Displaying publications 61 - 80 of 112 in total

Abstract:
Sort:
  1. Nazaratul Ashifa Abdullah Salim, Md Suhaimi Elias, Abdul Khalik Wood, Ezwiza Sanuri, Mohd Suhaimi Hamzah, Shamsiah Abd. Rahman
    MyJurnal
    Over 114 countries in the world grow rice and more than 50 countries have an annual rice production of 100,000 tonnes or more. Asian farmers produce about 90% of the global total rice production. Generally, there are two most common varieties of rice; cultivated and hill rice. Nowadays a lot of agriculture land is contaminated with toxic elements owing to the use of sludge or municipal compost, pesticides, fertilizers and emissions from municipal waste incinerators, car exhausts, residues from metalliferous mines, and smelting industries. The distribution and concentration of several toxic elements in grains particularly rice has lately become a big concern. A study to determine the concentrations of some elements in a few varieties of rice in our local market using Instrumental Neutron Activation Analysis has been performed by Waste and Environmental Technology Division, Malaysian Nuclear Agency. A total of 15 elements were measured. The method was validated by analysing the Standard Reference Material SRM-1568a (Rice Flour) and SRM-1573a (Tomato Leaves) of NIST. The measured concentrations of major and minor elements were analysed in terms of the average intake of nutrient content and comparison of several toxic elements to other studied values.
    Matched MeSH terms: Fertilizers
  2. Nazarudin MA, Tsan F, Adzmi Y, Normaniza O
    Sains Malaysiana, 2015;44:483-489.
    A study was conducted to determine the effects of a plant growth regulator (paclobutrazol, PBZ) and commercial
    fertilizer (Krista-K Plus) as a source of potassium nitrate (KNO3
    ) on the growth of Xanthostemon chrysantus. It was
    also attempted to investigate the anatomical changes in the leaf and stem after the treatment. Nine treatments, i.e.
    control (no PBZ and Krista-K Plus application), 0 PBZ gL-1 + 100 g Krista-K Plus, 0 PBZ gL-1 + 200 g Krista-K Plus,
    0.125 PBZ gL-1 + 0 g Krista-K Plus, 0.125 PBZ gL-1 + 100 g Krista-K Plus, 0.125 PBZ gL-1 + 200 g Krista-K Plus, 0.25
    PBZ gL-1 + 0 g Krista-K Plus, 0.25 PBZ gL-1 + 100 g Krista-K Plus and 0.25 PBZ gL-1 + 200 g Krista-K Plus, were
    tested. PBZ was soil drenched at the commencement of the study while Krista-K Plus was applied at three-month
    intervals. Plant growth performances such as tree height, diameter at breast height, canopy diameter and leaf area
    were recorded monthly throughout the study period. Stem and leaf samples were collected before the application
    of treatments and after six months of treatments for anatomical observation by using electron microscope. Plant
    height, diameter at breast height, crown diameter and leaf area were significantly reduced with the application of
    PBZ. Palisade parenchyma thickness was increased by 33.83% with 0.25 PBZ gL-1 + 200 g Krista-K Plus, while only
    2.44% increment recorded in the control tree. Xylem thickness in the stem was reduced by 21.81% after treated with
    the highest dosage of PBZ, while the control tree only had 1.78% increment. Spongy parenchyma thickness in the leaf
    was unaffected. However, palisade parenchyma was found the thickest after combined treatment with 0.25 PBZ gL-1
    + 200 g Krista-K Plus. Micrograph images of the cross-section of leaf lamina and stem showed that the cells were
    tightly arranged in response to the application of PBZ.
    Matched MeSH terms: Fertilizers
  3. Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC
    J Environ Manage, 2024 Jan 01;349:119445.
    PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445
    Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
    Matched MeSH terms: Fertilizers/microbiology
  4. Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, et al.
    Microorganisms, 2021 Mar 26;9(4).
    PMID: 33810209 DOI: 10.3390/microorganisms9040682
    As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants' health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant's growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants' health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.
    Matched MeSH terms: Fertilizers
  5. Nita Salina Abu Bakar, Zal U’yun Wan Mahmood, Ahmad Saat, Abdul Kadir Ishak
    MyJurnal
    Anthropogenic airborne depositions of 210Po,
    210Pb and 210Po/210Pb in the mosses and surface soils
    collected at the vicinity of a coal-fired power plant were studied. The purpose of the study was to
    determine activity concentrations of 210Po,
    210Pb and 210Po/210Pb for assessing their variation
    accumulation in the mosses and surface soils collected at the vicinity of a coal-fired power plant.
    Other purposes were to determine their concentration factor (CF) in relation to track the potential
    source of those radionuclides and to identify most suitable moss species as a biological indicator
    for atmospheric deposition contaminants. In this study, different species of moss Leucobryum
    aduncum, Campylopus serratus, Syrrhopodon ciliates and Vesicularia montagnei were collected in
    May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in
    Pontian, Johor. The activity concentrations of 210Po,
    210Pb and 210Po/210Pb in mosses were in the
    range of 76.81 ± 4.94 – 251.33 ± 16.33 Bq/kg dry wt., 54.37 ± 3.38 – 164.63 ± 11.64 Bq/kg dry wt.
    and 1.10 – 2.00, respectively. Meanwhile the ranges for those radionuclides in the surface soil
    were 33.53 ± 2.10 – 179.67 ± 12.15 Bq/kg dry wt., 20.55 ± 1.33 – 106.62 ± 6.64 Bq/kg dry wt. and
    1.61 – 2.44, respectively. Corresponding high ability of Leucobryum aduncum to accumulate more
    210Po and 210Pb, wide geographical distribution, most abundant and high CF, therefore, the
    findings can be concluded this species was the most suitable as a biological indicator for
    atmospheric deposition contaminants such as 210Po and 210Pb. Furthermore, it is clear the
    accumulation of 210Po and 210Pb in mosses might be supplied from various sources of atmospheric
    deposition such as coal-fired power plant operation, industrial, agriculture and fertilizer activities,
    burned fuel fossil and forest; and other potential sources. Meanwhile, the
    Matched MeSH terms: Fertilizers
  6. Norahizah Abd Rahim, Hasnah Md Jais, Hasnuri Mat Hassan
    Trop Life Sci Res, 2016;27(11):9-13.
    MyJurnal
    The association of arbuscular mycorrhiza fungi (AMF) and roots undoubtedly
    gives positive advantages to the host plant. However, heavily fertilised soil such as in oil
    palm plantation, inhibit the growth of mycorrhiza. Thus, the aim of this research is to
    distinguish and quantify the availability of AMF population and propagules at different sites
    of an oil palm plantation by Most Probable Number (MPN) assay. In addition, root infection
    method was employed to observe host compatibility through the propagation of AMF using
    two different types of hosts, monocotyledon (Echinochloa cruss-galli) and dicotyledon
    (Vigna radiata). Three different locations at an oil palm plantation were chosen for
    sampling. Each location was represented by a distinctive soil series, and were further
    divided into two sites, that is canopy and midway area. Midway site had a greater
    population of AMF compared to canopy. The result showed that different environments
    affect the availability of AMF in the soil. Higher number of AMF infection observed in
    monocotyledon host suggests that the fibrous root system provide a better association
    with mycorrhiza.
    Matched MeSH terms: Fertilizers
  7. Nur Aainaa H, Haruna Ahmed O, Ab Majid NM
    PLoS One, 2018;13(9):e0204401.
    PMID: 30261005 DOI: 10.1371/journal.pone.0204401
    Efficient management of P fertilizers ensures good yield of crops and adequate food supply. In the acid soil of the tropics, soluble P is fixed by Al and Fe. Exploitation of the high CEC and pH of Clinoptilolite zeolite (CZ) could mitigate low soil pH and P fixation in acid soils. This study was undertaken to determine the effects of amending a weathered acid soil with CZ on: (i) soil P availability and other related soil chemical properties, and (ii) nutrient concentration, nutrient uptake, above-ground biomass, agronomic efficiency, and yield of Zea mays L. on a tropical acidic soil. Triple superphosphate (TSP), Egypt Rock phosphate (ERP), and Christmas Island Rock phosphate (CIRP) were used as P sources. The treatments evaluated were: (i) soil alone, (ii) 100% recommended fertilizer rate (NPK), and (iii) 75% fertilizer rate + Clinoptilolite zeolite. Selected soil chemical properties and P availability were determined before and after field trials. Zea mays L. above-ground biomass, nutrient concentration, nutrient uptake, agronomic efficiency, and fresh cob yield were also determined. Results revealed that the effects of treatments with and without CZ treatments on soil pH, P fractions, soil acidity, dry matter production, yield of maize, nutrient uptake, and agronomic efficiency were similar. Hence, suggesting CZ inclusion in the fertilization program of Zea mays L is beneficial in terms of reducing excessive or unbalanced use of chemical fertilizers due to reduction of fertilizers usage by 25%.
    Matched MeSH terms: Fertilizers
  8. Nur Hasyimah Ramli, Zuhrah Aini Sulaiman
    MyJurnal
    Fertilizers are the most important and complex nutrients for crop plants in particular for grain yield and quality. The composition of the fertilizer as well as the essential elements that influence the growth of the crop need to be clearly identified. Due to that, this study was carried out to investigate the effect of different fertilizer formulation on the leaf mustard (Brassica juncea) growth. High nitrogen, phosphorus and potassium fertilizers were used to investigate their effects on the morphometric size of the leaves, plant height and the leaf area index of the leaf mustard. Results showed that the application of different formulation of fertilizer improves the growth of leaf mustard compared to control. Leaf mustard with the high phosphorus treatment recorded an increase in plant height and the leaf area index (LAI). Lamina length (LL) range is shown between phosphorus and control (1.11 cm), while the range of lamina width (LW), left width (WL) and right width (WR) are between potassium and control about
    0.57 cm, 0.28 cm and 0.28 cm, respectively. Overall, there is a significant difference between the leaf mustard leaves in different high element fertilizers compared with all of the variable, F(15,1024) = 29.26, p0.05, no significant difference). The highest mean in LAI was obtained when treated with a high phosphorus fertilizer (0.47 m2). The mean difference of LAI of high phosphorus compared to high potassium, high nitrogen and control is 0.02 m2, 0.08 m2 and 0.12 m2. There is no significant differences between the LAI in different high element fertilizers with F(3,176) = 0.15; p>0.05. Further study should be conducted to determine the effects of different fertilizers on the growth of other vegetables and fruit quality.
    Matched MeSH terms: Fertilizers
  9. Omar NF, Hassan SA, Yusoff UK, Abdullah NA, Wahab PE, Sinniah U
    Molecules, 2012;17(3):2378-87.
    PMID: 22370524 DOI: 10.3390/molecules17032378
    A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.
    Matched MeSH terms: Fertilizers*
  10. Onyia CO, Uyu AM, Akunna JC, Norulaini NA, Omar AK
    Water Sci Technol, 2001;44(10):157-62.
    PMID: 11794647
    Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification.
    Matched MeSH terms: Fertilizers*
  11. Padam BS, Tin HS, Chye FY, Abdullah MI
    J Food Sci Technol, 2014 Dec;51(12):3527-45.
    PMID: 25477622 DOI: 10.1007/s13197-012-0861-2
    Banana (Musaceae) is one of the world's most important fruit crops that is widely cultivated in tropical countries for its valuable applications in food industry. Its enormous by-products are an excellent source of highly valuable raw materials for other industries by recycling agricultural waste. This prevents an ultimate loss of huge amount of untapped biomass and environmental issues. This review discusses extensively the breakthrough in the utilization of banana by-products such as peels, leaves, pseudostem, stalk and inflorescence in various food and non-food applications serving as thickening agent, coloring and flavor, alternative source for macro and micronutrients, nutraceuticals, livestock feed, natural fibers, and sources of natural bioactive compounds and bio-fertilizers. Future prospects and challenges are the important key factors discussed in association to the sustainability and feasibility of utilizing these by-products. It is important that all available by-products be turned into highly commercial outputs in order to sustain this renewable resource and provide additional income to small scale farming industries without compromising its quality and safety in competing with other commercial products.
    Matched MeSH terms: Fertilizers
  12. Panhwar QA, Naher UA, Radziah O, Shamshuddin J, Razi IM
    Molecules, 2015 Feb 20;20(3):3628-46.
    PMID: 25710843 DOI: 10.3390/molecules20033628
    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.
    Matched MeSH terms: Fertilizers*
  13. Qureshi S, Mumtaz M, Chong FK, Mukhtar A, Saqib S, Ullah S, et al.
    Chemosphere, 2022 Mar;291(Pt 3):132806.
    PMID: 34780730 DOI: 10.1016/j.chemosphere.2021.132806
    One of the most significant chemical operations in the past century was the Haber-Bosch catalytic synthesis of ammonia, a fertilizer vital to human life. Many catalysts are developed for effective route of ammonia synthesis. The major challenges are to reduce temperature and pressure of process and to improve conversion of reactants produce green ammonia. The present review, briefly discusses the evolution of ammonia synthesis and current advances in nanocatalyst development. There are promising new ammonia synthesis catalysts of different morphology as well as magnetic nanoparticles and nanowires that could replace conventional Fused-Fe and Promoted-Ru catalysts in existing ammonia synthesis plants. These magnetic nanocatalyst could be basis for the production of magnetically induced one-step green ammonia and urea synthesis processes in future.
    Matched MeSH terms: Fertilizers
  14. Rahman MM, Islam AM, Azirun SM, Boyce AN
    ScientificWorldJournal, 2014;2014:490841.
    PMID: 24971378 DOI: 10.1155/2014/490841
    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m(-2) preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m(-2). No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m(-2) achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13-23% higher grain yield than rice after fallow rotation with 8 g N m(-2). The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m(-2) can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m(-2). The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.
    Matched MeSH terms: Fertilizers*
  15. Rahman MM, Azirun SM, Boyce AN
    PLoS One, 2013;8(5):e62941.
    PMID: 23667546 DOI: 10.1371/journal.pone.0062941
    Soil contamination by copper (Cu) and lead (Pb) is a widespread environmental problem. For phytoextraction to be successful and viable in environmental remediation, strategies that can improve plant uptake must be identified. In the present study we investigated the use of nitrogen (N) fertilizer as an efficient way to enhance accumulation of Cu and Pb from contaminated industrial soils into amaranth, Indian mustard and sunflower.
    Matched MeSH terms: Fertilizers
  16. Rashid MI, Athar M, Noor F, Hussain A
    Int J Occup Saf Ergon, 2023 Dec;29(4):1440-1450.
    PMID: 36221985 DOI: 10.1080/10803548.2022.2135282
    Objectives. This article describes the reduction of unsafe behaviors observed at a fertilizer complex by implementation of a behavior-based safety (BBS) program via a behavior observation form developed by a multidisciplinary team. Methods. Six observation categories, i.e., position of people, reaction of people, personal protective equipment (PPE), tools used, operating procedures and housekeeping, are used to monitor safe and unsafe behaviors for a period of 18 months. Results. Safe behaviors increased from 57 to 70% and unsafe behaviors reduced from 40 to 26%. Behaviors of employees working in various sections of fertilizer complex such as ammonia, urea, utility, bagging/shipping and workshop were also observed. Non-compliance with PPE, housekeeping and standard operating procedures was also monitored in individual sections. Non-operational areas including the administration block, housing colony, maintenance workshop, warehouse, fire station and electrical substation were also observed. Among these, the maximum unsafe behaviors are for the housing colony and minimum for the electrical substation. Conclusion. It has been concluded that working on the housing colony, administration block and fire station areas will address 74% unsafe behaviors of non-operational areas. For practical applications, worldwide industries can implement this BBS program to enhance BBS, thus reducing unsafe behaviors and increasing employee morale.
    Matched MeSH terms: Fertilizers
  17. Rathi BS, Kumar PS, Show PL
    J Hazard Mater, 2021 05 05;409:124413.
    PMID: 33183841 DOI: 10.1016/j.jhazmat.2020.124413
    Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.
    Matched MeSH terms: Fertilizers
  18. Raza A, Ejaz S, Saleem MS, Hejnak V, Ahmad F, Ahmed MAA, et al.
    PLoS One, 2021;16(12):e0261468.
    PMID: 34919599 DOI: 10.1371/journal.pone.0261468
    Nitrogen (N) is a macronutrient desired by crop plants in large quantities. However, hiking fertilizer prices need alternative N sources for reducing its requirements through appropriate management practices. Plant growth promoting rhizobacteria (PGPR) are well-known for their role in lowering N requirements of crop plants. This study assessed the impact of PGPR inoculation on growth, allometry and biochemical traits of chili under different N doses. Two PGPR, i.e., Azospirillum 'Er-20' (nitrogen fixing) and Agrobacterium 'Ca-18' (phosphorous solubilizing) were used for inoculation, while control treatment had no PGPR inoculation. Six N doses, i.e., 100, 80, 75, 70, 60 and 50% of the N required by chili were included in the study. Data relating to growth traits, biochemical attributes and yield related traits were recorded. Interaction among N doses and PGPR inoculation significantly altered all growth traits, biochemical attributes and yield related traits. The highest values of the recorded traits were observed for 100% N with and without PGPR inoculation and 75% N with PGPR inoculation. The lowest values of the recorded traits were noted for 50% N without PGPR inoculation. The PGPR inoculation improved the measured traits compared to the traits recorded noted in same N dose without PGPR inoculation. Results revealed that PGPR had the potential to lower 25% N requirement for chili. Therefore, it is recommended that PGPR must be used in chili cultivation to lower N requirements.
    Matched MeSH terms: Fertilizers/analysis
  19. Rebitanim NA, Hanafi MM, Idris AS, Abdullah SNA, Mohidin H, Rebitanim NZ
    Biomed Res Int, 2020;2020:3063710.
    PMID: 32420335 DOI: 10.1155/2020/3063710
    Basal stem rot (BSR) caused by Ganoderma boninense is a major threat to sustainable oil palm production especially in Southeast Asia and has brought economic losses to the oil palm industry around the world. With no definitive cure at present, this study introduces a new fertilizer technology called GanoCare®, as an effort to suppress BSR incidence in oil palm. Experiments were carried out to evaluate the effect of GanoCare® on growth, physiology, and BSR disease suppression using sitting technique in the oil palm nursery stage. A follow-up using similar treatments was carried out in the field to test on severity of Ganoderma using baiting technique under natural condition. Treatments tested were 10 g/month and 30 g/three months given as pretreatment only or continuous treatment. Results showed that GanoCare® increased the height, bulb diameter, leaf area, chlorophyll content, photosynthesis rate, and fresh and dry weight of the leaf, bole, and root of oil palm seedlings in the nursery trial. Seedlings treated with GanoCare® exhibited reduced percentage of disease severity, incidence, and dead seedlings, compared to the control. In nursery and field, lowest percentage of dead seedlings due to Ganoderma was found in seedlings given combination of pretreatment and continuous treatment of 30 g/three months (T4) with 5.56 and 6.67%, while control seedlings significantly marked the maximum percentage of 94.45 and 93.33%. The most successful treatment in both nursery and field was T4 with disease reductions of 77.78 and 82.36%, respectively, proving that nutrients contained in GanoCare® are essential in allowing better development of a strong defense system in the seedlings.
    Matched MeSH terms: Fertilizers*
  20. Rupani PF, Embrandiri A, Ibrahim MH, Shahadat M, Hansen SB, Mansor NNA
    3 Biotech, 2017 Jul;7(3):155.
    PMID: 28623493 DOI: 10.1007/s13205-017-0770-1
    Several technologies are being applied for treatment of palm oil mill wastes. Among them, the biological treatments (vermicomposting) have widely been recognized as one of the most efficient and eco-friendly methods for converting organic waste materials into valuable products. The present study focuses on vermicomposting of acidic palm oil mill effluent (POME) mixed with the palm pressed fibre (PPF) which are found difficult to decompose in the environment. The industrial waste (POME) was vermicomposted using Lumbricus rubellus under laboratory conditions for a period of 45 days. A significant improvement in nitrogen, phosphorus, and potassium content was monitored during vermicomposting process. In addition, the decline in C:N ratio of vermicompost (up to 17.20 ± 0.60) reflects the degree of stabilization of POME-PPF mixture. Different percentages of the vermicompost extract obtained from POME-PPF mixture were also examined for the germination of mung bean (Vigna radiata) seed. The results showed that 75% vermicompost extract demonstrated better performance for the seed germination. On the basis of significant findings, POME-PPF mixture can be successfully used as a feeding material for the earthworms, while on the other hand, it can also be used as a cost-effective fertilizer for the germination and the proper growth of mung bean.
    Matched MeSH terms: Fertilizers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links