Methods: Herein, we report a comprehensive study of the dynamics of H5N1 mutations by analysis of the aligned overlapping nonamer positions (1-9, 2-10, etc.) of more than 13,000 protein sequences of avian and human influenza A (H5N1) viruses, reported over at least 50 years. Entropy calculations were performed on 9,408 overlapping nonamer position of the proteome to study the diversity in the context of immune system. The nonamers represent the predominant length of the binding cores for peptides recognized by the cellular immune system. To further dissect the sequence diversity, each overlapping nonamer position was quantitatively analyzed for four patterns of sequence diversity motifs: index, major, minor and unique.
Results: Almost all of the aligned overlapping nonamer positions of each viral proteome exhibited variants (major, minor, and unique) to the predominant index sequence. Each variant motif displayed a characteristic pattern of incidence change in relation to increased total variants. The major variant exhibited a restrictive pyramidal incidence pattern, with peak incidence at 50% total variants. Post this peak incidence, the minor variants became the predominant motif for majority of the positions. Unique variants, each sequence observed only once, were present at nearly all of the nonamer positions. The diversity motifs (index and variants) demonstrated complex inter-relationships, with motif switching being a common phenomenon. Additionally, 25 highly conserved sequences were identified to be shared across viruses of both hosts, with half conserved to several other influenza A subtypes.
Discussion: The presence of distinct sequences (nonatypes) at nearly all nonamer positions represents a large repertoire of reported viral variants in the proteome, which influence the variability dynamics of the viral population. This work elucidated and provided important insights on the components that make up the viral diversity, delineating inherent patterns in the organization of sequence changes that function in the viral fitness-selection. Additionally, it provides a catalogue of all the mutational changes involved in the dynamics of H5N1 viral diversity for both avian and human host populations. This work provides data relevant for the design of prophylactics and therapeutics that overcome the diversity of the virus, and can aid in the surveillance of existing and future strains of influenza viruses.
METHODS: We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa). We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide.
FINDINGS: Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the Congo, and South Sudan, where vaccination coverage in 2016 was estimated to be substantially less than the recommended threshold to prevent outbreaks. Overall, we estimated that vaccination coverage levels achieved by 2016 avert between 94 336 and 118 500 cases of yellow fever annually within risk zones, on the basis of conservative and optimistic vaccination scenarios. The areas outside at-risk regions with predicted high receptivity to yellow fever transmission (eg, parts of Malaysia, Indonesia, and Thailand) were less extensive than the distribution of the main urban vector, A aegypti, with low receptivity to yellow fever transmission in southern China, where A aegypti is known to occur.
INTERPRETATION: Our results provide the evidence base for targeting vaccination campaigns within risk zones, as well as emphasising their high effectiveness. Our study highlights areas where public health authorities should be most vigilant for potential spread or importation events.
FUNDING: Bill & Melinda Gates Foundation.
METHODS: Records of dengue cases from 2013 to 2016 were obtained from the China Notifiable Disease Surveillance System. Full envelope gene sequences of dengue viruses detected from the high-risk areas of China were collected. Maximum Likelihood tree and haplotype network analyses were conducted to explore the phylogenetic relationship of viruses from high-risk areas of China.
RESULTS: A total of 56,520 cases was reported in China from 2013 to 2016. During this time, Yunnan, Guangdong and Fujian provinces were the high-risk areas. Imported cases occurred almost year-round, and were mainly introduced from Southeast Asia. The first indigenous case usually occurred in June to August, and the last one occurred before December in Yunnan and Fujian provinces but in December in Guangdong Province. Seven genotypes of DENV 1-3 were detected in the high-risk areas, with DENV 1-I the main genotype and DENV 2-Cosmopolitan the secondary one. The Maximum Likelihood trees show that almost all the indigenous viruses separated into different clusters. DENV 1-I viruses were found to be clustered in Guangdong Province, but not in Fujian and Yunnan, from 2013 to 2015. The ancestors of the Guangdong viruses in the cluster in 2013 and 2014 were most closely related to strains from Thailand or Singapore, and the Guangdong virus in 2015 was most closely related to the Guangdong virus of 2014. Based on closest phylogenetic relationships, viruses from Myanmar possibly initiated further indigenous cases in Yunnan, those from Indonesia in Fujian, while viruses from Thailand, Malaysia, Singapore and Indonesia were predominant in Guangdong Province.
CONCLUSIONS: Dengue is still an imported disease in China, although some genotypes continued to circulate in successive years. Viral phylogenies based on the envelope gene suggested periodic introductions of dengue strains into China, primarily from Southeast Asia, with occasional sustained, multi-year transmission in some regions of China.
METHODS: Histopathological reports of all patients diagnosed with colorectal carcinoma from January 2012 to December 2016 from public hospitals in Sabah were retrieved from the central computerized database of the Pathology Department of Queen Elizabeth Hospital in Kota Kinabalu, Sabah. Supplementary data was obtained from patients' case files from each hospital. Clinico-pathological data were analysed using the IBM SPSS Statistical Software Version 23 for Windows for descriptive statistics (mean, median, ASR, AR, relative risk) and inferential statistics (Chi square test).
RESULTS: A total of 696 patients met the inclusion criteria. The median age for colorectal cancer in Sabah was 62 years (95% CI 60.3 to 62.3), with an age specific incidence rate of 21.4 per 100 000 population. The age specific incidence rate in the indigenous populations was 26.6 per 100 000, much lower than the Chinese, at 65.0 per 100 000. The risk of colorectal cancer occurring before the age of 50 was three times higher in the indigenous population compared to the Chinese. The tumours were mainly left-sided (56.5%), adenocarcinoma in histology (98.4%) and moderately differentiated (88.7%). Approximately 79.2% of patients received curative treatment.
CONCLUSION: Indigenous populations in Sabah develop colorectal cancer at an earlier age, and present at more advanced stages. This has implications for screening and therapeutic strategic planning.
.