Displaying publications 61 - 80 of 505 in total

Abstract:
Sort:
  1. Abdulwanis Mohamed Z, Mohamed Eliaser E, Jaafaru MS, Nordin N, Ioannides C, Abdull Razis AF
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824120 DOI: 10.3390/molecules25163724
    Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders.
    Matched MeSH terms: Plant Leaves/chemistry*
  2. Azhar MAM, Salleh WMNHW, Khamis S
    Z Naturforsch C J Biosci, 2020 Jul 28;75(7-8):297-301.
    PMID: 32452825 DOI: 10.1515/znc-2020-0079
    Cryptocarya species are mainly distributed in Africa, Asia, Australia and South America, widely used in traditional medicines for the treatment of skin infections and diarrhea. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three Cryptocarya species (Cryptocarya impressa, Cryptocarya infectoria, and Cryptocarya rugulosa) essential oils from Malaysia. The chemical composition of these essential oils was fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 51 components were identified in C. impressa, C. infectoria, and C. rugulosa essential oils representing 91.6, 91.4, and 83.0% of the total oil, respectively. The high percentages of α-cadinol (40.7%) and 1,10-di-epi-cubenol (13.4%) were found in C. impressa oil. β-Caryophyllene (25.4%) and bicyclogermacrene (15.2%) were predominate in C. infectoria oil. While in C. rugulosa oil, bicyclogermacrene (15.6%), δ-cadinene (13.8%), and α-copaene (12.3%) were predominate. To the best of our knowledge, there is no report on the essential oil composition of these three species.
    Matched MeSH terms: Plant Leaves/chemistry
  3. Ahmad MN, Karim NU, Normaya E, Mat Piah B, Iqbal A, Ku Bulat KH
    Sci Rep, 2020 06 12;10(1):9566.
    PMID: 32533034 DOI: 10.1038/s41598-020-66488-7
    Lipid oxidation and microbial contamination are the major factors contributing to food deterioration. Food additives like antioxidants and antibacterials can prevent food spoilage by delaying oxidation and preventing the growth of bacteria. Artocarpus altilis leaves exhibited biological properties that suggested its use as a new source of natural antioxidant and antimicrobial. Supercritical fluid extraction (SFE) was used to optimize the extraction of bioactive compounds from the leaves using response surface methodology (yield and antioxidant activity). The optimum SFE conditions were 50.5 °C temperature, 3784 psi pressure and 52 min extraction time. Verification test results (Tukey's test) showed that no significant difference between the expected and experimental DPPH activity and yield value (99%) were found. Gas-chromatography -mass spectrometry (GC-MS) analysis revealed three major bioactive compounds existed in A. altilis extract. The extract demonstrated antioxidant and antibacterial properties with 2,3-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing ability of plasma (FRAP), hydroxyl radical scavenging activity, tyrosinase mushrrom inhibition of 41.5%, 8.15 ± 1.31 (µg of ascorbic acid equivalents), 32%, 37% and inhibition zone diameter of 0.766 ± 0.06 cm (B. cereus) and 1.27 ± 0.12 cm (E. coli). Conductor like screening model for real solvents (COSMO RS) was performed to explain the extraction mechanism of the major bioactive compounds during SFE. Molecular electrostatic potential (MEP) shows the probability site of nucleophilic and electrophilic attack during bacterial inhibition. Based on molecular docking study, non-covalent interactions are the main interaction occurring between the major bioactive compounds and bacteria (antibacterial inhibition).
    Matched MeSH terms: Plant Leaves/chemistry
  4. Lee JJ, Saiful Yazan L, Kassim NK, Che Abdullah CA, Esa N, Lim PC, et al.
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512700 DOI: 10.3390/molecules25112610
    Christia vespertilionis, commonly known as 'Daun Rerama', has recently garnered attention from numerous sources in Malaysia as an alternative treatment. Its herbal decoction was believed to show anti-inflammatory and anti-cancer effects. The present study investigated the cytotoxicity of the extract of root and leaf of C. vespertilionis. The plant parts were successively extracted using the solvent maceration method. The most active extract was further fractionated to afford F1-F8. The cytotoxic effects were determined using MTT assay against human breast carcinoma cell lines (MCF-7 and MDA-MB-231). The total phenolic content (TPC) of the extracts were determined. The antioxidant properties of the extract were also studied using DPPH and β-carotene bleaching assays. The ethyl acetate root extract demonstrated selective cytotoxicity especially against MDA-MB-231 with the highest TPC and antioxidant properties compared to others (p < 0.05). The TPC and antioxidant results suggest the contribution of phenolic compounds toward its antioxidant strength leading to significant cytotoxicity. F3 showed potent cytotoxic effects while F4 showed better antioxidative strength compared to others (p < 0.05). Qualitative phytochemical screening of the most active fraction, F3, suggested the presence of flavonoids, coumarins and quinones to be responsible toward the cytotoxicity. The study showed the root extracts of C. vespertilionis to possess notable anti-breast cancer effects.
    Matched MeSH terms: Plant Leaves/chemistry*
  5. Chan EWC, Wong SK, Tangah J, Inoue T, Chan HT
    J Integr Med, 2020 May;18(3):189-195.
    PMID: 32115383 DOI: 10.1016/j.joim.2020.02.006
    Flavonoids are by far the most dominant class of phenolic compounds isolated from Morus alba leaves (MAL). Other classes of compounds are benzofurans, phenolic acids, alkaloids, coumarins, chalcones and stilbenes. Major flavonoids are kuwanons, moracinflavans, moragrols and morkotins. Other major compounds include moracins (benzofurans), caffeoylquinic acids (phenolic acids) and morachalcones (chalcones). Research on the anticancer properties of MAL entailed in vitro and in vivo cytotoxicity of extracts or isolated compounds. Flavonoids, benzofurans, chalcones and alkaloids are classes of compounds from MAL that have been found to be cytotoxic towards human cancer cell lines. Further studies on the phytochemistry and anticancer of MAL are suggested. Sources of information were PubMed, PubMed Central, ScienceDirect, Google, Google Scholar, J-Stage, PubChem and China National Knowledge Infrastructure.
    Matched MeSH terms: Plant Leaves/chemistry
  6. Yap JY, Hii CL, Ong SP, Lim KH, Abas F, Pin KY
    J Sci Food Agric, 2020 May;100(7):2932-2937.
    PMID: 32031257 DOI: 10.1002/jsfa.10320
    BACKGROUND: Papaya is widely grown in Malaysia and normally only the fruits are consumed. Other parts of the plant such as leaves, roots, bark, peel, seeds and pulp are also known to have medicinal properties and have been used to treat various diseases. Papaya leaves also contain flavonoids, alkaloids phenolic compounds and cynogenetic compounds, and are also reported to be able to treat dengue fever.

    RESULTS: Studies were carried out on drying of papaya leaves using hot air (60, 70 and 80 °C), shade and freeze drying. Effective diffusivities were estimated ranging from 2.09 × 10-12 to 2.18 × 10-12 m2 s-1 from hot air drying, which are within the order of magnitudes reported for most agricultural and food products. The activation energy to initiate drying showed a relatively low value (2.11 kJ mol-1 ) as a result of the thin leave layer that eased moisture diffusion. In terms of total polyphenols content and antioxidant activities, freeze-dried sample showed a significantly higher (P 

    Matched MeSH terms: Plant Leaves/chemistry
  7. Adebayo IA, Arsad H, Gagman HA, Ismail NZ, Samian MR
    Asian Pac J Cancer Prev, 2020 May 01;21(5):1247-1252.
    PMID: 32458629 DOI: 10.31557/APJCP.2020.21.5.1247
    BACKGROUND: Recently, nanoparticle synthesis by eco-friendly methods has received tremendous attention due to the method advantages and also because of the application of the nanoparticles in cancer research. Therefore, in this study, we synthesized silver nanoparticles from Detarium microcarpum leaf phytochemicals and evaluated its inhibitory effect on pancreatic and cervical cancer cells.

    MATERIALS AND METHODS: Silver nanoparticles (dAgNps) were synthesized by reacting phytochemicals of D. microcarpum leaves with silver nitrate for 12 hours. Cell viability assay was carried out to investigate the cytotoxic effect of dAgNps on HeLa and PANC-1 cells.

    RESULTS: Scanning electron microscopy (SEM) and transmission electron microscopy(TEM) results revealed the average sizes of dAgNps are 81 nm and 84 nm respectively. The x-ray diffraction (XRD) pattern of dAgNps was similar to that of face centered cubic(fcc) structure of silver as reported by joint committee on powder diffraction standards (JCPDS) and fourier-transform infrared spectroscopy (FTIR) analysis showed that some phytochemicals of D. microcarpum such as polyphenols and flavonoids were likely involved in the reduction of Ag+ to form nanoparticles. Finally, cell viability assay revealed dAgNps inhibited PANC-1 and HeLa cell proliferations with IC50 values of 84 and 31.5 µg/ml respectively.

    CONCLUSION: In conclusion, the synthesized nanoparticles from D. microcarpum leaves (dAgNps) have inhibitory effect on pancreatic and cervical cancer cells.

    Matched MeSH terms: Plant Leaves/chemistry*
  8. Wolswijk G, Satyanarayana B, Dung LQ, Siau YF, Ali ANB, Saliu IS, et al.
    J Hazard Mater, 2020 04 05;387:121665.
    PMID: 31784131 DOI: 10.1016/j.jhazmat.2019.121665
    Charcoal production activities at the Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia have a potential to emit volatile compounds such as Hg back into the ambient environment, raising concerns on the public health and safety. The present study was aimed at analyzing Hg concentration from different plant/animal tissues and sediment samples (in total 786 samples) to understand clearly the Hg distribution at the MMFR. Leaves of Rhizophora spp. showed higher Hg concentration with an increasing trend from young, to mature, to senescent and decomposing stages, which was possibly due to accumulation of Hg over time. The low Hg concentration in Rhizophora roots and bark suggests a limited absorption from the sediments and a meagre accumulation/partitioning by the plant tissue, respectively. In the case of mangrove cockles the concentration of Hg was lower than the permissible limits for seafood consumption. Although the mangrove gastropod - Cassidula aurisfelis Bruguière had rather elevated Hg in the muscle tissue, it is still less than the environmental safely limit. Beside the chances of atmospheric deposition for Hg, the sediment samples were found to be unpolluted in nature, indicating that in general the MMFR is still safe in terms of Hg pollution.
    Matched MeSH terms: Plant Leaves/chemistry
  9. Sulaiman N, Chee Beng Y, Ahmad Bustamam FK, Khairuddin NSK, Muhamad H
    Drug Test Anal, 2020 Apr;12(4):504-513.
    PMID: 31898859 DOI: 10.1002/dta.2760
    Cypermethrin is a pyrethroid insecticide commonly used to control bagworm infestation in oil palm plantations. It is applied through spraying onto the leaves where the bagworms reside. This article reports the fate of cypermethrin used in a Malaysian oil palm plantation during a typical dry season through the analysis of cypermethrin residue in environmental and palm oil samples collected from a supervised field trial. Residues of cypermethrin were not detected in the soil samples collected at different depths, water samples collected at different points in the experimental plots, and oil samples extracted from fresh fruit bunches (FFB) harvested from each plot for both single and double dosages of treatment throughout the study interval. Analysis of leaf samples, however, revealed that cypermethrin residue was detected for both pesticide treatments up to day 2 after cypermethrin application.
    Matched MeSH terms: Plant Leaves/chemistry
  10. Singh D, Yeou Chear NJ, Narayanan S, Leon F, Sharma A, McCurdy CR, et al.
    J Ethnopharmacol, 2020 Mar 01;249:112462.
    PMID: 31816368 DOI: 10.1016/j.jep.2019.112462
    ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa) is a native medicinal plant of Southeast Asia widely reported to be used to reduce opioid dependence and mitigate withdrawal symptoms. There is also evidence to suggest that opioid poly-drug users were using kratom to abstain from opioids.

    AIM OF THE STUDY: To determine the patterns and reasons for kratom use among current and former opioid poly-drug users in Malaysia.

    MATERIALS AND METHODS: A total of 204 opioid poly-drug users (142 current users vs. 62 former users) with current kratom use history were enrolled into this cross-sectional study. A validated UPLC-MS/MS method was used to evaluate the alkaloid content of a kratom street sample.

    RESULTS: Results from Chi-square analysis showed that there were no significant differences in demographic characteristics between current and former opioid poly-drug users except with respect to marital status. Current users had higher odds of being single (OR: 2.2: 95%CI: 1.21-4.11; p 

    Matched MeSH terms: Plant Leaves/chemistry
  11. Al Nasr IS
    Trop Biomed, 2020 Mar 01;37(1):15-23.
    PMID: 33612714
    The organisms of the genus Leishmania are flagellated protozoan parasites and are the causative agents of leishmaniasis. This disease is a major health problem, especially in tropical countries. Currently, cutaneous leishmaniasis is treated by chemotherapy using pentavalent antimonials, but these drugs have serious organo-toxicity, drug resistance on several occasions, and low efficiency in controlling the infection. The present work is carried out to evaluate the in vitro antileishmanial activity of methanolic extracts and phytochemical fractions of two plants ethnobotanically used against leishmaniasis and skin infection, Calotropis procera and Rhazya stricta leaves against Leishmania major promastigote and amastigote stages and cytotoxicity against the Vero cell line. The leaves of C. procera and R. stricta were extracted with methanol and fractionated by petroleum ether, chloroform, ethyl acetate, n-butanol, and water. The methanolic extracts of the leaves of C. procera and R. stricta exhibited antileishmanial activity against L. major promastigotes with IC50 values of 66.8 and 42.4 µg mL-1, respectively. While their CC50 2.3 and 298 µg mL-1 and their SI 0.03 and 7.03 respectively. However, the fractionations of the methanolic extract of C. procera leaves revealed antiparasitic activity against both L. major promastigote and amastigote stages in vitro, which significantly increased with polarity with the exception of n-butanol. Hence the best activity was revealed by the water fraction (IC50 of 26.3 and 29.0 µg mL-1) for the two stages. In conclusion, further phytochemical investigation should be performed for the C. procera water extract in terms of antileishmanial active ingredient isolation that may enhance the possibility of avoiding toxic substances and overcome the low SI (1.1 and 1.01).
    Matched MeSH terms: Plant Leaves/chemistry
  12. Zakaria ZA, Roosli RAJ, Marmaya NH, Omar MH, Basir R, Somchit MN
    Biomolecules, 2020 02 12;10(2).
    PMID: 32059475 DOI: 10.3390/biom10020280
    Dicranopteris linearis leaf has been reported to exert antinociceptive activity. The present study elucidates the possible mechanisms of antinociception modulated by the methanol extract of D. linearis leaves (MEDL) using various mouse models. The extract (25, 150, and 300 mg/kg) was administered orally to mice for 30 min priot to subjection to the acetic acid-induced writhing-, hot plate- or formalin-test to establish the antinociceptive profile of MEDL. The most effective dose was then used in the elucidation of possible mechanisms of action stage. The extract was also subjected to the phytochemical analyses. The results confirmed that MEDL exerted significant (p < 0.05) antinociceptive activity in those pain models as well as the capsaicin-, glutamate-, bradykinin- and phorbol 12-myristate 13-acetate (PMA)-induced paw licking model. Pretreatment with naloxone (a non-selective opioid antagonist) significantly (p < 0.05) reversed MEDL effect on thermal nociception. Only l-arginine (a nitric oxide (NO) donor) but not N(ω)-nitro-l-arginine methyl ester (l-NAME; a NO inhibitor) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; a specific soluble guanylyl cyclase inhibitor) significantly (p < 0.05) modified MEDL effect on the writhing test. Several polyphenolics and volatile antinociceptive compounds were detected in MEDL. In conclusion, MEDL exerted the opioid/NO-mediated antinociceptive activity, thus, justify D. linearis as a potential source for new analgesic agents development.
    Matched MeSH terms: Plant Leaves/chemistry*
  13. Nokhala A, Siddiqui MJ, Ahmed QU, Ahamad Bustamam MS, Zakaria AZA
    Biomolecules, 2020 02 12;10(2).
    PMID: 32059529 DOI: 10.3390/biom10020287
    Stone leaf (Tetracera scandens) is a Southeast Asian medicinal plant that has been traditionally used for the management of diabetes mellitus. The underlying mechanisms of the antidiabetic activity have not been fully explored yet. Hence, this study aimed to evaluate the α-glucosidase inhibitory potential of the hydromethanolic extracts of T. scandens leaves and to characterize the metabolites responsible for such activity through gas chromatography-mass spectrometry (GC-MS) metabolomics. Crude hydromethanolic extracts of different strengths were prepared and in vitro assayed for α-glucosidase inhibition. GC-MS analysis was further carried out and the mass spectral data were correlated to the corresponding α-glucosidase inhibitory IC50 values via an orthogonal partial least squares (OPLS) model. The 100%, 80%, 60% and 40% methanol extracts displayed potent α-glucosidase inhibitory potentials. Moreover, the established model identified 16 metabolites to be responsible for the α-glucosidase inhibitory activity of T. scandens. The putative α-glucosidase inhibitory metabolites showed moderate to high affinities (binding energies of -5.9 to -9.8 kcal/mol) upon docking into the active site of Saccharomyces cerevisiae isomaltase. To sum up, an OPLS model was developed as a rapid method to characterize the α-glucosidase inhibitory metabolites existing in the hydromethanolic extracts of T. scandens leaves based on GC-MS metabolite profiling.
    Matched MeSH terms: Plant Leaves/chemistry*
  14. Krishnan P, Lee FK, Yap VA, Low YY, Kam TS, Yong KT, et al.
    J Nat Prod, 2020 01 24;83(1):152-158.
    PMID: 31935094 DOI: 10.1021/acs.jnatprod.9b01160
    Schwarzinicines A-G (1-7), representing the first examples of 1,4-diarylbutanoid-phenethylamine conjugates, were isolated from the leaves of Ficus schwarzii. The structures of these compounds were determined by detailed analysis of their MS, 1D and 2D NMR data. Compounds 1-4 exhibited pronounced vasorelaxant effects in the rat isolated aorta (Emax 106-120%; EC50 0.96-2.10 μM). However, compounds 1 and 2 showed no cytotoxic effects against A549, MCF-7, and HCT 116 human cancer cells (IC50 > 10 μM).
    Matched MeSH terms: Plant Leaves/chemistry*
  15. Soib HH, Ismail HF, Husin F, Abu Bakar MH, Yaakob H, Sarmidi MR
    Molecules, 2020 Jan 24;25(3).
    PMID: 31991676 DOI: 10.3390/molecules25030517
    Herbal plants are traditionally utilized to treat various illnesses. They contain phytochemicals that can be extracted using conventional methods such as maceration, soxhlet, and boiling, as well as non-conventional methods including ultrasonic, microwave, and others. Carica papaya leaves have been used for the treatment of dengue, fungal, and bacterial infections as well as an ingredient in anti-aging products. Phytochemicals analysis detected the presence of kaempferol, myricetin, carpaine, pseudocarpaine, dehydrocarpaine I and II, ferulic acid, caffeic acid, chlorogenic acid, β-carotene, lycopene, and anthraquinones glycoside. Conventional preparation by boiling and simple maceration is practical, simple, and safe; however, only polar phytochemicals are extracted. The present study aims to investigate the effects of three different non-conventional extraction techniques (ultrasonic-assisted extraction, reflux, and agitation) on C. papaya phytochemical constituents, the antioxidant capacity, and wound-healing activities. Among the three techniques, the reflux technique produced the highest extraction yield (17.86%) with the presence of saponins, flavonoids, coumarins, alkaloids, and phenolic metabolites. The reflux technique also produced the highest 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging with an IC50 value of 0.236 mg/mL followed by ultrasonic-assisted extraction (UAE) (IC50: 0.377 mg/mL) and agitation (IC50: 0.404 mg/mL). At tested concentrations (3.125 µg/mL to 500 µg/mL), all extracts do not exhibit a cytotoxicity effect on the human skin fibroblast, HSF1184. Interestingly, reflux and UAE were active fibroblast proliferators that support 85% (12.5 µg/mL) and 41% (6.25 µg/mL) better cell growth, respectively. Additionally, during the early 24 h of the scratch assay, the migration rate at 12.5 µg/mL was faster for all extracts with 51.8% (reflux), 49.3% (agitation), and 42.5% (UAE) as compared to control (21.87%). At 48 h, proliferated cells covered 78.7% of the scratch area for reflux extract, 63.1% for UAE, 61% for agitation, and 42.6% for control. Additionally, the collagen synthesis was enhanced for 31.6% and 65% after 24 and 48 h of treatment for reflux. An HPLC-MS/MS-QTOF (quadruple time-of-flight) analysis of reflux identified nine phytochemicals, including carpaine, kaempferol 3-(2G-glucosylrutinoside), kaempferol 3-(2″-rhamnosylgalactoside), 7-rhamnoside, kaempferol 3-rhamnosyl-(1->2)-galactoside-7-rhamnoside, luteolin 7-galactosyl-(1->6)-galactoside, orientin 7-O-rhamnoside, 11-hydroperoxy-12,13-epoxy-9-octadecenoic acid, palmitic amide, and 2-hexaprenyl-6-methoxyphenol. The results suggested that reflux was the best technique as compared to ultrasonic and agitation.
    Matched MeSH terms: Plant Leaves/chemistry*
  16. Hariharan D, Thangamuniyandi P, Jegatha Christy A, Vasantharaja R, Selvakumar P, Sagadevan S, et al.
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111636.
    PMID: 31739259 DOI: 10.1016/j.jphotobiol.2019.111636
    Titanium dioxide (TiO2) nanoparticles (NPs) have been doped with varying amounts (0.005, 0.010 and 0.015 M) of silver nanoparticles (Ag NPs) using hydrothermal method. Further, in this work, a green approach was followed for the formation of Ag@TiO2 NPs using Aloe vera gel as a capping and reducing agent. The structural property confirmed the presence of anatase phase TiO2. Increased peak intensity was observed while increasing the Ag concentration. Further, the morphological and optical properties have been studied, which confirmed the effective photocatalytic behavior of the prepared Ag@TiO2 NPs. The photocatalytic performance of Ag@TiO2 has been considered for the degradation of picric acid in the visible light region. The concentration at 0.010 M of the prepared Ag@TiO2 has achieved higher photocatalytic performance within 50 min, which could be attributed to its morphological behavior. Similarly, anticancer activity against lung cancer cell lines (A549) was also determined. The Ag@TiO2 NPs generated a large quantity of reactive oxygen species (ROS), resulting in complete cancer cell growth suppression after their systemic in vitro administration. Ag@TiO2 NPs was adsorbed visible light that leads to an enhanced anticancer sensitivity by killing and inhibiting cancer cell reproduction through cell viability assay test. It was clear that 0.015 M of Ag@TiO2 NPs were highly effective against human lung cancer cell lines and showed increased production of ROS in cancer cell lines due to the medicinal behavior of the Aloe vera gel.
    Matched MeSH terms: Plant Leaves/chemistry
  17. Mohd-Salleh SF, Wan-Ibrahim WS, Ismail N
    Nutr Cancer, 2020;72(5):826-834.
    PMID: 31433251 DOI: 10.1080/01635581.2019.1654530
    Introduction:Pereskia bleo is a leafy and edible plant, locally known as "Pokok Jarum Tujuh Bilah" which has anticancer properties. This study purposed to determine the cytotoxic effects of P. bleo leaves extracts on several well-known cancer cells and elucidate its underlying mechanism in inducing cell death.Methods: Cytotoxic activity on selected cell lines was determined using MTT assay. Mechanism of cell death was investigated through cell cycle and Annexin V assay. Expression of apoptotic proteins was measured by flow cytometry method.Results: Ethyl acetate extract of P. bleo leaves (PBEA) appeared to have the strongest IC50 value (14.37 ± 8.40 μg/ml) and most active against HeLa cells was further studied for apoptosis. The cell cycle investigation by flow cytometry evidenced the increment of PBEA treated HeLa cells in G0/G1 phase and apoptotic event was detected in Annexin V assay. Analysis of apoptotic protein showed pro-apoptotic proteins (Bax, p53 and caspase 3) were triggered where as anti-apoptotic protein Bcl-2 was suppressed in treated HeLa cells.Conclusions: Our findings demonstrated that PBEA treatment induced cell death in HeLa cells by p53-mediated mechanism through arresting cell cycle at G0/G1 phase and mitochondrial-mediated pathway with involvement of pro-apoptotic proteins, anti-apoptotic protein, and caspase 3.
    Matched MeSH terms: Plant Leaves/chemistry
  18. Azemi AK, Mokhtar SS, Rasool AHG
    Oxid Med Cell Longev, 2020;2020:7572892.
    PMID: 32879653 DOI: 10.1155/2020/7572892
    Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n = 12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.
    Matched MeSH terms: Plant Leaves/chemistry*
  19. Chigurupati S, Vijayabalan S, Selvarajan KK, Aldubayan M, Alhowail A, Mani V, et al.
    Curr Pharm Biotechnol, 2020;21(5):384-389.
    PMID: 31657678 DOI: 10.2174/1389201020666191028105325
    BACKGROUND: Endophytic bacteria produce various bioactive secondary metabolites, which benefit human health. Tamarindus indica L. is well known for its medicinal value in human health care. Several studies have reported on its biological effects from various parts of T. indica, but only a few studies have been devoted to examining the biological activity of endophytes of T. indica.

    OBJECTIVES: In the present study, an endophyte was isolated from the leaves of T. indica and screened for its antimicrobial potential.

    METHODS: The selected endophyte was identified by 16s rRNA partial genome sequencing and investigated for their antimicrobial potency. The preliminary phytochemical tests were conducted for the affirmation of phytoconstituents in the endophytic crude ethyl acetate extract of T. indica (TIM) and total phenolic content was performed. The antimicrobial potential of TIM was evaluated against human pathogenic ATCC gram-positive and gram-negative bacterial strains.

    RESULTS: TIM exhibited an appreciable amount of gallic acid equivalent phenolic content (21.6 ± 0.04 mg GAE/g of crude extract). TIM showed the Minimum Inhibitory Concentration (MIC) at 250 μg/mL and Minimum Bactericidal Concentration (MBC) at 500 μg/mL among the selected human pathogenic ATCC strains. At MIC of 500 μg/mL, TIM displayed a significant zone of inhibition against P. aeruginosa and N. gonorrhoeae.

    CONCLUSION: The results from our study highlighted for the first time the antimicrobial potential of endophytic bacterial strain Bacillus velezensis in T. indica leaves and it could be further explored as a source of natural antimicrobial agents.

    Matched MeSH terms: Plant Leaves/chemistry
  20. Asmilia N, Fahrimal Y, Abrar M, Rinidar R
    ScientificWorldJournal, 2020;2020:2739056.
    PMID: 32395086 DOI: 10.1155/2020/2739056
    Malacca (Phyllanthus emblica) is one of the plants that is often by the community in the Aceh Besar district of Indonesia as a traditional medicine for the treatment of various diseases such as antimicrobial, antibacterial, antifungals, antivirals, antimutagenic, antimalaria, and antiallergic. This research was conducted to analyze the content of chemical compounds in the ethanol extract of the Malacca leaf (EEDM) using a gas chromatography-mass spectrophotometer (GC-MS). Malacca leaves were extracted by the maceration method using n-hexane, ethyl acetate, and ethanol. The GC-MS analysis showed EEDM contained 22 chemical compounds. The highest chemical content of EEDM is octadecanoic acid reaching 22.93%, 9,12-octadecanoic acid 14.99%, octadecanoic acid 7.59%, 9-hexadecenoic acid 6.17%, octadecanoic acid 5.95%, octadecanal 5.59%, 9,12-octadecanoic acid 5.06%, 3-eicosyne 4.75%, 1-hexadecenoic acid 4.08%, 11-tetradecen-1-ol 2.92%, 2-furanmethanol 2.83%, delta-guaiene 2.43%, cyclohexane 2.13%, hexadecanoic acid 1.99%, sativen 1.87%, octadecanoic acid 1.52%, 1H-cyclopropaanaphthalene 1.40%, tetradecanoic acid 1.40%, 3,7,11-tridecatrienenitrile 1.20%, caryophellene 1.11%, 2H-pyran 1.07%, and trans-caryophellene 1.03%. This study clearly shows the presence of fatty acids which play a major role in the efficacy of these traditional medicines particularly as antioxidant and antimalarial.
    Matched MeSH terms: Plant Leaves/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links