MATERIALS AND METHODS: The investigated cell lines include primary colon epithelial (PCE) cells and human colorectal cancer cells; the studied bacterial strains are Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. Using the agar well-diffusion method, various doses (5, 10, and 20 mg/mL) of plant extracts (ethanol and petroleum ether) were evaluated against each kind of bacterial strain. The minimal inhibitory doses were found using the two-fold serial dilution approach, with a range of 0.156-5 mg/mL.
RESULTS: Comparing extracts of S. trifasciata leaves to tetracycline (0.05 mg/mL), a common antibiotic, revealed a wide range of antibacterial activity. P. vulgaris and S. aureus were the most sensitive bacterial strains to ethanol and petroleum ether extracts, respectively. The MTT test was employed to ascertain the viable cell count of PCE cells and HCT-116. When various ethanol extract concentrations (7.8, 15.63, 31.25, 62.5, 125, 250, 500, and 1000 μg/mL) were tested against the cell lines, HCT-116's IC50, values were lower as compared to PCE. The IC50 values for HCT-116 and PCE cells ranged from 10.0 to 14.07 μg/mL and 92.9-216.9 μg/mL, respectively.
CONCLUSIONS: Ethanolic extract of S. trifasciata showed promising antibacterial and anticancer properties.
AIMS: This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity.
OBJECTIVE: The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity.
METHODS: The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model.
RESULTS: A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08 mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1 nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil).
CONCLUSION: It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.
METHODS: The IC50 of EEROP in SW480 cells was determined by treating the cells with varying doses of EEROP, ranging from 0 to 1000 µg/mL. Apoptosis assay and signaling pathway analysis were performed through immunofluorescence staining and Western Blotting on SW480 cells treated with 250 µg/mL of EEROP for 72 hours.
RESULTS: EEROP treatment induced apoptosis in SW480 cells, marked by elevated levels of active caspase-3 (P<0.001) and cleaved poly-(ADP-ribose) polymerase (PARP)-1. Moreover, it notably decreased β-catenin protein levels, resulting in an augmented occurrence of cells displaying abnormal spindle segregation during mitosis (P=0.04).
CONCLUSION: EEROP treatment reduces β-catenin protein levels, promotes abnormal spindle apparatus segregation, and finally leads to apoptotic cell death in CRC cells.