Displaying publications 61 - 80 of 584 in total

Abstract:
Sort:
  1. Azlan NSM, Wee SY, Ismail NAH, Nasir HM, Aris AZ
    Environ Toxicol Chem, 2020 10;39(10):1908-1917.
    PMID: 32621623 DOI: 10.1002/etc.4813
    The organophosphorus pesticides (OPPs) commonly used in agricultural practices can pose a risk of potential exposure to humans via food consumption. We describe an analytical method for solid-phase extraction coupled with high-performance liquid chromatography-diode array detector (SPE-HPLC-DAD) for the detection of OPPs (quinalphos, diazinon, and chlorpyrifos) in rice grains. The isolation of targeted residues was initiated with double extraction before SPE-HPLC-DAD, crucially reducing matrix interferences and detecting a wide range of multiple residues in rice grains. Coefficients of 0.9968 to 0.9991 showed a strong linearity, with limits of detection and quantification ranging from 0.36 to 0.68 µg/kg and from 1.20 to 2.28 µg/kg, respectively. High recoveries (80.4-110.3%) were observed at 3 spiking levels (50, 100, and 200 µg/kg), indicating good accuracy. The relative standard deviations of all residues (0.19-8.66%) validated the method precision. Sample analysis of 10 rice grain types (n = 30) available in the Asian market revealed that quinalphos, diazinon, and chlorpyrifos at concentrations of 1.08, 1.11, and 1.79 µg/kg, respectively, remained far below the maximum residue limits (0.01-0.5 mg/kg). However, regular monitoring is necessary to confirm that multiresidue occurrence remains below permissible limits while controlling pests. Environ Toxicol Chem 2020;39:1908-1917. © 2020 SETAC.
    Matched MeSH terms: Oryza/growth & development; Oryza/chemistry*
  2. Azlisham NAF, Johari Y, Mohamad D, Yhaya MF, Mahmood Z
    Proc Inst Mech Eng H, 2023 Dec;237(12):1339-1347.
    PMID: 38014749 DOI: 10.1177/09544119231208222
    This study evaluated the use of urethane dimethacrylate (UDMA) as a base monomer to prepare the newly developed flowable composite (FC) using nanohybrid silica derived from rice husk in comparison to bisphenol A-glycidyl methacrylate (Bis-GMA) on the degree of conversion and physicomechanical properties. The different loadings of base monomer to diluent monomer were used at the ratio of 40:60, 50:50, and 60:40. The bonding analysis confirmed the presence of nanohybrid silica in the newly developed FC. Independent t-test revealed a statistically significant increase in the degree of conversion, depth of cure and Vickers hardness of the UDMA-based FC, while surface roughness showed comparable results between the two base monomers. In conclusion, UDMA-based FC demonstrated superior performance with 60%-65% conversions, a significantly higher depth of cure exceeding 1 mm which complies with the Internal Standard of Organization 4049 (ISO 4049), and a substantial increase in Vickers hardness numbers compared to Bis-GMA-based FC, making UDMA a suitable alternative to Bis-GMA as a base monomer in the formulation of this newly developed FC derived from rice husk.
    Matched MeSH terms: Oryza*
  3. Azman EA, Ismail R, Ninomiya S, Jusop S, Tongkaemkaew U
    PLoS One, 2023;18(9):e0290703.
    PMID: 37713375 DOI: 10.1371/journal.pone.0290703
    Acid sulfate soil characterized by pyrite (FeS2) which produces high acidity (soil pH < 3.5) and release high amount of Al3+ and Fe2+. Application of 4 t ha-1 Ground Magnesium Limestone (GML), is a common rate used for acid sulfate soil by the rice farmers in Malaysia. Therefore, this study was conducted to evaluate the integral effect of ground magnesium limestone (GML) and calcium silicate and to determine the optimal combination on acid sulfate soils in Malaysia. The acid sulfate soils were incubated under the submerged condition for 120 days with GML (0, 2, 4, 6 t ha-1) in combination with calcium silicate (0, 1, 2, 3 t ha-1) arranged in a Completely Randomized Design (CRD). The soil was sampled after 30, 60, 90 and 120 days of incubation and analyzed for soil pH, exchangeable Al, Ca, Mg, K and available Si. A total of 2 out of 16 combinations met the desired soil requirement for rice cultivation. The desired chemical soil characteristics for rice cultivation are soil pH > 4, exchangeable Al < 2 cmolc Kg-1, exchangeable Ca > 2 cmolc kg-1, exchangeable Mg > 1 cmolc kg-1 and Si content > 43 mg kg-1. The combinations are i) 2 t ha-1 calcium silicate + 2 t ha-1 GML, and ii) 3 t ha-1 calcium silicate + 2 t ha-1 GML, respectively. These combination rates met the desired requirement of soil chemical characteristics for rice cultivation. Soil acidity was reduced by a gradual release of Ca2+ and SiO32- from calcium silicate continuously filling the exchange sites and reducing the potential of extra (free) H+ availability in the soil system. Combination of calcium silicate and GML, shows the ameliorative effect with; i) release of Ca, ii) binding of Al3+ making it inert Al-hydroxides and, iii) bind H+ to produce water molecules.
    Matched MeSH terms: Oryza*
  4. Azmi N, Kamarudin LM, Zakaria A, Ndzi DL, Rahiman MHF, Zakaria SMMS, et al.
    Sensors (Basel), 2021 Mar 08;21(5).
    PMID: 33800174 DOI: 10.3390/s21051875
    Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors' knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
    Matched MeSH terms: Oryza
  5. Azmi NH, Ismail N, Imam MU, Ismail M
    PMID: 23866310 DOI: 10.1186/1472-6882-13-177
    There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer's disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD.
    Matched MeSH terms: Oryza/chemistry*
  6. Azmi NH, Ismail M, Ismail N, Imam MU, Alitheen NB, Abdullah MA
    PMID: 26858770 DOI: 10.1155/2015/153684
    The pathogenesis of Alzheimer's disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ) protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR) on the morphology of Aβ(1-42) were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42) suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.
    Matched MeSH terms: Oryza
  7. Aznan A, Gonzalez Viejo C, Pang A, Fuentes S
    Sensors (Basel), 2021 Sep 23;21(19).
    PMID: 34640673 DOI: 10.3390/s21196354
    Rice quality assessment is essential for meeting high-quality standards and consumer demands. However, challenges remain in developing cost-effective and rapid techniques to assess commercial rice grain quality traits. This paper presents the application of computer vision (CV) and machine learning (ML) to classify commercial rice samples based on dimensionless morphometric parameters and color parameters extracted using CV algorithms from digital images obtained from a smartphone camera. The artificial neural network (ANN) model was developed using nine morpho-colorimetric parameters to classify rice samples into 15 commercial rice types. Furthermore, the ANN models were deployed and evaluated on a different imaging system to simulate their practical applications under different conditions. Results showed that the best classification accuracy was obtained using the Bayesian Regularization (BR) algorithm of the ANN with ten hidden neurons at 91.6% (MSE = <0.01) and 88.5% (MSE = 0.01) for the training and testing stages, respectively, with an overall accuracy of 90.7% (Model 2). Deployment also showed high accuracy (93.9%) in the classification of the rice samples. The adoption by the industry of rapid, reliable, and accurate methods, such as those presented here, may allow the incorporation of different morpho-colorimetric traits in rice with consumer perception studies.
    Matched MeSH terms: Oryza*
  8. Aznan A, Gonzalez Viejo C, Pang A, Fuentes S
    Sensors (Basel), 2022 Nov 09;22(22).
    PMID: 36433249 DOI: 10.3390/s22228655
    Rice fraud is one of the common threats to the rice industry. Conventional methods to detect rice adulteration are costly, time-consuming, and tedious. This study proposes the quantitative prediction of rice adulteration levels measured through the packaging using a handheld near-infrared (NIR) spectrometer and electronic nose (e-nose) sensors measuring directly on samples and paired with machine learning (ML) algorithms. For these purposes, the samples were prepared by mixing rice at different ratios from 0% to 100% with a 10% increment based on the rice's weight, consisting of (i) rice from different origins, (ii) premium with regular rice, (iii) aromatic with non-aromatic, and (iv) organic with non-organic rice. Multivariate data analysis was used to explore the sample distribution and its relationship with the e-nose sensors for parameter engineering before ML modeling. Artificial neural network (ANN) algorithms were used to predict the adulteration levels of the rice samples using the e-nose sensors and NIR absorbances readings as inputs. Results showed that both sensing devices could detect rice adulteration at different mixing ratios with high correlation coefficients through direct (e-nose; R = 0.94-0.98) and non-invasive measurement through the packaging (NIR; R = 0.95-0.98). The proposed method uses low-cost, rapid, and portable sensing devices coupled with ML that have shown to be reliable and accurate to increase the efficiency of rice fraud detection through the rice production chain.
    Matched MeSH terms: Oryza*
  9. Aznan A, Gonzalez Viejo C, Pang A, Fuentes S
    Food Res Int, 2023 Oct;172:113105.
    PMID: 37689840 DOI: 10.1016/j.foodres.2023.113105
    The increase in rice consumption and demand for high-quality rice is impacted by the growth of socioeconomic status in developing countries and consumer awareness of the health benefits of rice consumption. The latter aspects drive the need for rapid, low-cost, and reliable quality assessment methods to produce high-quality rice according to consumer preference. This is important to ensure the sustainability of the rice value chain and, therefore, accelerate the rice industry toward digital agriculture. This review article focuses on the measurements of the physicochemical and sensory quality of rice, including new and emerging technology advances, particularly in the development of low-cost, non-destructive, and rapid digital sensing techniques to assess rice quality traits and consumer perceptions. In addition, the prospects for potential applications of emerging technologies (i.e., sensors, computer vision, machine learning, and artificial intelligence) to assess rice quality and consumer preferences are discussed. The integration of these technologies shows promising potential in the forthcoming to be adopted by the rice industry to assess rice quality traits and consumer preferences at a lower cost, shorter time, and more objectively compared to the traditional approaches.
    Matched MeSH terms: Oryza*
  10. Azrina, A., Maznah, I., Azizah, A.H.
    MyJurnal
    The level of total lipid and oryzanol content, an important antioxidant compound in locally produced bran was investigated. Total lipid in rice bran was extracted using 3:2 chloroform:methanol mixture yielding 16.4% fat. Oryzanol content was determined without saponification using a reverse-phase HPLC. Four fractions of oryzanol were successfully separated and quantitated. The 4 isomers were cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campestryl ferulate and mixtures of β–sitosteryl ferulate and cycloartanyl ferulate. The oryzanol content of local mixed varieties ranged from 23.7–43.0 mg g-1. The oryzanol concentration may depend on factors such as plant varieties, processing methods employed, extracting solvent used and ratio of extracting solvent to bran as well as extracting solvent temperatures. This study showed the potential of oryzanol extract from rice bran as a source of antioxidant.
    Matched MeSH terms: Oryza
  11. BROWNE EM
    Med J Malaya, 1954 Mar;8(3):260-2.
    PMID: 13164696
    Matched MeSH terms: Oryza*
  12. Babamale OA, Opeyemi OA, Bukky AA, Musleem AI, Kelani EO, Okhian BJ, et al.
    Malays J Med Sci, 2020 May;27(3):105-116.
    PMID: 32684811 MyJurnal DOI: 10.21315/mjms2020.27.3.11
    Background: The connection between malaria-associated morbidities and farming activities has not been succinctly reported. This study aimed to address the connectivity between farming activities and malaria transmission.

    Methods: The study took place in the agricultural setting of Nigeria Edu local government (9° N, 4.9° E) between March 2016 and December 2018. A pre-tested structured questionnaire was administered to obtain information on their occupation and malaria infection. Infection status was confirmed with blood film and microscopic diagnosis of Plasmodium falciparum was based on the presence of ring form or any other blood stages. Individuals who are either critically ill or lived in the community less than 3 months were excluded from the study.

    Results: Of the 341 volunteers, 58.1% (52.9% in Shigo and 61.4% in Sista) were infected (parasitaemia density of 1243.7 parasites/μL blood). The prevalence and intensity of infection were higher among farmers (71.3%, 1922.9 parasites/μL blood, P = 0.005), particularly among rice farmers (2991.6 parasites/μL blood) compared to non-farmer participants. The occurrence and parasite density follow the same pattern for sex and age (P < 0.05). Children in the age of 6 to 10 years (AOR: 2.168, CI: 1.63-2.19) and ≥ 11 years (AOR: 3.750, CI: 2.85-3.80) groups were two-and four-fold more likely to be infected with malaria. The analysis revealed that the proximity of bush and stagnant water to the farmer (73.9%, AOR: 3.242, CI: 2.57-3.61) and non-farmer (38.1%, AOR: 1.362, CI: 1.25-1.41) habitations influence malaria transmission.

    Conclusion: This study highlights farming activities as a risk factor for malaria infection in agro-communities. Integrated malaria control measures in agricultural communities should therefore include water and environmental management practices.

    Matched MeSH terms: Oryza
  13. Baharuddin MR, Sahid IB, Noor MA, Sulaiman N, Othman F
    J Environ Sci Health B, 2011;46(7):600-7.
    PMID: 21749249 DOI: 10.1080/03601234.2011.589309
    A cross-section analytical study was conducted to evaluate the risk of pesticide exposure to those applying the Class II pesticides 2,4-D and paraquat in the paddy-growing areas of Kerian, Perak, Malaysia. It investigated the influence of weather on exposure as well as documented health problems commonly related to pesticide exposure. Potential inhalation and dermal exposure for 140 paddy farmers (handlers of pesticides) were assessed. Results showed that while temperature and humidity affected exposure, windspeed had the strongest impact on pesticide exposure via inhalation. However, the degree of exposure to both herbicides via inhalation was below the permissible exposure limits set by United States National Institute of Occupational Safety and Health (NIOSH). Dermal Exposure Assessment Method (DREAM) readings showed that dermal exposure with manual spraying ranged from moderate to high. With motorized sprayers, however, the level of dermal exposure ranged from low to moderate. Dermal exposure was significantly negatively correlated with the usage of protective clothing. Various types of deleterious health effects were detected among users of manual knapsack sprayers. Long-term spraying activities were positively correlated with increasing levels of the gamma-glutamyl transpeptidase (GGT) liver enzyme. The type of spraying equipment, usage of proper protective clothing and adherence to correct spraying practices were found to be the most important factors influencing the degree of pesticide exposure among those applying pesticides.
    Matched MeSH terms: Oryza*
  14. Balan WS, Janaun J, Chung CH, Semilin V, Zhu Z, Haywood SK, et al.
    J Hazard Mater, 2021 02 15;404(Pt B):124092.
    PMID: 33091694 DOI: 10.1016/j.jhazmat.2020.124092
    In this study, carbon-silica based acid catalysts derived from rice husks (RH) were successfully synthesised using microwave (MW) technology. The results showed that MW sulphonation produced Sulphur (S) content of 17.2-18.5 times higher than in raw RH. Fourier-transform Infrared Spectroscopy (FTIR) showed peak at 1035 cm-1 which corresponded to O˭S˭O stretching of sulphonic (-SO3H) group. XRD showed sulfonated RH catalysts (SRHCs) have amorphous structure, and through SEM, broadening of the RH voids and also formation of pores is observed. RH600 had the highest surface area of 14.52 m2/g. SRHCs showed high catalytic activity for esterification of oleic acid with methanol with RH600 had the highest initial formation rate (6.33 mmolL-1min-1) and yield (97%). The reusability of the catalyst showed gradually dropped yield of product for every recycle, which might be due to leaching of -SO3H. Finally, esterification of oil recovered from palm oil mill effluent (POME) with methanol achieved a conversion of 87.3% free fatty acids (FFA) into fatty acid methyl esters (FAME).
    Matched MeSH terms: Oryza*
  15. Balmas V, Corda P, Marcello A, Bottalico A
    Plant Dis, 2000 Jul;84(7):807.
    PMID: 30832117 DOI: 10.1094/PDIS.2000.84.7.807B
    Fusarium nygamai Burgess & Trimboli was first described in 1986 in Australia (1) and subsequently reported in Africa, China, Malaysia, Thailand, Puerto Rico, and the United States. F. nygamai has been reported on sorghum, millet, bean, cotton, and in soil where it exists as a colonizer of living plants or plant debris. F. nygamai was also reported as a pathogen of the witch-weed Striga hermonthica (Del.) Benth. To our knowledge, no reports are available on its pathogenicity on crops of economic importance. In a survey of species of Fusarium causing seedling blight and foot rot of rice (Oryza sativa L.) carried out in Sardinia (Oristano, S. Lucia), F. nygamai was isolated in association with other Fusarium species-F. moniliforme, F. proliferatum, F. oxysporum, F. solani, F. compactum, and F. equiseti. Infected seedlings exhibited a reddish brown cortical discoloration, which was more intense in older plants. The identification of F. nygamai was based on monoconidial cultures grown on carnation leaf-piece agar (CLA) (2). The shape of macroconidia, the formation of microconidia in short chains and false heads, and the presence of chlamydospores were used as the criteria for identification. Two pathogenicity tests comparing one isolate of F. nygamai with one isolate of F. moniliforme were conducted on rice cv. Arborio sown in artificially infested soil in a greenhouse at 22 to 25°C. The inoculum was prepared by growing both Fusarium species in cornmeal sand (1:30 wt/wt) at 25°C for 3 weeks. This inoculum was added to soil at 20 g per 500 ml of soil. Pre- and post-emergence damping-off was assessed. Both F. nygamai and F. moniliforme reduced the emergence of seedlings (33 to 59% and 25 to 50%, respectively, compared to uninoculated control). After 25 days, the seedlings in infested soil exhibited a browning of the basal leaf sheaths, which progressed to a leaf and stem necrosis. Foot rot symptoms caused by F. nygamai and F. moniliforme were similar, but seedlings infected by F. nygamai exhibited a more intense browning on the stem base and a significant reduction of plant height at the end of the experiment. Either F. nygamai or F. moniliforme were consistently isolated from symptomatic tissue from the respective treatments. References: (1) L. W. Burgess and D. Trimboli. Mycologia 78:223,1986. (2) N. L. Fisher et al. Phytopathology 72:151,1982.
    Matched MeSH terms: Oryza
  16. Berahim Z, Dorairaj D, Omar MH, Saud HM, Ismail MR
    Sci Rep, 2021 05 21;11(1):10669.
    PMID: 34021188 DOI: 10.1038/s41598-021-89812-1
    Rice which belongs to the grass family is vulnerable to water stress. As water resources get limited, the productivity of rice is affected especially in granaries located at drought prone areas. It would be even worse in granaries located in drought prone areas such as KADA that receives the lowest rainfall in Malaysia. Spermine (SPM), a polyamine compound that is found ubiquitiosly in plants is involved in adaptation of biotic and abiotic stresses. The effect of SPM on growth,grain filling and yield of rice at three main granaries namely, IADA BLS, MADA and KADA representing unlimited water, limited water and water stress conditions respectively, were tested during the main season. Additinally, the growth enhancer was also tested during off season at KADA. Spermine increased plant height, number of tillers per hill and chlorophyll content in all three granaries. Application of SPM improved yield by 38, 29 and 20% in MADA, KADA and IADA BLS, respectively. Harvest index showed 2.6, 6 and 16% increases at IADA BLS, KADA and MADA, respectively in SPM treated plants as compared to untreated. Except for KADA which showed a reduction in yield at 2.54 tha-1, SPM improved yield at MADA, 7.21 tha-1 and IADA BLS, 9.13 tha-1 as compared to the average yield at these respective granaries. In the second trial, SPM increased the yield to 7.0 and 6.4 tha-1 during main and off seasons, respectively, indicating that it was significantly higher than control and the average yield reported by KADA. The yield of SPM treatments improved by 25 and 33% with an increment of farmer's income at main and off seasons, respectively. Stomatal width was significantly higher than control at 11.89 µm. In conclusion, irrespective of the tested granaries and rice variety, spermine mediated plots displayed increment in grain yield.
    Matched MeSH terms: Oryza/growth & development*; Oryza/metabolism*
  17. Bhavadharini B, Mohan V, Dehghan M, Rangarajan S, Swaminathan S, Rosengren A, et al.
    Diabetes Care, 2020 11;43(11):2643-2650.
    PMID: 32873587 DOI: 10.2337/dc19-2335
    OBJECTIVE: Previous prospective studies on the association of white rice intake with incident diabetes have shown contradictory results but were conducted in single countries and predominantly in Asia. We report on the association of white rice with risk of diabetes in the multinational Prospective Urban Rural Epidemiology (PURE) study.

    RESEARCH DESIGN AND METHODS: Data on 132,373 individuals aged 35-70 years from 21 countries were analyzed. White rice consumption (cooked) was categorized as <150, ≥150 to <300, ≥300 to <450, and ≥450 g/day, based on one cup of cooked rice = 150 g. The primary outcome was incident diabetes. Hazard ratios (HRs) were calculated using a multivariable Cox frailty model.

    RESULTS: During a mean follow-up period of 9.5 years, 6,129 individuals without baseline diabetes developed incident diabetes. In the overall cohort, higher intake of white rice (≥450 g/day compared with <150 g/day) was associated with increased risk of diabetes (HR 1.20; 95% CI 1.02-1.40; P for trend = 0.003). However, the highest risk was seen in South Asia (HR 1.61; 95% CI 1.13-2.30; P for trend = 0.02), followed by other regions of the world (which included South East Asia, Middle East, South America, North America, Europe, and Africa) (HR 1.41; 95% CI 1.08-1.86; P for trend = 0.01), while in China there was no significant association (HR 1.04; 95% CI 0.77-1.40; P for trend = 0.38).

    CONCLUSIONS: Higher consumption of white rice is associated with an increased risk of incident diabetes with the strongest association being observed in South Asia, while in other regions, a modest, nonsignificant association was seen.

    Matched MeSH terms: Oryza/adverse effects*
  18. Biswash MR, Sharmin M, Rahman NMF, Farhat T, Siddique MA
    Sains Malaysiana, 2016;45:706-716.
    A field experiment was conducted from June to December, 2013 to study the genetic diversity of 15 modern T. Aman rice
    varieties of Bangladesh (Oryza sativa L.) with a view to assess the superior genotype in future hybridization program
    for developing new rice varieties that is suitable for the target environment. Analysis of variance for each trait showed
    significant differences among the varieties. High heritability associated with high genetic advance in percent of mean
    was observed for plant height and thousand seed weight which indicated that selection for these characters would be
    effective. Hence, thrust has to be given for these characters in future breeding program to improve the yield trait in rice.
    Multivariate analysis based on 10 agronomic characters indicated that the 15 varieties were grouped into four distant
    clusters. The inter cluster distance was maximum between cluster II and cluster IV. The highest intra-cluster distance was
    found in cluster IV. Based on positive value of vector 1 and vector 2, plant height and 1000-seed weight had maximum
    contribution towards genetic divergence. From the results, it can be concluded that the varieties BRRI dhan40, BRRI
    dhan44, BRRI dhan46, BRRI dhan49 and BINA dhan7 may be selected for future hybridization program.
    Matched MeSH terms: Oryza
  19. Bong LJ, Neoh KB, Lee CY, Jaal Z
    Environ Entomol, 2013 Oct;42(5):1013-9.
    PMID: 24331610 DOI: 10.1603/EN13054
    Paederus fuscipes Curtis, a dermatitis linearis causing agent, has received increasing attention from the public, as it poses a serious health threat after mass dispersal into human-dominated areas. Preventive measures against this insect have so far been unsuccessful partly because of limited knowledge about its dispersal pattern. In this study, the dispersal activity of P. fuscipes was studied at infestation-prone residential buildings in Mainland Penang, Malaysia. The dispersal activity of P. fuscipes showed two peaks, that is, from February to April and August to October. Overall, there was no statistical significant correlation between dispersal and climatic parameters, that is, temperature, relative humidity, total rainfall, at all sampling localities. However, dispersal was primarily caused by human activities in rice fields, which accounted for >60% of the variability in dispersal. Particularly, rice harvesting, including straw burning, and cultivation were the major factors triggering P. fuscipes dispersal. These activities presumably disrupted the habitat and normal activities of P. fuscipes and rendered the rice fields unfavorable refuges. In addition, the beetles might also face food shortages after the disturbance of their prey base in the crop fields. The current study provides a predictive tool of P. fuscipes flight periods to ensure insecticide residual spraying is timed in the infestation-prone residential areas before the onset of infestation.
    Matched MeSH terms: Oryza/growth & development*
  20. Boon YH, Mohamad Zain NN, Mohamad S, Osman H, Raoov M
    Food Chem, 2019 Apr 25;278:322-332.
    PMID: 30583379 DOI: 10.1016/j.foodchem.2018.10.145
    Poly(β-cyclodextrin functionalized ionic liquid) immobilized magnetic nanoparticles (Fe3O4@βCD-Vinyl-TDI) as sorbent in magnetic µ-SPE was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in rice samples coupled with gas chromatographic-flame ionization detector (GC-FID). The nanocomposite was characterized by various tools and significant parameters that affected the extraction efficiency of PAHs were investigated. The calibration curves were linear for the concentration ranging between 0.1 and 500 μg kg-1 with correlation determinations (R2) from 0.9970 to 0.9982 for all analytes. Detection limits ranged at 0.01-0.18 μg kg-1 in real matrix. The RSD values ranged at 2.95%-5.34% (intra-day) and 4.37%-7.05% (inter-day) precision for six varied days. The sorbents showed satisfactory reproducibility in 2.9% to 9.9% range and acceptable recovery values at 80.4%-112.4% were obtained for the real sample analysis. The optimized method was successfully applied to access content safety of selected PAHs for 24 kinds of commercial rice available in Malaysia.
    Matched MeSH terms: Oryza/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links