Displaying publications 721 - 740 of 926 in total

Abstract:
Sort:
  1. Akinyede KA, Oyewusi HA, Hughes GD, Ekpo OE, Oguntibeju OO
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011387 DOI: 10.3390/molecules27010155
    Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = -7.2 to -9.6 kcal/mol (compared with acarbose ΔG = -6.1 kcal/mol) for α-amylase, and ΔG = -7.3 to -9.0 kcal/mol (compared with acarbose ΔG = -6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.
    Matched MeSH terms: Plant Extracts/chemistry*
  2. Chai TT, Koh JA, Wong CC, Sabri MZ, Wong FC
    Molecules, 2021 Dec 06;26(23).
    PMID: 34885982 DOI: 10.3390/molecules26237396
    Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.
    Matched MeSH terms: Plant Extracts/chemistry
  3. Lim SL, Mustapha NM, Goh YM, Bakar NA, Mohamed S
    Mol Cell Biochem, 2016 May;416(1-2):85-97.
    PMID: 27106908 DOI: 10.1007/s11010-016-2698-x
    Metastasized lung and liver cancers cause over 2 million deaths annually, and are amongst the top killer cancers worldwide. Morinda citrifolia (Noni) leaves are traditionally consumed as vegetables in the tropics. The macro and micro effects of M. citrifolia (Noni) leaves on metastasized lung cancer development in vitro and in vivo were compared with the FDA-approved anti-cancer drug Erlotinib. The extract inhibited the proliferation and induced apoptosis in A549 cells (IC50 = 23.47 μg/mL) and mouse Lewis (LL2) lung carcinoma cells (IC50 = 5.50 μg/mL) in vitro, arrested cancer cell cycle at G0/G1 phases and significantly increased caspase-3/-8 without changing caspase-9 levels. The extract showed no toxicity on normal MRC5 lung cells. Non-small-cell lung cancer (NSCLC) A549-induced BALB/c mice were fed with 150 and 300 mg/kg M. citrifolia leaf extract and compared with Erlotinib (50 mg/kg body weight) for 21 days. It significantly increased the pro-apoptotic TRP53 genes, downregulated the pro-tumourigenesis genes (BIRC5, JAK2/STAT3/STAT5A) in the mice tumours, significantly increased the anti-inflammatory IL4, IL10 and NR3C1 expression in the metastasized lung and hepatic cancer tissues and enhanced the NFE2L2-dependent antioxidant responses against oxidative injuries. The extract elevated serum neutrophils and reduced the red blood cells, haemoglobin, corpuscular volume and cell haemoglobin concentration in the lung cancer-induced mammal. It suppressed inflammation and oedema, and upregulated the endogenous antioxidant responses and apoptotic genes to suppress the cancer. The 300 mg/kg extract was more effective than the 50 mg/kg Erlotinib for most of the parameters measured.
    Matched MeSH terms: Plant Extracts/chemistry
  4. Salleh WM, Ahmad F, Yen KH
    Arch Pharm Res, 2015 Apr;38(4):485-93.
    PMID: 25098422 DOI: 10.1007/s12272-014-0460-z
    The present study aimed to examine the chemical compositions of the essential oils of Beilschmiedia madang and their antioxidant, antibacterial, antifungal, anticholinesterase and anti-tyrosinase activities. The major constituents of the essential oils of leaf and bark of B. madang were δ-cadinene (17.0 and 20.5 %), β-caryophyllene (10.3 and 6.7 %), α-cubebene (11.3 and 15.6 %), and α-cadinol (5.8 and 10.6 %). The essential oils were screened for their antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, β-carotene/linoleic acid bleaching, and total phenolic content. The bark oil showed the highest β-carotene/linoleic acid bleaching (90.3 % ± 0.2) and DPPH radical scavenging (IC50 212.0 µg/mL), while the highest phenolic content was exhibited by the leaf oil (94.5 % ± 0.3 mg GA/g). The antibacterial and antifungal activities were investigated by the disc diffusion and micro dilution method. The leaf and bark oils showed moderate activity towards Bacillus subtilis and Staphylococcus aureus with minimum inhibitory concentration (MIC) value 125 µg/mL. For antifungal assay, the bark oil showed strong activity towards Aspergillus niger and Aspergillus fumigatus with MIC value 62.5 µg/mL. Anticholinesterase and anti-tyrosinase activities were evaluated against Ellman method and mushroom tyrosinase, respectively. The results showed that leaf oil gave significant percentage inhibition (I%: acetylcholinesterase 55.2 %, butyrylcholinesterase 60.4 %, tyrosinase 53.1 %).
    Matched MeSH terms: Plant Extracts/chemistry*
  5. Kamarulzaman FA, Shaari K, Ho AS, Lajis NH, Teo SH, Lee HB
    Chem Biodivers, 2011 Mar;8(3):494-502.
    PMID: 21404433 DOI: 10.1002/cbdv.201000341
    In our screening program for new photosensitizers from Malaysian biodiversity for photodynamic therapy (PDT) of cancer, MeOH extracts of ten terrestrial plants from Cameron Highlands in Pahang, Peninsular Malaysia, were tested. In a short-term 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 20 μg/ml each of these extracts were incubated in a pro-myelocytic leukemia cell-line, HL60, with or without irradiation with 9.6 J/cm(2) of a broad spectrum light. Three samples, Labisia longistyla, Dichroa febrifuga, and Piper penangense, were photocytotoxic by having at least twofold lower cell viability when irradiated compared to the unirradiated assay. The extract of the leaves of Piper penangense, a shrub belonging to the family Piperaceae and widely distributed in the tropical and subtropical regions in the world, was subsequently subjected to bioassay-guided fractionation using standard chromatography methods. Eight derivatives of pheophorbide-a and -b were identified from the fractions that exhibited strong photocytotoxicity. By spectroscopic analysis, these compounds were identified as pheophorbide-a methyl ester (1), (R,S)-13(2) -hydroxypheophorbide-a methyl ester (2 and 3), pheophorbide-b methyl ester (4), 13(2) -hydroxypheophorbide-b methyl ester (5), 15(2) -hydroxylactone pheophorbide-a methyl ester (6), 15(2) -methoxylactone pheophorbide-a methyl ester (7), 15(2) -methoxylactone pheophorbide-b methyl ester (8).
    Matched MeSH terms: Plant Extracts/chemistry*
  6. Kambara H, Yamada T, Tsujioka M, Matsunaga S, Tanaka R, Ali HI, et al.
    Chem Biodivers, 2006 Dec;3(12):1301-6.
    PMID: 17193244
    As a part of our chemical studies on Malaysian medicinal plants, five Malaysian plant species were evaluated by cytotoxicity assays using P388 murine leukemia cells. Since Acalypha siamensis exhibited the strongest growth inhibition, its constituents were studied as the object of search for bioactive materials. A novel tetraterpene, acalyphaser A (1), was isolated in the course of the purification. Its structure was elucidated on the basis of 1D- and 2D-NMR techniques, and mass spectrometry.
    Matched MeSH terms: Plant Extracts/chemistry*
  7. Abdelgawad MA, Musa A, Almalki AH, Alzarea SI, Mostafa EM, Hegazy MM, et al.
    Drug Des Devel Ther, 2021;15:2325-2337.
    PMID: 34103896 DOI: 10.2147/DDDT.S310820
    Introduction: Epidermal growth factor receptor (EGFR) inhibition is an imperative therapeutic approach targeting various types of cancer including colorectal, lung, breast, and pancreatic cancer types. Moreover, cyclooxygenase-2 (COX-2) is frequently overexpressed in different types of cancers and has a role in the promotion of malignancy, apoptosis inhibition, and metastasis of tumor cells. Combination therapy has been emerged to improve the therapeutic benefit against cancer and curb intrinsic and acquired resistance.

    Methods: Three semi-synthetic series of compounds (C1-4, P1-4, and G1-4) were prepared and evaluated biologically as potential dual epidermal growth factor receptor (EGFR) and COX-2 inhibitors. The main phenolic constituents of Amaranthus spinosus L. (p-coumaric, caffeic and gallic) acids have been isolated and subsequently subjected to diazo coupling with various amines to get novel three chemical scaffolds with potential anticancer activities.

    Results: Compounds C4 and G4 showed superior inhibitory activity against EGFR (IC50: 0.9 and 0.5 µM, respectively) and displayed good COX-2 inhibition (IC50: 4.35 and 2.47 µM, respectively). Moreover, the final compounds were further evaluated for their cytotoxic activity against human colon cancer (HT-29), pancreatic cancer (PaCa-2), human malignant melanoma (A375), lung cancer (H-460), and pancreatic ductal cancer (Panc-1) cell lines. Interestingly, compounds C4 and G4 exhibited the highest cytotoxic activity with average IC50 values of 1.5 µM and 2.8 µM against H-460 and Panc-1, respectively. The virtual docking study was conducted to gain proper understandings of the plausible-binding modes of target compounds within EGFR and COX-2 binding sites.

    Discussion: The NMR of prepared compounds showed characteristic peaks that confirmed the structure of the target compounds. The synthesized benzoxazolyl scaffold containing compounds showed inhibitory activities for both COXs and EGFR which are consistent with the virtual docking study.

    Matched MeSH terms: Plant Extracts/chemistry
  8. Gadhwal AK, Ankit BS, Chahar C, Tantia P, Sirohi P, Agrawal RP
    J Assoc Physicians India, 2016 06;64(6):22-26.
    PMID: 27739263
    OBJECTIVE: Thrombocytopenia in dengue fever is a common and serious complication. However, no specific treatment is available for dengue fever induced thrombocytopenia. In few countries (Pakistan, Malaysia, Sri Lanka and other Asian countries) the leaf extract of Carica papaya has been effectively used for thrombocytopenia. So, the study is planned to access effect of Carica papaya leaf extract on platelet count in dengue fever patients.

    METHODS: All participants were randomised into two groups, study group and control group; the study group was given papaya leaf extract capsule of 500 mg once daily and routine supportive treatment for consecutive five days. The controls were given only routine supportive treatment. Daily complete blood counts, platelet counts and haematocrit level, liver function test, renal function test of both groups were observed.

    RESULTS: On the first day platelet count of study group and control group was (59.82±18.63, 61.06±20.03 thousands, p value 0.36). On the 2nd day platelet count of both study and control groups was not significantly different (61.67±19.46 and 59.93±19.52 thousands, p value 0.20) but on 3rd day platelet count of study group was significantly higher than control group (82.96±16.72, 66.45±17.36 thousands, p value < 0.01). On 4th and 5th day platelet count of study group (122.43±19.36 and 112.47±17.49 thousands respectively) was also significantly higher than the control group (88.75±21.65 and 102.59±19.35 thousands) (p value < 0.01). On 7th day platelet count of study group and control group were not significantly different (124.47±12.35 and 122.46±19.76 thousands respectively, p value 0.08). Average hospitalization period of study group v/s control group was 3.65±0.97 v/s 5.42±0.98 days (p value < 0.01). Average platelet transfusion requirement in study group was significantly less than control group (0.685 units per patient v/s 1.19 units per patient) (p value <0.01).

    CONCLUSIONS: It is concluded that Carica papaya leaf extract increases the platelet count in dengue fever without any side effect and prevents the complication of thrombocytopenia. So, it can be used in dengue fever with thrombocytopenia patients.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G
    J Ethnopharmacol, 2021 Oct 28;279:114389.
    PMID: 34217797 DOI: 10.1016/j.jep.2021.114389
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment.

    AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aβ42's toxic effects.

    METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aβ42 fibrillation using an in vitro activity assay. Since Aβ42 aggregation results in neuronal degeneration, the potential Aβ42 inhibitors were next evaluated on Aβ42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB.

    RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aβ42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aβ42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aβ42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila.

    CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.

    Matched MeSH terms: Plant Extracts/chemistry
  10. Pasupuleti VR, Prasad TN, Shiekh RA, Balam SK, Narasimhulu G, Reddy CS, et al.
    Int J Nanomedicine, 2013;8:3355-64.
    PMID: 24039419 DOI: 10.2147/IJN.S49000
    Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries.
    Matched MeSH terms: Plant Extracts/chemistry*
  11. Teh CH, Abdulghani M, Morita H, Shiro M, Hussin AH, Chan KL
    Planta Med, 2011 Jan;77(2):128-32.
    PMID: 20665368 DOI: 10.1055/s-0030-1250159
    13 α,21-Dihydroeurycomanone (1), a known quassinoid of Eurycoma longifolia Jack was recrystallized from chloroform into a novel crystal structure in space group P2 (1). Its X-ray data were compared with those of eurycomanone ( 2). Following intraperioneal injections at similar doses of 2.44 µmol/kg/day for 3 consecutive days, 2 displayed comparable potency with tamoxifen but was more potent than 1 in the anti-estrogenic effect against 17 α-ethynylestradiol (EE)-induced uterotrophy of immature rats.
    Matched MeSH terms: Plant Extracts/chemistry
  12. Zahari A, Cheah FK, Mohamad J, Sulaiman SN, Litaudon M, Leong KH, et al.
    Planta Med, 2014 May;80(7):599-603.
    PMID: 24723007 DOI: 10.1055/s-0034-1368349
    The crude extract of the bark of Dehaasia longipedicellata exhibited antiplasmodial activity against the growth of Plasmodium falciparum K1 isolate (resistant strain). Phytochemical studies of the extract led to the isolation of six alkaloids: two morphinandienones, (+)-sebiferine (1) and (-)-milonine (2); two aporphines, (-)-boldine (3) and (-)-norboldine (4); one benzlyisoquinoline, (-)-reticuline (5); and one bisbenzylisoquinoline, (-)-O-O-dimethylgrisabine (6). Their structures were determined on the basis of 1D and 2D NMR, IR, UV, and LCMS spectroscopic techniques and upon comparison with literature values. Antiplasmodial activity was determined for all of the isolated compounds. They showed potent to moderate activity with IC50 values ranging from 0.031 to 30.40 µM. (-)-O-O-dimethylgrisabine (6) and (-)-milonine (2) were the two most potent compounds, with IC50 values of 0.031 and 0.097 µM, respectively, that were comparable to the standard, chloroquine (0.090 µM). The compounds were also assessed for their antioxidant activities with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (IC50 = 18.40-107.31 µg/mL), reducing power (27.40-87.40 %), and metal chelating (IC50 = 64.30 to 257.22 µg/mL) having good to low activity. (-)-O-O-dimethylgrisabine (6) exhibited a potent antioxidant activity of 44.3 % reducing power, while di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium and metal chelating activities had IC50 values of 18.38 and 64.30 µg/mL, respectively. Thus it may be considered as a good reductant with the ability to chelate metal and prevent pro-oxidant activity. In addition to the antiplasmodial and antioxidant activities, the isolated compounds were also tested for their cytotoxicity against a few cancer and normal cell lines. (-)-Norboldine (4) exhibited potent cytotoxicity towards pancreatic cancer cell line BxPC-3 with an IC50 value of 27.060 ± 1.037 µM, and all alkaloids showed no toxicity towards the normal pancreatic cell line (hTERT-HPNE).
    Matched MeSH terms: Plant Extracts/chemistry
  13. Jantan I, Pisar MM, Idris MS, Taher M, Ali RM
    Planta Med, 2002 Dec;68(12):1133-4.
    PMID: 12494345
    Rubraxanthone and isocowanol isolated from Garcinia parvifolia Miq. were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets using 3H-PAF as a ligand. Rubraxanthone showed a strong inhibition with IC 50 value of 18.2 microM. The IC 50 values of macluraxanthone, 6-deoxyjacareubin, 2-(3-methylbut-2-enyl)-1,3,5-trihydroxyxanthone, 2-(3-methylbut-2-enyl)-1,3,5,6-tetrahydroxyxanthone and 1,3,5-trihydroxy-6,6'-dimethylpyrano(2',3':6,7)-4-(1,1-dimethylprop-2-enyl)-xanthone were also determined for comparison. In the course of our study on structure-activity relationship of xanthones, the results revealed that a geranyl group substituted at C-8 was beneficial to the binding while a hydroxylated prenyl group at C-4 resulted in a significant loss in binding to the PAF receptor.
    Matched MeSH terms: Plant Extracts/chemistry
  14. Moghadamtousi SZ, Kamarudin MN, Chan CK, Goh BH, Kadir HA
    Am J Chin Med, 2014;42(1):23-35.
    PMID: 24467533 DOI: 10.1142/S0192415X14500025
    Loranthus parasiticus Merr (L. parasiticus) is a member of Loranthaceae family and is an important medicinal plant with a long history of Chinese traditional use. L. parasiticus, also known as Sang Ji Sheng (in Chinese), benalu teh (in Malay) and baso-kisei (in Japanese), is a semiparasitic plant, which is mostly distributed in the southern and southwestern regions of China. This review aims to provide a comprehensive overview of the ethnomedicinal use, phytochemistry and pharmacological activity of L. parasiticus and to highlight the needs for further investigation and greater global development of the plant's medicinal properties. To date, pharmacological studies have demonstrated significant biological activities, which support the traditional use of the plant as a neuroprotective, tranquilizing, anticancer, immunomodulatory, antiviral, diuretic and hypotensive agent. In addition, studies have identified antioxidative, antimutagenic, antiviral, antihepatotoxic and antinephrotoxic activity. The key bioactive constituents in L. parasiticus include coriaria lactone comprised of sesquiterpene lactones: coriamyrtin, tutin, corianin, and coriatin. In addition, two proanthocyanidins, namely, AC trimer and (+)-catechin, have been recently discovered as novel to L. parasiticus. L. parasiticus usefulness as a medicinal plant with current widespread traditional use warrants further research, clinical trials and product development to fully exploit its medicinal value.
    Matched MeSH terms: Plant Extracts/chemistry*
  15. Si LY, Ali SAM, Latip J, Fauzi NM, Budin SB, Zainalabidin S
    Life Sci, 2017 Dec 15;191:157-165.
    PMID: 29066253 DOI: 10.1016/j.lfs.2017.10.030
    AIMS: Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI.

    MAIN METHODS: Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks.

    KEY FINDINGS: Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle.

    SIGNIFICANCE: These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future.

    Matched MeSH terms: Plant Extracts/chemistry
  16. Hematpoor A, Liew SY, Azirun MS, Awang K
    Sci Rep, 2017 10 03;7(1):12576.
    PMID: 28974710 DOI: 10.1038/s41598-017-12898-z
    Hexane, dichloromethane and methanol extracts of the roots of Piper sarmentosum Roxb. were screened for toxicity towards Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Plodia interpunctella (Hübner) and the hexane extract exhibited the highest mortality percentage. Bioassay-guided fractionation of the hexane extract resulted in the isolation of asaricin 1, isoasarone 2, and trans-asarone 3. Asaricin 1 and isoasarone 2 were the most toxic compounds to Sitophilus oryzae, Rhyzopertha dominica, and Plodia interpunctella. Sitophilus oryzae and Rhyzopertha dominica exposed to asaricin 1 and isoasarone 2 required the lowest median lethal time. Insecticidal activity of trans-asarone 3 showed consistent toxicity throughout the 60 days towards all three insects as compared to asaricin 1 and isoasarone 2. Asaricin 1 and isoasarone 2 at different doses significantly reduced oviposition and adult emergence of the three insects in treated rice. Trans-asarone 3 had lowest toxicity with highest LC and LT values in all tested insects relative to its mild oviposition inhibition and progeny activity. Moreover, asaricin 1 and isoasarone 2 significantly inhibited acetylcholinesterase in comparison with trans-asarone 3 and the control. Acetylcholinesterase inhibition of Rhyzopertha dominica and Plodia interpunctella by asaricin 1 and isoasarone 2 were lower than that of Sitophilus oryzae, which correlated with their higher resistance.
    Matched MeSH terms: Plant Extracts/chemistry
  17. Mawang CI, Lim YY, Ong KS, Muhamad A, Lee SM
    J Appl Microbiol, 2017 Nov;123(5):1148-1159.
    PMID: 28869803 DOI: 10.1111/jam.13578
    AIMS: The potential of Dicranopteris linearis leaves' extract and its bioactive components were investigated for the first time for its disrupting ability against Staphylococcus aureus biofilms.

    METHODS AND RESULTS: The leaves of D. linearis were subjected to sonication-assisted extraction using hexane (HEX), dichloromethane, ethyl acetate and methanol (MeOH). It was found that only the MeOH fraction exhibited antimicrobial activity using broth microdilution assay; while all four fractions do not exhibit biofilm inhibition activity against S. aureusATCC 6538P, S. aureusATCC 43300, S. aureusATCC 33591 and S. aureusATCC 29213 using crystal violet assay. Among the four fractions tested, only the HEX fraction showed biofilm disrupting ability, with 60-90% disruption activity at 5 mg ml-1against all four S. aureus strains tested. Bioassay-guided purification of the active fraction has led to the isolation of α-tocopherol. α-Tocopherol does not affect the cells within the biofilms but instead affects the biofilm matrix in order to disrupt S. aureus biofilms.

    CONCLUSIONS: α-Tocopherol was identified to be the bioactive component of D. linearis with disruption activity against S. aureus biofilm matrix.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The use of α-tocopherol as a biofilm disruptive agent might potentially be useful to treat biofilm-associated infections in the future.

    Matched MeSH terms: Plant Extracts/chemistry
  18. Abu Bakar Sajak A, Mediani A, Maulidiani, Mohd Dom NS, Machap C, Hamid M, et al.
    Phytomedicine, 2017 Dec 01;36:201-209.
    PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011
    BACKGROUND: Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown.

    PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.

    METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.

    RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.

    CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.

    Matched MeSH terms: Plant Extracts/chemistry
  19. Duangjai A, Nuengchamnong N, Lee LH, Goh BH, Saokaew S, Suphrom N
    Nat Prod Res, 2019 May;33(10):1491-1494.
    PMID: 29258345 DOI: 10.1080/14786419.2017.1416386
    Azadirachta indica has long been used in traditional medicine. This study focused on isolation and characterisation of active ingredients in the extract, its fractions (NF-EA, NF-AQ, NF-G) and its effect on the cholesterol absorption activity. The NF-EA fraction was identified by marker compounds by LC-ESI-QTOF/MS. Cholesterol absorption activity was performed by measuring the solubility and size of cholesterol micelles. The intestinal motility was also examined by isolated rat's ileum to test the contraction. The extract and its fractions consist of flavonoids and phenolic compounds, like quercetin, kaempferol and myricetin. We found that A. indica extract and NF-EA increase cholesterol micelles size, while the extract, NF-AQ, myricetin and quercetin, reduced the solubility of cholesterol in micelles. The extract and quercetin inhibited the contraction induced by KCl up to 29 and 18%, respectively, and also decreased CaCl2-induced contraction. This finding is in support to traditional uses of A. indica as cholesterol-lowering agents and regulator of gastrointestinal motility.
    Matched MeSH terms: Plant Extracts/chemistry
  20. Agatonovic-Kustrin S, Morton DW, Adam A, Mizaton HH, Zakaria H
    J Chromatogr A, 2017 Dec 29;1530:192-196.
    PMID: 29132827 DOI: 10.1016/j.chroma.2017.11.012
    The steady increase of diabetes is becoming a major burden on health care systems. As diabetic complications arise from oxidative stress, an antioxidant therapy along with anti-diabetic drugs is recommended. Myrmecodia or ant plant is highly valued as a traditional medicine in West Papua. It is used as an alternative treatment for diabetes, as the substances produced by ants can reduce blood sugar levels. The aim of this study was to develop and establish high-performance thin-layer chromatographic (HPTLC)-bioautographic methods to measure the antioxidant and hypoglycemic effects in different extracts from Myrmecodia platytyrea and to compare them with sterol content. Antioxidant activity in methanol, ethanol, dichloromethane (DCM) and ethyl acetate (EA) extracts were measured with a direct HPTLC-2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay, while hypoglycemic effects were assessed using a newly developed α-amylase inhibitory activity assay. Stigmasterol is observed, after derivatization with anisaldehyde, as purple colored zones under visible light at hRF values of 0.66. The highest antioxidant activity was observed in the ethanol extract which is rich in polyphenols and flavonoids, while the DCM extract did not show antioxidant activity, but had significant α-amylase inhibitory activity. The highest α-amylase inhibitory activity was observed in the EA and DCM extracts and was related to their stigmasterol content.
    Matched MeSH terms: Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links