Displaying publications 61 - 80 of 854 in total

Abstract:
Sort:
  1. Yusof HM, Ali NM, Yeap SK, Ho WY, Beh BK, Koh SP, et al.
    BMC Complement Altern Med, 2019 Dec 19;19(1):373.
    PMID: 31856816 DOI: 10.1186/s12906-019-2791-2
    BACKGROUND: Tempeh is a widely known fermented soybean that contains elevated level of bioactive contents. Our previous study has shown that anaerobic fermented Nutrient Enriched Soybean Tempeh (NESTE) with increase amino acid and antioxidant levels possessed better hepatoprotective effect than raw soybean.

    METHODS: In this study, the anti-inflammatory effect of the NESTE aqueous extract and raw soybean aqueous extract (SBE) were evaluated by quantifying the inhibition of IL-1β, TNF-α and nitric oxide (NO) secretion in LPS treated RAW 264.7 cell in vitro. On the other hand, in vivo oral acute toxicity effect of the extract was tested on mice at the dose of 5000 mg/kg body weight. In vivo oral analgesic effect of both aqueous extracts at 200 and 1000 mg/kg body weight was evaluated by the hot plate test.

    RESULTS: In the in vitro anti-inflammatory study, 5 mg/mL NESTE was able to inhibit 25.50 ± 2.20%, 35.88 ± 3.20% and 28.50 ± 3.50% of NO, IL-1β and TNF-α production in LPS treated RAW 264.7 cells without inducing cytotoxic effect on the cells. However, this effect was lower than 4 μg/mL of curcumin, which inhibited NO, IL-1β and TNF-α production by 89.50 ± 5.00%, 78.80 ± 6.20% and 87.30 ± 4.00%, respectively. In addition, 1.5 to 2.5-fold increase of latency period up to 120 min for mice in the hot plate test was achieved by 1000 mg/kg NESTE. The analgesic effect of NESTE was better than 400 mg/kg of acetyl salicylic acid, which only increased ~ 1.7-fold of latency period up to 90 min. Moreover, NESTE did not show acute toxicity (no LD50) up to 5000 mg/kg body weight.

    CONCLUSION: NESTE is a nutritious food ingredient with potential anti-inflammatory and analgesic effects.

    Matched MeSH terms: Cell Survival/drug effects
  2. Yip WK, Cheenpracha S, Chang LC, Ho CC, Seow HF
    Int J Oncol, 2010 Nov;37(5):1229-41.
    PMID: 20878070
    Secondary metabolites from actinomycetes especially the genus Streptomyces may be one of the most important sources for novel anticancer agents. A purified fraction from a novel actinomycete strain, Streptomyces sp. H7372, was elucidated in breast cancer cells. We have isolated three purified fractions from a novel strain, Streptomyces sp. H7372. One of the fractions, designated as 31-2, exhibited the strongest growth-inhibitory effect and thereby was selected for further studies. 31-2 exerted a growth-inhibitory effect on a panel of 15 human cancer and 2 non-malignant cell lines. In MCF-7 and MDA-MB-231 breast cancer cells, 31-2 induced a cytostatic (anti-proliferative) effect without causing cytotoxicity (cell death). Our data suggest that the cytostasis resulted from cell cycle arrest at the G1 phase in MCF-7 cells and at the S phase in MDA-MB-231 cells. Western blot analysis demonstrated a modulation of phosphorylation of the Rb and CDC2 proteins and of CDK4, cyclin D1 and cyclin D3 in the 31-2-treated breast cancer cell lines. The protein levels of CDK2, CDK6, and PCNA were not affected by 31-2 treatment. 31-2 also exhibited an anti-invasive effect in MDA-MB-231 cells. However, this effect is not attributed to the modulation of proteolytic activity in MDA-MB-231 cells as the enzymatic degradation of type IV collagen was not affected by 31-2. The 31-2 is a potent cytostatic and anti-invasive agent and modulates the cell cycle pathway. Together, these results will have important implications in searching for novel approaches to treat cancer.
    Matched MeSH terms: Cell Survival/drug effects
  3. Al-Salahi OS, Ji D, Majid AM, Kit-Lam C, Abdullah WZ, Zaki A, et al.
    PLoS One, 2014;9(1):e83818.
    PMID: 24409284 DOI: 10.1371/journal.pone.0083818
    Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 10(7) K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1 and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management.
    Matched MeSH terms: Cell Survival/drug effects
  4. Kok YY, Mooi LY, Ahmad K, Sukari MA, Mat N, Rahmani M, et al.
    Molecules, 2012 Apr 20;17(4):4651-60.
    PMID: 22522395 DOI: 10.3390/molecules17044651
    Girinimbine, a carbazole alkaloid isolated from the stem bark of Murraya koenigii was tested for the in vitro anti-tumour promoting and antioxidant activities. Anti-tumour promoting activity was determined by assaying the capability of this compound to inhibit the expression of early antigen of Epstein-Barr virus (EA-EBV) in Raji cells that was induced by the tumour promoter, phorbol 12-myristate 13-acetate. The concentration of this compound that gave an inhibition rate at fifty percent was 6.0 µg/mL and was not cytotoxic to the cells. Immunoblotting analysis of the expression of EA-EBV showed that girinimbine was able to suppress restricted early antigen (EA-R). However, diffused early antigen (EA-D) was partially suppressed when used at 32.0 µg/mL. Girinimbine exhibited a very strong antioxidant activity as compared to a-tocopherol and was able to inhibit superoxide generation in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiated premyelocytic HL-60 cells more than 95%, when treated with the compound at 5.3 and 26.3 µg/mL, respectively. However girinimbine failed to scavenge the stable diphenyl picryl hydrazyl (DPPH)-free radical.
    Matched MeSH terms: Cell Survival/drug effects
  5. Shahbaz MS, Anwar A, Saad SM, Kanwal, Anwar A, Khan KM, et al.
    Parasitol Res, 2020 Jul;119(7):2327-2335.
    PMID: 32476058 DOI: 10.1007/s00436-020-06710-7
    Acanthamoeba castellanii is a free-living amoeba which can cause a blinding keratitis and fatal granulomatous amoebic encephalitis. The treatment of Acanthamoeba infections is challenging due to formation of cyst. Quinazolinones are medicinally important scaffold against parasitic diseases. A library of nineteen new 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one derivatives was synthesized to evaluate their antiamoebic activity against Acanthamoeba castellanii. One-pot synthesis of 3-aryl-6,7-dimethoxyquinazolin-4(3H)-ones (1-19) was achieved by reaction of 2-amino-4,5-dimethoxybenzoic acid, trimethoxymethane, and different substituted anilines. These compounds were purified and characterized by standard chromatographic and spectroscopic techniques. Antiacanthamoebic activity of these compounds was determined by amoebicidal, encystation, excystation and host cell cytopathogenicity in vitro assays at concentrations of 50 and 100 μg/mL. The IC50 was found to be between 100 and 50 μg/mL for all the compounds except compound 5 which did not exhibit amoebicidal effects at these concentrations. Furthermore, lactate dehydrogenase assay was also performed to evaluate the in vitro cytotoxicity of these compounds against human keratinocyte (HaCaT) cells. The results revealed that eighteen out of nineteen derivatives of quinazolinones significantly decreased the viability of A. castellanii. Furthermore, eighteen out of nineteen tested compounds inhibited the encystation and excystation, as well as significantly reduced the A. castellanii-mediated cytopathogenicity against human cells. Interestingly, while tested against human normal cell line HaCaT keratinocytes, all compounds did not exhibit any overt cytotoxicity. Furthermore, a detailed structure-activity relationship is also studied to optimize the most potent hit from these synthetic compounds. This report presents several potential lead compounds belonging to 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one derivatives for drug discovery against infections caused by Acanthamoeba castellanii.
    Matched MeSH terms: Cell Survival/drug effects
  6. Mat Zawawi NZ, Shaari R, Luqman Nordin M, Hayati Hamdan R, Peng TL, Zalati CWSCW
    Vet World, 2020 Mar;13(3):508-514.
    PMID: 32367957 DOI: 10.14202/vetworld.2020.508-514
    Background and Aim: Channa striatus extract, a freshwater snakehead fish known as Haruan, is popular in Southeast Asia for consumption and as a traditional therapeutic remedy for wound healing. C. striatus is also used in osteoarthritic for its anti-inflammatory. The aim of this study was to determine the presence of antibacterial properties of C. striatus extract against oral bacteria and to investigate the cytotoxic activity against Vero cells.

    Materials and Methods: The authors prepared C. striatus extract in chloroform-methanol solvents. Next, the authors took subgingival microbiological samples from 16 cats that had periodontal disease. The authors determined the antibacterial properties of C. striatus extract against the isolated bacteria using the disk diffusion method and a broth microdilution-based resazurin microtiter assay. Finally, the authors used the Vero cell line to evaluate the cytotoxic activity, and they assessed the cell availability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

    Results: The results showed weak antibacterial activity of C. striatus extract against Pseudomonas spp. and Escherichia coli. In addition, the authors found that minimum inhibition concentration values ranged between 400 and 500 mg/mL, and minimum bactericidal concentration values ranged between 650 and 550 mg/mL. However, the cytotoxic results were promising, showing that C. striatus extract increased the cell viability and growth when it was at a higher concentration. The extract also promotes growth and cell proliferation.

    Conclusion: These findings suggest that C. striatus extract promoted cell proliferation in vitro and could be a plausible therapeutic wound healing alternative for periodontal disease in cats.

    Matched MeSH terms: Cell Survival
  7. Ninan N, Muthiah M, Bt Yahaya NA, Park IK, Elain A, Wong TW, et al.
    Colloids Surf B Biointerfaces, 2014 Mar 1;115:244-52.
    PMID: 24362063 DOI: 10.1016/j.colsurfb.2013.11.048
    In this article, gelatin/copper activated faujasites (CAF) composite scaffolds were fabricated by lyophilisation technique for promoting partial thickness wound healing. The optimised scaffold with 0.5% (w/w) of CAF, G (0.5%), demonstrated pore size in the range of 10-350 μm. Agar disc diffusion tests verified the antibacterial role of G (0.5%) and further supported that bacterial lysis was due to copper released from the core of CAF embedded in the gelatin matrix. The change in morphology of bacteria as a function of CAF content in gelatin scaffold was studied using SEM analysis. The confocal images revealed the increase in mortality rate of bacteria with increase in concentration of incorporated CAF in gelatin matrix. Proficient oxygen supply to needy cells is a continuing hurdle faced by tissue engineering scaffolds. The dissolved oxygen measurements revealed that CAF embedded in the scaffold were capable of increasing oxygen supply and thereby promote cell proliferation. Also, G (0.5%) exhibited highest cell viability on NIH 3T3 fibroblast cells which was mainly attributed to the highly porous architecture and its ability to enhance oxygen supply to cells. In vivo studies conducted on Sprague Dawley rats revealed the ability of G (0.5%) to promote skin regeneration in 20 days. Thus, the obtained data suggest that G (0.5%) is an ideal candidate for wound healing applications.
    Matched MeSH terms: Cell Survival/drug effects
  8. Rafieerad AR, Bushroa AR, Amiri A, Kalaiselvam K, Vellasamy KM, Vadivelu J
    J Hazard Mater, 2018 10 15;360:132-140.
    PMID: 30099356 DOI: 10.1016/j.jhazmat.2018.07.107
    Antibacterial ability is vital in biological approaches as well as functional biomaterials. Besides, cytocompatibility aspect of biologic media, tissue and organs is always concern for appropriate synthesis. From the past, metallic/oxide phases of silver (Ag) material in various macro, micro or nano configurations have been widely used for antibacterial targets. While, background of Ag toxicity within particle, film and composites is posing gradual ion release affected by molecular bounding. Recent researches conducted to control, optimize and neutralize Ag limitations finding the benefits of ideal (∼ 100%) mediation against both Gram-negative and Gram-positive bacteria. Whereas, non-degradable releases history is still a challenge and its longer accumulation may cause to disrupt biostructures and disease risk. Thus, facile development of large-area organic materials with switchable bacteria toxicity and normal cell compatibility function is interesting for concerned approaches. Here, smart positively-charged stable arginine amino acid incorporated mono layer graphene (Arg-EMGr) nanobiocomposite introduced as useful antibacterial and safe bactericidal agent competitive with Ag direct. The immunity characteristic versus Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) comparably assessed with graphene oxide (GO) and different concentrations GO-AgNPs morphology. As cell viability matter, 1,3,5,7-days vitro culture assay shown attachment proliferation and cytotoxicity due to short interaction.
    Matched MeSH terms: Cell Survival
  9. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5164-5180.
    PMID: 28361404 DOI: 10.1007/s11356-017-8855-2
    Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 μg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K+, and extracellular adenosine 5'-triphosphate (ATP) with 110.5 μg/mL, 2.34 μg/mL, and 87.24 ng/μL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC50 value of 0.998 ± 0.058 and 0.387 ± 0.002 μg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.
    Matched MeSH terms: Cell Survival/drug effects
  10. Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N
    Molecules, 2021 Mar 12;26(6).
    PMID: 33808969 DOI: 10.3390/molecules26061554
    BACKGROUND: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines.

    METHODS: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out.

    RESULTS: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180-200 bp fragments that are visible as a "ladder" on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle.

    CONCLUSION: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.

    Matched MeSH terms: Cell Survival/drug effects
  11. Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R
    Anticancer Agents Med Chem, 2020;20(13):1558-1570.
    PMID: 32364082 DOI: 10.2174/1871520620666200504103056
    BACKGROUND: Cancer contributes to significant morbidity and mortality despite advances in treatment and supportive care. There is a need for the identification of effective anticancer agents. Reptiles such as tortoise, python, and water monitor lizards are exposed to heavy metals, tolerate high levels of radiation, feed on rotten/germ-infested feed, thrive in unsanitary habitat and yet have prolonged lifespans. Such species are rarely reported to develop cancer, suggesting the presence of anticancer molecules/mechanisms.

    METHODS: Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification.

    RESULTS: The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis.

    CONCLUSION: To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles' sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.

    Matched MeSH terms: Cell Survival/drug effects
  12. Khan AYF, Ahmed QU, Narayanamurthy V, Razali S, Asuhaimi FA, Saleh MSM, et al.
    Biomed Pharmacother, 2019 Jun;114:108841.
    PMID: 30981106 DOI: 10.1016/j.biopha.2019.108841
    Porcupine bezoar (PB) is a calcified undigested material generally found in porcupine's (Hystrix brachyura) gastrointestinal tract. The bezoar is traditionally used in South East Asia and Europe for the treatment of cancer, poisoning, dengue, typhoid, etc. However, limited scientific studies have been performed to verify its anticancer potential to substantiate its traditional claims in the treatment of cancers. Hence, this study was aimed at investigating the in vitro and in vivo anticancer properties of two grassy PB aqueous extract (PB-A and PB-B) using A375 cancer cell line and zebrafish model, respectively. This paper presents the first report on in vitro A375 cell viability assay, apoptosis assay, cell cycle arrest assay, migration assay, invasion assay, qPCR experimental assay and in vivo anti-angiogenesis assay using the grassy PBs. Experimental findings revealed IC50 value are 26.59 ± 1.37 μg/mL and 30.12 ± 3.25 μg/mL for PB-A and PB-B respectively. PBs showed anti-proliferative activity with no significant cytotoxic effect on normal human dermal fibroblast (NHDF). PBs were also found to induce apoptosis via intrinsic pathway and arrest cell cycle at G2/M phase. Additionally, the findings indicated its ability to debilitate migration and invasion of A375 cells. Further evaluation using embryo zebrafish model revealed LC50 = 450.0 ± 2.50 μg/mL and 58.7 ± 5.0 μg/mL for PB-A and PB-B which also exerted anti-angiogenesis effect in zebrafish. Moreover, stearic acid, ursodeoxycholic acid and pregnenolone were identified as possible metabolites that might contribute to the anticancer effect of the both PBs. Overall, this study demonstrated that PB-A and PB-B possess potential in vitro and in vivo anticancer effects which are elicited through selective cytotoxic effect, induction of apoptosis, inhibition of migration and invasion and anti-angiogenesis. This study provides scientific evidence that the porcupine bezoar do possess anti-cancer efficacy and further justifies its traditional utility. However, more experiments with higher vertebrae models are still warranted to validate its traditional claims as an anticancer agent.
    Matched MeSH terms: Cell Survival/drug effects
  13. Iman V, Mohan S, Abdelwahab SI, Karimian H, Nordin N, Fadaeinasab M, et al.
    Drug Des Devel Ther, 2017;11:103-121.
    PMID: 28096658 DOI: 10.2147/DDDT.S115135
    Therapy that directly targets apoptosis and/or inflammation could be highly effective for the treatment of cancer. Murraya koenigii is an edible herb that has been traditionally used for cancer treatment as well as inflammation. Here, we describe that girinimbine, a carbazole alkaloid isolated from M. koenigii, induced apoptosis and inhibited inflammation in vitro as well as in vivo. Induction of apoptosis in human colon cancer cells (HT-29) by girinimbine revealed decreased cell viability in HT-29, whereas there was no cytotoxic effect on normal colon cells. Changes in mitochondrial membrane potential, nuclear condensation, cell permeability, and cytochrome c translocation in girinimbine-treated HT-29 cells demonstrated involvement of mitochondria in apoptosis. Early-phase apoptosis was shown in both acridine orange/propidium iodide and annexin V results. Girinimbine treatment also resulted in an induction of G0/G1 phase arrest which was further corroborated with the upregulation of two cyclin-dependent kinase proteins, p21 and p27. Girinimbine treatment activated apoptosis through the intrinsic pathway by activation of caspases 3 and 9 as well as cleaved caspases 3 and 9 which ended by triggering the execution pathway. Moreover, apoptosis was confirmed by downregulation of Bcl-2 and upregulation of Bax in girinimbine-treated cells. In addition, the key tumor suppressor protein, p53, was seen to be considerably upregulated upon girinimbine treatment. Induction of apoptosis by girinimbine was also evidenced in vivo in zebrafish embryos, with results demonstrating significant distribution of apoptotic cells in embryos after a 24-hour treatment period. Meanwhile, anti-inflammatory action was evidenced by the significant dose-dependent girinimbine inhibition of nitric oxide production in lipopolysaccharide/interferon-gamma-induced cells along with significant inhibition of nuclear factor-kappa B translocation from the cytoplasm to nucleus in stimulated RAW 264.7 cells. Girinimbine was also shown to have considerable antioxidant activity whereby 20 μg/mL of girinimbine was equivalent to 82.17±1.88 μM of Trolox. In mice with carrageenan-induced peritonitis, oral pretreatment with girinimbine helped limit total leukocyte migration (mainly of neutrophils), and reduced pro-inflammatory cytokine levels (interleukin-1beta and tumor necrosis factor-alpha) in the peritoneal fluid. These findings strongly suggest that girinimbine could act as a chemopreventive and/or chemotherapeutic agent by inducing apoptosis while suppressing inflammation. There is a potential for girinimbine to be further investigated for its applicability in treating early stages of cancer.
    Matched MeSH terms: Cell Survival/drug effects
  14. Ismail M, Bagalkotkar G, Iqbal S, Adamu HA
    Molecules, 2012 May 14;17(5):5745-56.
    PMID: 22628046 DOI: 10.3390/molecules17055745
    Different parts of four edible medicinal plants (Casearia capitellata, Baccaurea motleyana, Phyllanthus pulcher and Strobilanthus crispus), indigenous to Malaysia, were extracted in different solvents, sequentially. The obtained 28 extracts were evaluated for their in vitro anticancer properties, using the MTS assay, on four human cancer cell lines: colon (HT-29), breast (MCF-7), prostate (DU-145) and lung (H460) cancers. The best anticancer activity was observed for the ethyl acetate (EA) extract of Casearia capitellata leaves on MCF-7 cell lines with IC₅₀ 2.0 μg/mL and its methanolic (MeOH) extract showed an outstanding activity against lung cancer cell lines. Dichloromethane (DCM) extract of Phyllanthus pulcher aerial parts showed the highest anticancer activity against DU-145 cell lines, while significant activity was exhibited by DCM extract of Phyllanthus pulcher roots on colon cancer cell lines with IC50 value of 8.1 μg/mL. Total phenolic content (TPC) ranged over 1-40 mg gallic acid equivalents (GAE)/g. For all the samples, highest yields of phenolics were obtained for MeOH extracts. Among all the extracts analyzed, the MeOH extracts of Strobilanthus crispus leaves exhibited the highest TPC than other samples (p < 0.05). This study shows that the nature of phenol determines its anticaner activity and not the number of phenols present.
    Matched MeSH terms: Cell Survival/drug effects
  15. Othman H, Rahman H, Mohan S, Aziz S, Marif H, Ford D, et al.
    PMID: 32922508 DOI: 10.1155/2020/8764096
    This study investigated the in vivo antileukemic activity of palladium nanoparticles (Pd@W.tea-NPs) mediated by white tea extract in a murine model. The cell viability effect of Pd@W.tea-NPs, "blank" Pd nanoparticles, and white tea extract alone was determined in murine leukemia WEHI-3B cells and normal mouse fibroblasts (3T3 cells). Apoptotic and cell cycle arrest effects of Pd@W.tea-NPs in WEHI-3B cells were evaluated. The effects of Pd@W.tea-NPs administered orally to leukemic mice at 50 and 100 mg/kg daily over 28 days were evaluated. Pd@W.tea-NPs reduced the viability of WHEI-3B cells with IC50 7.55 μg/ml at 72 h. Blank Pd nanoparticles and white tea extract alone had smaller effects on WHEI-3B viability and on normal fibroblasts. Pd@W.tea-NPs increased the proportion of Annexin V-positive WHEI-3B cells and induced G2/M cell cycle arrest. Leukemic cells in the spleen were reduced by Pd@W.tea-NPs with an increase in Bax/Bcl-2 and cytochrome-C protein and mRNA levels indicating the activation of the mitochondrial apoptotic pathway. These effects replicated the effects of ATRA and were not observed using blank Pd nanoparticles. Pd@W.tea-NPs afford therapeutic efficacy against leukemia likely to pivot on activation of the mitochondrial pathway of apoptotic signaling and hence appear attractive potential candidates for development as a novel anticancer agent.
    Matched MeSH terms: Cell Survival
  16. Jindal HM, Le CF, Mohd Yusof MY, Velayuthan RD, Lee VS, Zain SM, et al.
    PLoS One, 2015;10(6):e0128532.
    PMID: 26046345 DOI: 10.1371/journal.pone.0128532
    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.
    Matched MeSH terms: Cell Survival/drug effects
  17. Hassani A, Hussain SA, Abdullah N, Kamarudin S, Rosli R
    AAPS PharmSciTech, 2019 Jan 07;20(2):53.
    PMID: 30617521 DOI: 10.1208/s12249-018-1238-2
    Orotic acid (OA) nanoparticles were prepared using the freeze-drying method. The antihypertensive activity and antioxidant capacity of OA and orotic acid-loaded gum arabic nanoparticles (OAGANPs) were examined using the angiotensin-converting enzyme (ACE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and β-carotene assays, as well as the quantification of total phenolic content (TPC). The DPPH and NO scavenging activities of OAGANPs were significantly higher than those of the OA solution. The β-carotene bleaching assay of OAGANPs showed a dose-dependent trend, while 500 μg/ml was significantly more effective than the other concentrations, which exerted 63.4% of the antioxidant activity. The in vitro antihypertensive assay revealed that the OAGANPs exhibited the most potent ACE inhibition activity, when compared to the OA solution. Hence, results revealed the potential of preparing the OA as a nanoparticle formulation in enhancing the antioxidant and antihypertensive properties compared to the OA solution.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/physiology
  18. Balan T, Sani MH, Mumtaz Ahmad SH, Suppaiah V, Mohtarrudin N, Zakaria ZA
    J Ethnopharmacol, 2015 Apr 22;164:1-15.
    PMID: 25540923 DOI: 10.1016/j.jep.2014.12.017
    In traditional medicine, the leaves, flowers, barks and roots of Muntingia calabura L. (Muntingiaceae) have been employed as a treatment for various ailments including dyspepsia and to relieve pain caused by gastritis and peptic ulcer disease. The methanolic extract of Muntingia calabura leaves (MEMC) has been proven in the previous study to possess significant antiulcer activity. In this study, we attempted to determine the prophylactic effect of the fractions obtained from MEMC against ethanol-induced gastric lesion in rats and the involvement of antioxidants and anti-inflammatory mediators.
    Matched MeSH terms: Cell Survival/drug effects
  19. Sazwi NN, Nalina T, Abdul Rahim ZH
    PMID: 24330738 DOI: 10.1186/1472-6882-13-351
    Betel quid chewing is a popular habit in Southeast Asia. It is believed that chewing betel quid could reduce stress, strengthen teeth and maintain oral hygiene. The aim of this study was to investigate the antioxidant and cytoprotective activities of each of the ingredients of betel quid and compared with betel quid itself (with and without calcium hydroxide). The correlation of their cytoprotective and antioxidant activities with phenolic content was also determined.
    Matched MeSH terms: Cell Survival/drug effects
  20. Din WM, Chu J, Clarke G, Jin KT, Bradshaw TD, Fry JR, et al.
    Nat Prod Commun, 2013 Mar;8(3):375-80.
    PMID: 23678815
    In the annals of biomedical theory perhaps no single class of natural product has enjoyed more ingenious speculation than antioxidants formally aimed at counteracting oxidative insults which are involved in the pathophysiology of Alzheimer's and Parkinson's disease, cancer, amyotrophic lateral sclerosis, skin ageing and wound healing. In pursuing our study of Malaysian traditional medicines with antioxidant properties, we became interested in Acalypha wilkesiana var. macafeana hort., used traditionally to heal wounds. To examine whether Acalypha wilkesiana var. macafeana hort. could suppress oxidation an ethanol extract was tested by conventional chemical in vitro assays i.e., ferric reducing antioxidant potential assay (FRAP), DPPH scavenging assay and beta-carotene bleaching (BCB) assay. To explore whether Acalypha wilkesiana var. macafeana hort. protected cells against oxidative injuries, we exposed human hepatocellular liver carcinoma (HepG2) cells to tert-butylhydroperoxide (t-BHP). In all the aforementioned experiments, the ethanol extracts elicited potent antioxidant and cytoprotective activities. To gain a better understanding of the phytochemical nature of the antioxidant principle involved, five fractions (F1-F5) obtained from the ethanol extract were tested using FRAP, DPPH and BCB assays. Our results provided evidence that F5 was the most active fraction with antioxidant potentials equal to 2.090 +/- 0.307 microg/mL, 0.532 +/- 0.041 microg/mL, 0.032 +/- 0.025 microg/mL in FRAP, DPPH and BCB assay, respectively. Interestingly, F5 protected HepG2 against t-BHP oxidative insults. To further define the chemical identity of the antioxidant principle, we first performed a series of phytochemical tests, followed by liquid-chromatography and mass spectrometry (LC/MS) profiling which showed that the major compound contained in F5 was geraniin. To the best of our knowledge, this is the first report showing that the wound healing property of Acalypha wilkesiana var. macafeana hort. is mediated by a geraniin containing extract. Furthermore, our data leads us to conclude that geraniin could be used as a potential pharmaceutical and/or cosmetic topical agent.
    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links