intensively produced all over the world. However, significant measures at improving aquaculture health must be taken since disease outbreaks are often encountered in the rapidly developing aquaculture industry. Therefore, the objective of the study was designed to evaluate the metabolite changes in tilapia' sera through 1H NMR metabolomics in identifying the potential biomarkers responsible for immunomodulatory effect by the indigenous species of Malaysian microalgae Isochrysis galbana (IG). The results showed that IG-incorporated diet mainly at 5.0% has improved the immune response of innate immunity as observed in serum bactericidal activity (SBA) and serum lysozyme activity (SLA). The orthogonal partial least squares (OPLS) analysis indicated 5 important metabolites significantly upregulated namely as ethanol, lipoprotein, lipid, α-glucose and unsaturated fatty acid (UFA) in the 5.0% IG-incorporated diet compared to control. In conclusion, this study had successfully determined IG in improving aquaculture health through its potential use as an immune modulator. This work also demonstrated the effective use of metabolomics approach in the development of alternative nutritious diet from microalgae species to boost fish health in fulfilling the aquaculture's long-term goals.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  2. Sulaiman F, Ahmad Azam A, Ahamad Bustamam MS, Fakurazi S, Abas F, Lee YX, et al.
    Molecules, 2020 Jul 15;25(14).
    PMID: 32679913 DOI: 10.3390/molecules25143235
    Watermelon, a widely commercialized fruit, is famous for its thirst-quenching property. The broad range of cultivars, which give rise to distinct color and taste, can be attributed to the differences in their chemical profile, especially that of the carotenoids and volatile compounds. In order to understand this distribution properly, water extracts of red and yellow watermelon pulps with predominantly polar metabolites were subjected to proton nuclear magnetic resonance (1H-NMR) analysis. Deuterium oxide (D2O) and deuterated chloroform (CDCl3) solvents were used to capture both polar and non-polar metabolites from the same sample. Thirty-six metabolites, of which six are carotenoids, were identified from the extracts. The clustering of the compounds was determined using unsupervised principal component analysis (PCA) and further grouping was achieved using supervised orthogonal partial least squares discriminant analysis (OPLS-DA). The presence of lycopene, β-carotene, lutein, and prolycopene in the red watermelon plays an important role in its differentiation from the yellow cultivar. A marked difference in metabolite distribution was observed between the NMR solvents used as evidenced from the PCA model. OPLS-DA and relative quantification of the metabolites, on the other hand, helped in uncovering the discriminating metabolites of the red and yellow watermelon cultivars from the same solvent system.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  3. Saleh MSM, Siddiqui MJ, Mediani A, Ahmed QU, Mat So'ad SZ, Saidi-Besbes S, et al.
    Food Res Int, 2020 11;137:109547.
    PMID: 33233172 DOI: 10.1016/j.foodres.2020.109547
    Fruit of salak (Salacca zalacca) is traditionally used and commercialized as an antidiabetic agent. However, the scientific evidence to prove this traditional use is lacking. This research was aimed to evaluate the metabolic changes of obese-diabetic (OBDC) rats treated with S. zalacca fruit extract using proton-nuclear magnetic resonance (1H NMR)-based metabolomics approach. This research presents the first report on the in vitro antidiabetic effect of S. zalacca fruits extract using this approach. The obtained results indicated that the administration of 400 mg/kg bw of 60% ethanolic S. zalacca extract for 6 weeks significantly decreased the blood glucose level and normalized the blood lipid profile of the OBDC rats. The potential biomarkers in urine were 2-oxoglutarate, alanine, leucine, succinate 3-hydroxybutyrate, taurine, betaine, allantoin, acetate, dimethylamine, creatine, creatinine, glucose, phenyl-acetylglycine, and hippurate. Based on the data obtained, the 60% ethanolic extract could not fully improved the metabolic complications of diabetic rats. The extract of S. zalacca fruit was able to decrease the ketones bodies as 3-hydroxybutyrate and acetoacetate. It also improved energy metabolism, involving glucose, acetate, lactate, 2-hydroxybutyrate, 2-oxoglutarate, citrate, and succinate. Moreover, it decreased metabolites from gut microflora, including choline. This extract had significant effect on amino acid metabolism, metabolites from gut microflora, bile acid metabolism and creatine. The result can further support the traditional claims of S. zalacca fruits in management of diabetes. This finding might be valuable in understanding the molecular mechanism and pharmacological properties of this medicinal plant for managing diabetes mellitus.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  4. Che Soh N', Rapi HS, Mohd Azam NS, Santhanam RK, Assaw S, Haron MN, et al.
    PMID: 33488747 DOI: 10.1155/2020/6688084
    Diopatra claparedii which is colloquially known as Ruat Sarung can be found along the west coast of Peninsular Malaysia. The species has a unique ability to regenerate anterior and posterior segments upon self-amputation or injury, thus having potential as a wound healing promoter. In this study, the wound healing potential of D. claparedii aqueous extract on acute wound model in rats was revealed for the first time. Various concentrations (0.1%, 0.5%, and 1.0% w/w) of D. claparedii ointment were formulated and tested on Sprague Dawley rats through topical application on full-thickness skin wounds for 14 days. The wound healing effects were investigated via behaviour observation, wound contraction, and histopathological analysis. Quality assessment was performed via skin irritation test, microbial contamination test (MCT), and heavy metal detection. The study also included test for antibacterial activities and detection of bioactive compounds in D. claparedii. One percent of D. claparedii ointment showed rapid wound healing potential with good soothing effects and more collagen deposition in comparison to the commercial wound healing ointments such as acriflavine (0.1% w/v) and traditional ointment gamat (sea cucumber extract) (15.0% w/v). No local skin irritation, microbial contamination, and insignificant concentration of heavy metals were observed, which indicate its safe application. Moreover, the aqueous extract of D. claparedii exhibited antibacterial activities against Escherichia coli and Pseudomonas aeruginosa with minimum inhibitory concentration (MIC) value at 0.4 g/ml. 1H NMR analysis of the aqueous extract of D. claparedii revealed some metabolites that might be responsible for its wound healing properties such as amino acids, halogenated aromatics, organic acids, vitamins, and others. Altogether, these results suggested that the aqueous extract of D. claparedii could be utilised as an alternative natural wound healing promoter.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  5. Luthfi AAI, Tan JP, Isa NFAM, Bukhari NA, Shah SSM, Mahmod SS, et al.
    Bioprocess Biosyst Eng, 2020 Jul;43(7):1153-1169.
    PMID: 32095989 DOI: 10.1007/s00449-020-02311-x
    This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  6. Fujiki M, Wang L, Ogata N, Asanoma F, Okubo A, Okazaki S, et al.
    Front Chem, 2020;8:685.
    PMID: 32903703 DOI: 10.3389/fchem.2020.00685
    We report emerging circularly polarized luminescence (CPL) at 4f-4f transitions when lanthanide (EuIII and TbIII) tris(β-diketonate) embedded to cellulose triacetate (CTA), cellulose acetate butyrate (CABu), D-/L-glucose pentamethyl esters ( D-/ L-Glu), and D-/L-arabinose tetramethyl esters ( D-/ L-Ara) are in film states. Herein, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) and 2,2,6,6-tetramethyl-3,5-heptanedione (dpm) were chosen as the β-diketonates. The glum value of Eu(fod)3 in CABu are +0.0671 at 593 nm (5


    D


    0







    7


    F1) and -0.0059 at 613 nm (5


    D


    0







    7


    F2), respectively, while those in CTA are +0.0463 and -0.0040 at these transitions, respectively. The glum value of Tb(fod)3 in CABu are -0.0029 at 490 nm (5


    D


    4







    7


    F6), +0.0078 at 540 nm (5


    D


    4







    7


    F5), and -0.0018 at 552 nm (5


    D


    4







    7


    F5), respectively, while those in CTA are -0.0053, +0.0037, and -0.0059 at these transitions, respectively. D-/ L-Glu and D-/ L-Ara induced weaker glum values at 4f-4f transitions of Eu(fod)3, Tb(fod)3, and Tb(dpm)3. For comparison, Tb(dpm)3 in α-pinene showed clear CPL characteristics, though Eu(dpm)3 did not. A surplus charge neutralization hypothesis was applied to the origin of attractive intermolecular interactions between the ligands and saccharides. This idea was supported from the concomitant opposite tendency in upfield 19F-NMR and downfield 1H-NMR chemical shifts of Eu(fod)3 and the opposite Mulliken charges between F-C bonds (fod) and H-C bonds (CTA and D-/ L-Glu). An analysis of CPL excitation (CPLE) and CPL spectra suggests that (+)- and (-)-sign CPL signals of EuIII and TbIII at different 4f-4f transitions in the visible region are the same with the (+)-and (-)-sign exhibited by CPLE bands at high energy levels of EuIII and TbIII in the near-UV region.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  7. Darfizzi Derawi, Jumat Salimon
    Sains Malaysiana, 2013;42:1121-1129.
    Sebatian poliol minyak sawit olein (di-hidroksi-POo) (70% hasil) disintesis melalui pembukaan gelang oksirana minyak sawit olein terepoksida (EPOo) secara hidrolisis selanjar dan berkelompok. Hasil optimum pembukaan gelang oksirana (97.2%) bagi kedua-dua tindak balas selama 90 min (tindak balas selanjar) dan 75 min (tindak balas berkelompok) dengan menggunakan mangkin asid perklorik 3% v/wt. Spektrum transformasi Fourier inframerah (FTIR) di-hidroksi-POo menunjukkan kehadiran puncak lebar getaran regangan kumpulan hidroksil pada nombor gelombang 3429 cm-1, menunjukkan sebatian poliol telah berjaya dihasilkan. Spektrum resonan magnetik nukleus-karbon (13C-NMR) di-hidroksi-POo telah menunjukkan kehadiran puncak karbon yang terikat dengan kumpulan hidroksil (74.5 ppm). Spektrum resonan magnetik nukleus-proton (1H-NMR) di-hidroksi-POo telah menunjukkan kehadiran puncak proton yang terikat pada karbon poliol (3.4 ppm) dan proton pada kumpulan hidroksil (4.6 ppm). Kelikatan kinematik produk poliol (nilai hidroksil sebanyak 110.7 mgKOH/g minyak) adalah 1435.2 cSt (40oC) dan 55.2 cSt (100oC) dengan indeks kelikatan 78.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  8. Amin AM, Mostafa H, Arif NH, Abdul Kader MAS, Kah Hay Y
    Clin Chim Acta, 2019 Jun;493:112-122.
    PMID: 30826371 DOI: 10.1016/j.cca.2019.02.030
    BACKGROUND: Coronary artery disease (CAD) claims lives yearly. Nuclear magnetic resonance (1H NMR) metabolomics analysis is efficient in identifying metabolic biomarkers which lend credence to diagnosis. We aimed to identify CAD metabotypes and its implicated pathways using 1H NMR analysis.

    METHODS: We analysed plasma and urine samples of 50 stable CAD patients and 50 healthy controls using 1H NMR. Orthogonal partial least square discriminant analysis (OPLS-DA) followed by multivariate logistic regression (MVLR) models were developed to indicate the discriminating metabotypes. Metabolic pathway analysis was performed to identify the implicated pathways.

    RESULTS: Both plasma and urine OPLS-DA models had specificity, sensitivity and accuracy of 100%, 96% and 98%, respectively. Plasma MVLR model had specificity, sensitivity, accuracy and AUROC of 92%, 86%, 89% and 0.96, respectively. The MVLR model of urine had specificity, sensitivity, accuracy and AUROC of 90%, 80%, 85% and 0.92, respectively. 35 and 12 metabolites were identified in plasma and urine metabotypes, respectively. Metabolic pathway analysis revealed that urea cycle, aminoacyl-tRNA biosynthesis and synthesis and degradation of ketone bodies pathways were significantly disturbed in plasma, while methylhistidine metabolism and galactose metabolism pathways were significantly disturbed in urine. The enrichment over representation analysis against SNPs-associated-metabolite sets library revealed that 85 SNPs were significantly enriched in plasma metabotype.

    CONCLUSIONS: Cardiometabolic diseases, dysbiotic gut-microbiota and genetic variabilities are largely implicated in the pathogenesis of CAD.

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  9. Rahim F, Ullah K, Ullah H, Wadood A, Taha M, Ur Rehman A, et al.
    Bioorg Chem, 2015 Feb;58:81-7.
    PMID: 25528720 DOI: 10.1016/j.bioorg.2014.12.001
    A new series of triazinoindole analogs 1-11 were synthesized, characterized by EI-MS and (1)H NMR, evaluated for α-glucosidase inhibitory potential. All eleven (11) analogs showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 2.46±0.008 and 312.79±0.06 μM when compared with the standard acarbose (IC50, 38.25±0.12 μM). Among the series, compounds 1, 3, 4, 5, 7, 8, and 11 showed excellent inhibitory potential with IC50 values 2.46±0.008, 37.78±0.05, 28.91±0.0, 38.12±0.04, 37.43±0.03, 36.89±0.06 and 37.11±0.05 μM respectively. All other compounds also showed good enzyme inhibition. The binding modes of these analogs were confirmed through molecular docking.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  10. Rahim F, Zaman K, Ullah H, Taha M, Wadood A, Javed MT, et al.
    Bioorg Chem, 2015 Dec;63:123-31.
    PMID: 26520885 DOI: 10.1016/j.bioorg.2015.10.005
    4-Thiazolidinone analogs 1-20 were synthesized, characterized by (1)H NMR and EI-MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73-69.65μM, if compared with standard thiourea having IC50 value of 21.25±0.15μM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34±0.02, 14.62±0.03, 8.43±0.01, 7.3±0.04, 2.31±0.002, 5.75±0.003, 8.81±0.005, and 1.73±0.001μM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  11. Nazir S, Sulistyo J, Hashmi MI, Ho AL, Khan MS
    J Food Sci Technol, 2018 Aug;55(8):3026-3034.
    PMID: 30065412 DOI: 10.1007/s13197-018-3223-x
    Present study was conducted to evaluate the ability of Trichoderma viride as a source of cyclodextrin glucanotransferase that has shown transglycosylation activity in the presence of polyphenolic constituents extracted from Moringa oleifera leaves as its acceptor and wheat flour as its substrate to catalyze synthesis of polyphenolic glycosides as transglycosylation (transfer) reaction products. The enzymatic synthesized polyphenolic glycosides were then purified using octa-dodecyl-functionalized silica gel column chromatography prior to analysis using thin layer chromatography and high performance liquid chromatography and identified using nuclear magnetic resonance (NMR) spectroscopy. The high performance liquid chromatogram performed that the isolated transglycosylation products had retention times and concentration at 1.446 min (0.0017 mg/ml), 1.431 min (0.14 mg/ml), and 1.474 min (0.012 mg/ml), respectively, compared to the retention time of arbutin (1.474 min) that was applied as authentic standard for polyphenol glycoside. Moreover, observation using 1H NMR as well as 13C NMR showed that structures of the transglycosylation products were identified as gallic acid-4-O-β-glucopyranoside, ellagicacid-4-O-β-glucopyranoside, and catechin-4'-O-glucopyranoside, respectively.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  12. Perumal, V., Khoo, W.C., Abdul-Hamid, A., Ismail, A., Saari, K., Murugesu, S., et al.
    MyJurnal
    Momordica charantia, also known as bitter melon or ‘peria katak’ in Malaysia, is a member of the family Cucurbitaceae. Bitter melon is an excellent source of vitamins and minerals that made it extensively nutritious. Moreover, the seed, fruit and leave of the plant contain bioactive compounds with a wide range of biological activities that have been used in traditional medicines in the treatment of several diseases, including inflammation, infections, obesity and diabetes. The aim of this study was to evaluate changes in urinary metabolite profile of the normal, streptozotocin-induced type 1 diabetes and M. charantia treated diabetic rats using proton nuclear magnetic resonance (1H-NMR) -based metabolomics profiling. Study had been carried out by inducing diabetes in the rats through injection of streptozotocin, which exhibited type 1 diabetes. M. charantia extract (100 and 200 mg/kg body weight) was administrated to the streptozotocin-induced diabetic rats for one week. Blood glucose level after administration was measured to examine hypoglycemic effect of the extract. The results obtained indicated that M. charantia was effective in lowering blood glucose level of the diabetic rats. The loading plot of Partial Least Square (PLS) component 1 showed that diabetic rats had increased levels of lactate and glucose in urine whereas normal and the extract treated diabetic rats had higher levels of succinate, creatine, creatinine, urea and phenylacetylglycine in urine. While the loading plot of PLS component 2 showed a higher levels of succinate, citrate, creatine, creatinine, sugars, and hippurate in urine of normal rat compared to the extract treated diabetic rat. Administration of M. charantia extract was found to be able to regulate the altered metabolic processes. Thus, it could be potentially used to treat the diabetic patients.
    
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  13. Hani AF, Kumar D, Malik AS, Walter N, Razak R, Kiflie A
    Acad Radiol, 2015 Jan;22(1):93-104.
    PMID: 25481518 DOI: 10.1016/j.acra.2014.08.008
    Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods*
  14. Sidek S, Ramli N, Rahmat K, Ramli NM, Abdulrahman F, Kuo TL
    Eur Radiol, 2016 Dec;26(12):4404-4412.
    PMID: 26943134
    OBJECTIVE: To compare the metabolite concentration of optic radiation in glaucoma patients with that of healthy subjects using Proton Magnetic Resonance Spectroscopy (1H-MRS).

    METHODS: 1H-MRS utilising the Single-Voxel Spectroscopy (SVS) technique was performed using a 3.0Tesla MRI on 45 optic radiations (15 from healthy subjects, 15 from mild glaucoma patients, and 15 from severe glaucoma patients). A standardised Volume of Interest (VOI) of 20 × 20 × 20 mm was placed in the region of optic radiation. Mild and severe glaucoma patients were categorised based on the Hodapp-Parrish-Anderson (HPA) classification. Mean and multiple group comparisons for metabolite concentration and metabolite concentration ratio between glaucoma grades and healthy subjects were obtained using one-way ANOVA.

    RESULTS: The metabolite concentration and metabolite concentration ratio between the optic radiations of glaucoma patients and healthy subjects did not demonstrate any significant difference (p > 0.05).

    CONCLUSION: Our findings show no significant alteration of metabolite concentration associated with neurodegeneration that could be measured by single-voxel 1H-MRS in optic radiation among glaucoma patients.

    KEY POINTS: • Glaucoma disease has a neurodegenerative component. • Metabolite changes have been observed in the neurodegenerative process in the brain. • Using SVS, no metabolite changes in optic radiation were attributed to glaucoma.

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods*
  15. Abdul-Hamid NA, Abas F, Ismail IS, Shaari K, Lajis NH
    J Food Sci, 2015 Nov;80(11):H2603-11.
    PMID: 26457883 DOI: 10.1111/1750-3841.13084
    This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  16. Leong SW, Abas F, Lam KW, Shaari K, Lajis NH
    Bioorg Med Chem, 2016 08 15;24(16):3742-51.
    PMID: 27328658 DOI: 10.1016/j.bmc.2016.06.016
    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  17. Mediani A, Abas F, Maulidiani M, Abu Bakar Sajak A, Khatib A, Tan CP, et al.
    J Physiol Biochem, 2018 May 15.
    PMID: 29766441 DOI: 10.1007/s13105-018-0631-3
    Diabetes mellitus (DM) is a chronic disease that can affect metabolism of glucose and other metabolites. In this study, the normal- and obese-diabetic rats were compared to understand the diabetes disorders of type 1 and 2 diabetes mellitus. This was done by evaluating their urine metabolites using proton nuclear magnetic resonance (1H NMR)-based metabolomics and comparing with controls at different time points, considering the induction periods of obesity and diabetes. The biochemical parameters of the serum were also investigated. The obese-diabetic model was developed by feeding the rats a high-fat diet and inducing diabetic conditions with a low dose of streptozotocin (STZ) (25 mg/kg bw). However, the normal rats were induced by a high dose of STZ (55 mg/kg bw). A partial least squares discriminant analysis (PLS-DA) model showed the biomarkers of both DM types compared to control. The synthesis and degradation of ketone bodies, tricarboxylic (TCA) cycles, and amino acid pathways were the ones most involved in the variation with the highest impact. The diabetic groups also exhibited a noticeable increase in the plasma glucose level and lipid profile disorders compared to the control. There was also an increase in the plasma cholesterol and low-density lipoprotein (LDL) levels and a decline in the high-density lipoprotein (HDL) of diabetic rats. The normal-diabetic rats exhibited the highest effect of all parameters compared to the obese-diabetic rats in the advancement of the DM period. This finding can build a platform to understand the metabolic and biochemical complications of both types of DM and can generate ideas for finding targeted drugs.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  18. Abdul-Hamid NA, Mediani A, Maulidiani M, Shadid K, Ismail IS, Abas F, et al.
    J Food Sci Technol, 2018 Apr;55(4):1541-1551.
    PMID: 29606769 DOI: 10.1007/s13197-018-3073-6
    The aim of this study was to examine the variation in metabolite constituents of five commercial varieties of date fruits; Ajwa, Safawi and Ambar which originated from Madinah, the Iranian Bam and Tunisian Deglet Noor. The differences of metabolome were investigated using proton nuclear magnetic resonance (1H NMR) spectroscopy combined with multivariate data analysis (MVDA). Principal Component Analysis (PCA) revealed clear separation between the date varieties. The Tunisian Deglet Noor demonstrated distinct cluster from the rest of the palm date samples based on the metabolite composition as shown by the pattern observed in Hierarchical Clustering Analysis (HCA) and PCA. Deglet Noor exhibited a significant higher level of sucrose (δ 5.40) and fructose (δ 4.16) in comparison with the other four varieties which can be associated with the distinctive sweet taste of this variety. Dates originated from Madinah and Tunisia exhibited a contrast manner in the amount of xylose and moisture content. These two aspects may contribute towards the soft texture of Tunisian dates. All Madinah dates were found to contain phenolic compounds which were well established as great antioxidant and anti-inflammatory agent. Ajwa dates exerted greater effect in inhibiting the generation of nitric oxide (NO) from the stimulated RAW264.7 cells at 95.37% inhibition. Succinic acid was suggested to have the most significant correlation with the trend of NO inhibitory shown by the selected date palm varieties.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  19. Abdul-Hamid NA, Mediani A, Maulidiani M, Abas F, Ismail IS, Shaari K, et al.
    Molecules, 2016 Oct 28;21(11).
    PMID: 27801841
    This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO) inhibitory activity. Identification of the metabolites was generated using ¹H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  20. Tan AH, Chong CW, Lim SY, Yap IKS, Teh CSJ, Loke MF, et al.
    Ann Neurol, 2021 03;89(3):546-559.
    PMID: 33274480 DOI: 10.1002/ana.25982
    OBJECTIVE: Gut microbiome alterations in Parkinson disease (PD) have been reported repeatedly, but their functional relevance remains unclear. Fecal metabolomics, which provide a functional readout of microbial activity, have scarcely been investigated. We investigated fecal microbiome and metabolome alterations in PD, and their clinical relevance.

    METHODS: Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry.

    RESULTS: Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores.

    INTERPRETATION: Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links