Displaying publications 81 - 100 of 146 in total

Abstract:
Sort:
  1. Ajeng AA, Rosli NSM, Abdullah R, Yaacob JS, Qi NC, Loke SP
    J Biotechnol, 2022 Dec 10;360:11-22.
    PMID: 36272573 DOI: 10.1016/j.jbiotec.2022.10.011
    As the world's population grows, it is necessary to rethink how countries throughout the world produce food in order to replace the conventional and unsustainable agricultural techniques. Microalgae cultivation using a nutrient-rich solution from hydroponic systems not only presents a novel approach to solving problems pertaining to the impact of the discharges on the natural environment but also provides a plethora of other biotechnological applications particularly in the productions of high value-added products and plants growth stimulants, which can be potentially assimilated into the circular bioeconomy (CBE) in the hydroponic sector. In this review, the potential and practicability of microalgae to be merged into hydroponics CBE are reviewed. Overall, the integration of microalgal biorefineries in hydroponics systems can be realized after considering their Technology Readiness Level and System Readiness Level beforehand. Several suggestions on strains and hydroponics system improvement using existing biotechnological tools, Artificial Intelligence (AI) and nanobiotechnology in support of the CBE will be covered.
  2. Praveena SM, Teh SW, Rajendran RK, Kannan N, Lin CC, Abdullah R, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(12):11333-11342.
    PMID: 29546515 DOI: 10.1007/s11356-018-1652-8
    Phthalates have been blended in various compositions as plasticizers worldwide for a variety of purposes. Consequently, humans are exposed to a wide spectrum of phthalates that needs to be researched and understood correctly. The goal of this review is to focus on phthalate's internal exposure pathways and possible role of human digestion on liver toxicity. In addition, special focus was made on stem cell therapy in reverting liver toxicity. The known entry of higher molecular weight phthalates is through ingestion while inhalation and dermal pathways are for lower molecular weight phthalates. In human body, certain phthalates are digested through phase 1 (hydrolysis, oxidation) and phase 2 (conjugation) metabolic processes. The phthalates that are made bioavailable through digestion enter the blood stream and reach the liver for further detoxification, and these are excreted via urine and/or feces. Bis(2-ethylhexyl) phthalate (DEHP) is a compound well studied involving human metabolism. Liver plays a pivotal role in humans for detoxification of pollutants. Thus, continuous exposure to phthalates in humans may lead to inhibition of liver detoxifying enzymes and may result in liver dysfunction. The potential of stem cell therapy addressed herewith will revert liver dysfunction and lead to restoration of liver function properly.
  3. Keshtegar B, Piri J, Asnida Abdullah R, Hasanipanah M, Muayad Sabri Sabri M, Nguyen Le B
    Front Public Health, 2022;10:1094771.
    PMID: 36817184 DOI: 10.3389/fpubh.2022.1094771
    Ground vibration induced by blasting operations is considered one of the most common environmental effects of mining projects. A strong ground vibration can destroy buildings and structures, hence its prediction and minimization are of high importance. The aim of this study is to estimate the ground vibration through a hybrid soft computing (SC) method, called RSM-SVR, which comprises two main regression techniques: the response surface model (RSM) and support vector regression (SVR). The RSM-SVR model applies an RSM in the first calibrating process and an SVR in the second calibrating process to improve the accuracy of the ground vibration predictions. The predicted results of an RSM, which are obtained using the input data of problems, are used as the input dataset for the regression process of an SVR. The effectiveness and agreement of the RSM-SVR model were compared to those of an SVR optimized with the particle swarm optimization (PSO) and genetic algorithm (GA), RSM, and multivariate linear regression (MLR) based on several statistical factors. The findings confirmed that the RSM-SVR model was considerably superior to other models in terms of accuracy. The amounts of coefficient of determination (R 2) were 0.896, 0.807, 0.782, 0.752, 0.711, and 0.664 obtained from the RSM-SVR, PSO-SVR, GA-SVR, MLR, SVR, and RSM models, respectively.
  4. Shyaa MA, Zainol Z, Abdullah R, Anbar M, Alzubaidi L, Santamaría J
    Sensors (Basel), 2023 Apr 04;23(7).
    PMID: 37050795 DOI: 10.3390/s23073736
    Concept drift (CD) in data streaming scenarios such as networking intrusion detection systems (IDS) refers to the change in the statistical distribution of the data over time. There are five principal variants related to CD: incremental, gradual, recurrent, sudden, and blip. Genetic programming combiner (GPC) classification is an effective core candidate for data stream classification for IDS. However, its basic structure relies on the usage of traditional static machine learning models that receive onetime training, limiting its ability to handle CD. To address this issue, we propose an extended variant of the GPC using three main components. First, we replace existing classifiers with alternatives: online sequential extreme learning machine (OSELM), feature adaptive OSELM (FA-OSELM), and knowledge preservation OSELM (KP-OSELM). Second, we add two new components to the GPC, specifically, a data balancing and a classifier update. Third, the coordination between the sub-models produces three novel variants of the GPC: GPC-KOS for KA-OSELM; GPC-FOS for FA-OSELM; and GPC-OS for OSELM. This article presents the first data stream-based classification framework that provides novel strategies for handling CD variants. The experimental results demonstrate that both GPC-KOS and GPC-FOS outperform the traditional GPC and other state-of-the-art methods, and the transfer learning and memory features contribute to the effective handling of most types of CD. Moreover, the application of our incremental variants on real-world datasets (KDD Cup '99, CICIDS-2017, CSE-CIC-IDS-2018, and ISCX '12) demonstrate improved performance (GPC-FOS in connection with CSE-CIC-IDS-2018 and CICIDS-2017; GPC-KOS in connection with ISCX2012 and KDD Cup '99), with maximum accuracy rates of 100% and 98% by GPC-KOS and GPC-FOS, respectively. Additionally, our GPC variants do not show superior performance in handling blip drift.
  5. Ab Shukor NS, Abdullah R, Abdul Aziz MZ, Samson DO, Musarudin M
    Appl Radiat Isot, 2023 Jun;196:110751.
    PMID: 36871495 DOI: 10.1016/j.apradiso.2023.110751
    The present study was conducted to elucidate the effects of hip prostheses in 192Ir HDR brachytherapy and determine dose uncertainties introduced by the treatment planning. A gynaecological phantom irradiated using Nucletron 192Ir microSelectron HDR source was modeled using MCNP5 code. Three hip materials considered in this study were water, bone, and metal prosthesis. According to the obtained results, a dose perturbation was observed within the medium with a higher atomic number, which reduced the dose to the nearby region.
  6. Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC
    J Environ Manage, 2024 Jan 01;349:119445.
    PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445
    Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
  7. Ajdari Z, Rahman H, Shameli K, Abdullah R, Abd Ghani M, Yeap S, et al.
    Molecules, 2016 Mar 01;21(3):123.
    PMID: 26938520 DOI: 10.3390/molecules21030123
    The current study investigated the anticancer properties of gold nanoparticles (SG-stabilized AuNPs) synthesized using water extracts of the brown seaweed Sargassum glaucescens (SG). SG-stabilized AuNPs were characterized by ultraviolet-visible spectroscopy, transmission and scanning electron microscopy, and energy dispersive X-ray fluorescence spectrometry. The SG-stabilized AuNPs were stable and small at 3.65 ± 1.69 nm in size. The in vitro anticancer effect of SG-stabilized AuNPs was determined on cervical (HeLa), liver (HepG2), breast (MDA-MB-231) and leukemia (CEM-ss) cell lines using fluorescence microscopy, flow cytometry, caspase activity determination, and MTT assays. After 72 h treatment, SG-stabilized AuNPs was shown to be significant (p < 0.05) cytotoxic to the cancer cells in a dose- and time-dependent manner. The IC50 values of SG-stabilized AuNPs on the HeLa, HepG2, CEM-ss, MDA-MB-231 cell lines were 4.75 ± 1.23, 7.14 ± 1.45, 10.32 ± 1.5, and 11.82 ± 0.9 μg/mL, respectively. On the other hand, SG-stabilized AuNPs showed no cytotoxic effect towards the normal human mammary epithelial cells (MCF-10A). SG-stabilized AuNPs significantly (p < 0.05) arrest HeLa cell cycle at G2/M phase and significantly (p < 0.05) activated caspases-3 and -9 activities. The anticancer effect of SG-stabilized AuNPs is via the intrinsic apoptotic pathway. The study showed that SG-stabilized AuNPs is a good candidate to be developed into a chemotherapeutic compound for the treatment of cancers especially cervical cancer.
  8. Taha MM, Abdul AB, Abdullah R, Ibrahim TA, Abdelwahab SI, Mohan S
    Chem Biol Interact, 2010 Aug 05;186(3):295-305.
    PMID: 20452335 DOI: 10.1016/j.cbi.2010.04.029
    Zerumbone (ZER), a monosesquiterpene found in the subtropical ginger (Zingiber zerumbet Smith), possesses antiproliferative properties to several cancer cells lines, including the cervical, skin and colon cancers. In this study, the antitumourigenic effects of ZER were assessed in rats induced to develop liver cancer with a single intraperitoneal injection of diethylnitrosamine (DEN, 200 mg/kg) and dietary 2-acetylaminofluorene (AAF) (0.02%). The rats also received intraperitoneal ZER injections at 15, 30 or 60 mg/kg body wt. twice a week for 11 weeks, beginning week four post-DEN injection. The hepatocytes of positive control (DEN/AAF) rats were smaller with larger hyperchromatic nuclei than normal, showing cytoplasmic granulation and intracytoplasmic violaceous material, which were characteristics of hepatocarcinogenesis. Histopathological evaluations showed that ZER protects the rat liver from the carcinogenic effects of DEN and AAF. Serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (AP) and alpha-fetoprotein (AFP) were significantly lower (P<0.05) in ZER-treated than untreated rats with liver cancer. The liver malondialdehyde (MDA) concentrations significantly (P<0.05) increased in the untreated DEN/AAF rats indicating hepatic lipid peroxidation. There was also significant (P<0.05) reduction in the hepatic tissue glutathione (GSH) concentrations. The liver sections of untreated DEN/AAF rats also showed abundant proliferating cell nuclear antigen (PCNA), while in ZER-treated rats the expression of this antigen was significantly (P<0.05) lowered. By the TUNEL assay, there were significantly (P<0.05) higher numbers of apoptotic cells in DEN/AAF rats treated with ZER than those untreated. Zerumbone treatment had also increased Bax and decreased Bcl-2 protein expression in the livers of DEN/AAF rats, which suggested increased apoptosis. Even after 11 weeks of ZER treatment, there was no evidence of abnormality in the liver of normal rats. This study suggests that ZER reduces oxidative stress, inhibits proliferation, induces mitochondria-regulated apoptosis, thus minimising DEN/AAF-induced carcinogenesis in rat liver. Therefore, ZER has great potential in the treatment of liver cancers.
  9. Kamaludin NF, Kamarulzaman F, Abdullah R, Chan KM, Inayat-Hussain SH
    Genes Environ, 2023 Dec 11;45(1):34.
    PMID: 38072940 DOI: 10.1186/s41021-023-00290-5
    The Malaysian Society of Toxicology (MySOT), founded in 2010, emerged as a response to the growing need for a collective and interdisciplinary effort to study the effects of substances on human health, and the environment. By fostering collaboration between toxicologists, researchers, regulators, industry experts, and various relevant subject matter experts, MySOT has played a vital role in generating knowledge and promoting safety to safeguard both human and environmental well-being. Within the 13 years since its establishment, MySOT has made substantial progress in the advancement of toxicology in Malaysia. Over the years, MySOT has supported many initiatives, including organizing conferences, seminars, and workshops in which experts from various fields present their research, discuss emerging trends, and propose strategies to reduce toxic substance exposure risk. The society has also been actively involved in the broader landscape of toxicology research and policy influence in Malaysia. MySOT shoulders the responsibility of conveying accurate information and educating the public about health risks associated with toxic substances. Therefore, the society aims to collaborate with governmental organizations, professional bodies, and international toxicology organizations to share ideas, resources, and expertise. MySOT seeks to gather toxicological experts in the region and significantly contribute to a safer and healthier community, therefore supporting the United Nations Sustainable Development Goals (SDGs), by being actively involved with all of its stakeholders, both local and international.
  10. Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM
    Vet World, 2018 May;11(5):627-635.
    PMID: 29915501 DOI: 10.14202/vetworld.2018.627-635
    The inflammatory response is a crucial aspect of the tissues' responses to deleterious inflammogens. This complex response involves leukocytes cells such as macrophages, neutrophils, and lymphocytes, also known as inflammatory cells. In response to the inflammatory process, these cells release specialized substances which include vasoactive amines and peptides, eicosanoids, proinflammatory cytokines, and acute-phase proteins, which mediate the inflammatory process by preventing further tissue damage and ultimately resulting in healing and restoration of tissue function. This review discusses the role of the inflammatory cells as well as their by-products in the mediation of inflammatory process. A brief insight into the role of natural anti-inflammatory agents is also discussed. The significance of this study is to explore further and understand the potential mechanism of inflammatory processes to take full advantage of vast and advanced anti-inflammatory therapies. This review aimed to reemphasize the importance on the knowledge of inflammatory processes with the addition of newest and current issues pertaining to this phenomenon.
  11. Nordin ML, Abdul Kadir A, Zakaria ZA, Othman F, Abdullah R, Abdullah MN
    PMID: 28400849 DOI: 10.1155/2017/9368079
    This study was conducted to investigate the cytotoxicity and apoptosis effect of A. crispa extract and its solvent partition (ethyl acetate and aqueous extract) against Mus musculus mammary carcinoma cell line (4T1). The normal mouse fibroblast cell line (NIH3T3) was used as comparison for selective cytotoxicity properties. The cytotoxicity evaluation was assessed using MTT assay. AO/PI dual fluorescent staining assay and Annexin V-FITC were used for apoptosis analysis. Results showed that 80% methanol extract from leaves showed most promising antimammary cancer agent with IC50 value of 42.26 ± 1.82 μg/mL and selective index (SI) value of 10.22. Ethyl acetate was cytotoxic for both cancer and normal cell while aqueous extract exhibited poor cytotoxic effect. 4T1 cells labelled with AO/PI and Annexin V-FITC and treated with 80% methanol extract demonstrated that the extract induces apoptosis to 4T1 mammary cancer cells. In conclusion, 80% methanol extract of A. crispa was selectively cytotoxic towards 4T1 cells but less cytotoxic towards NIH3T3 cells and induced the cancerous cells into apoptotic stage as early as 6 hours.
  12. Mohan S, Bustamam A, Ibrahim S, Al-Zubairi AS, Aspollah M, Abdullah R, et al.
    PMID: 21785623 DOI: 10.1093/ecam/neq010
    The plant Typhonium flagelliforme, commonly known as "rodent tuber" in Malaysia, is often used as a health supplement and traditional remedy for alternative cancer therapies, including leukemia. This study aimed to evaluate in vitro anti-leukemic activity of dichloromethane extract/fraction number 7 (DCM/F7) from T. flagelliforme tuber on human T4 lymphoblastoid (CEMss) cell line. The DCM extract of tuber has been fractionated by column chromatography. The obtained fractions were evaluated for its cytotoxicity toward CEMss cells as well as human primary blood lymphocytes (PBLs). Assessment of apoptosis produced by the most active fraction was evaluated by various microscopic techniques and further confirmation of apoptosis was done by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Phytochemical screening was done by gas chromatography-mass spectrometry (GC-MS). The results shows that 7 out of 12 fractions showed significant cytotoxicity against the selected cell line CEMss, in which fractions DCM/F7, DCM/F11 and DCM/F12 showed exceptional activity with 3, 5 and 6.2 μg ml(-1), respectively. Further studies in the non-cancerous PBL exhibited significant selectivity of DCM/F7 compared to other fractions. Cytological observations showed chromatin condensation, cell shrinkage, abnormalities of cristae, membrane blebbing, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double-staining of acridine orange (AO)/propidium iodide (PI), SEM and TEM. In addition, DCM/F7 has increased the cellular DNA breaks on treated cells. GC-MS revealed that DCM/F7 contains linoleic acid, hexadecanoic acid and 9-hexadecanoic acid. The present results indicate that T. flagelliforme possess a valuable anti-leukemic effect and was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
  13. Wong WT, Ismail M, Tohit ER, Abdullah R, Zhang YD
    PMID: 27800004
    Background. Vascular occlusion or thrombosis was often attributed to uncontrolled platelet activation. Influence of sugarcane policosanol extract on platelet was reported but little was known of rice bran policosanol, particularly its mechanisms of actions on platelet activities. Objective. Antiplatelet mechanisms of rice bran policosanol extract (RBE) were studied using hyperlipidemic Sprague Dawley rats. Ex vivo platelet aggregation, platelet count (PC), bleeding time (BT), and coagulation time were assayed. Serum eicosanoids and other aggregation-related metabolites levels were quantified. Design. Rats were divided into 6 groups for comparisons (vehicle control Tween 20/H2O, high dose policosanol 500 mg/kg, middle dose policosanol 250 mg/kg, low dose policosanol 100 mg/kg, and positive control aspirin 30 mg/kg). Results. Low dose 100 mg/kg of RBE inhibited aggregation by 42.32 ± 4.31% and this was comparable with the effect of 30 mg/kg aspirin, 43.91 ± 5.27%. Results showed that there were no significant differences in PC, BT, and coagulation time among various groups after RBE treatment. Serum thromboxane A2 was attenuated while prostacyclin level increased upon RBE treatment. Conclusions. RBE reduced ex vivo ADP-induced platelet aggregation without giving adverse effects. No changes in full blood count suggested that rice bran policosanol did not disturb biological blood cell production and destruction yet it reduced aggregation through different mechanisms.
  14. Othman H, Rahman H, Mohan S, Aziz S, Marif H, Ford D, et al.
    PMID: 32922508 DOI: 10.1155/2020/8764096
    This study investigated the in vivo antileukemic activity of palladium nanoparticles (Pd@W.tea-NPs) mediated by white tea extract in a murine model. The cell viability effect of Pd@W.tea-NPs, "blank" Pd nanoparticles, and white tea extract alone was determined in murine leukemia WEHI-3B cells and normal mouse fibroblasts (3T3 cells). Apoptotic and cell cycle arrest effects of Pd@W.tea-NPs in WEHI-3B cells were evaluated. The effects of Pd@W.tea-NPs administered orally to leukemic mice at 50 and 100 mg/kg daily over 28 days were evaluated. Pd@W.tea-NPs reduced the viability of WHEI-3B cells with IC50 7.55 μg/ml at 72 h. Blank Pd nanoparticles and white tea extract alone had smaller effects on WHEI-3B viability and on normal fibroblasts. Pd@W.tea-NPs increased the proportion of Annexin V-positive WHEI-3B cells and induced G2/M cell cycle arrest. Leukemic cells in the spleen were reduced by Pd@W.tea-NPs with an increase in Bax/Bcl-2 and cytochrome-C protein and mRNA levels indicating the activation of the mitochondrial apoptotic pathway. These effects replicated the effects of ATRA and were not observed using blank Pd nanoparticles. Pd@W.tea-NPs afford therapeutic efficacy against leukemia likely to pivot on activation of the mitochondrial pathway of apoptotic signaling and hence appear attractive potential candidates for development as a novel anticancer agent.
  15. Fatima A, Abdul AB, Abdullah R, Karjiban RA, Lee VS
    Int J Mol Sci, 2015 Jan 26;16(2):2747-66.
    PMID: 25629232 DOI: 10.3390/ijms16022747
    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis.
  16. Adnan A, Allaudin ZN, Hani H, Loh HS, Khoo TJ, Ting KN, et al.
    BMC Complement Altern Med, 2019 Jul 10;19(1):169.
    PMID: 31291936 DOI: 10.1186/s12906-019-2586-5
    BACKGROUND: Garcinia species contain bioactive compounds such as flavonoids, xanthones, triterpernoids, and benzophenones with antibacterial, antifungal, anti-inflammatory, and antioxidant activities. In addition, many of these compounds show interesting biological properties such as anti-human immunodeficiency virus activity. Garcinia parvifolia is used in traditional medicine. Currently, the antiviral activity of G. parvifolia is not known.

    METHODS: This study was conducted to determine the effects of ethyl acetate (45 L Ea), ethanol (45 L Et), and hexane (45 L H) leaf extracts of G. parvifolia on the infectivity of pseudorabies virus (PrV) in Vero cells. The antiviral effects of the extracts were determined by cytopathic effect (CPE), inhibition, attachment, and virucidal assays.

    RESULTS: The 50% cytotoxicity concentration (CC50) values obtained were 237.5, 555.0, and 

  17. Chan SS, Khoo KS, Abdullah R, Juan JC, Ng EP, Chin RJ, et al.
    Sci Total Environ, 2024 Oct 18;957:176989.
    PMID: 39427915 DOI: 10.1016/j.scitotenv.2024.176989
    Heavy metal contamination of water sources has long been a silent yet potent threat, endangering environmental and human health. Conventional wastewater treatments are costly due to high infrastructure expenses, energy consumption, and chemical usage. These treatments lead to secondary environmental pollution, such as producing toxic sludge, greenhouse gaseous emissions, and residual pollutants discharges. Therefore, more sustainable and cost-effective wastewater treatment alternatives are needed to overcome these challenges. Microalgae biosorption and bioaccumulation can bioremediate wastewater by effectively removing heavy metals and other contaminants, such as nitrate and phosphate. By utilizing sunlight and CO2 for growth, microalgae cultivation reduces the need for expensive chemicals and energy-intensive operations in wastewater treatment. Additionally, microalgae can potentially convert heavy metal ions from wastewater into metal nanoparticles, providing a dual benefit of bioremediation and resource recovery. The primary objectives of this review are to assess the effectiveness of microalgae in heavy metal bioremediation and nanoparticle synthesis while also identifying critical research gaps and future directions for optimizing this biotechnology. Heavy metal ions in wastewater can be used as a metal precursor, and metal nanoparticles can be synthesized from wastewater. A review methodology was carried out to assess the availability of literature for readers to identify the research trends and gaps. Mechanisms of microalgae for the biogenesis of metal nanoparticles, including activation, growth, and termination phases, were elucidated. Various chemical interactions between metal ions and functional groups of microalgae, including amine (-NH2), carboxyl (-COOH), phosphate (-PO4), and hydroxyl (-OH) groups were evaluated. Nonetheless, this review also identifies the current challenges and future research directions for optimizing microalgae biotechnology in heavy metal bioremediation and nanoparticle biogenesis.
  18. Abdullah R, Maamor N, Zakaria MN, Nik Othman NA, Othman BF, Abdul Wahab NA
    PMID: 39572413 DOI: 10.1007/s00405-024-09080-3
    PURPOSE: To compare the intersubject reliability of cortical auditory evoked potential (CAEP) elicited by acoustic and electrical stimulations in pediatric cochlear implant (CI) recipients.

    METHODS: Twenty-two MED-EL CI recipients (aged 13-93 months) participated in this study. The acoustic CAEP (aCAEP) waveforms were elicited using four speech stimuli (/ba/, /m/, /g/, and /t/) presented at 65 dB SPL in a free-field condition. The electrical CAEP (eCAEP) responses were obtained by presenting electrical pulses through apical, medial, and basal electrodes. The aCAEP and eCAEP data (n = 28 ears) were analyzed using coefficient of variation (CV) and other appropriate statistics.

    RESULTS: P1, N1, and P2 peaks were observed in most of the children (92.9% response rate). The CV values were smaller for the latency metric (13.6-34.2%) relative to the amplitude metric (51.3-92.4%), and the differences were statistically significant (p 

  19. Vawhal PK, Jadhav SB, Kaushik S, Panigrahi KC, Nayak C, Urmee H, et al.
    Molecules, 2023 Jan 19;28(3).
    PMID: 36770672 DOI: 10.3390/molecules28031004
    Recent research on dipeptidyl peptidase-IV (DPP-IV) inhibitors has made it feasible to treat type 2 diabetes mellitus (T2DM) with minimal side effects. Therefore, in the present investigation, we aimed to discover and develop some coumarin-based sulphonamides as potential DPP-IV inhibitors in light of the fact that molecular hybridization of many bioactive pharmacophores frequently results in synergistic activity. Each of the proposed derivatives was subjected to an in silico virtual screening, and those that met all of the criteria and had a higher binding affinity with the DPP-IV enzyme were then subjected to wet lab synthesis, followed by an in vitro biological evaluation. The results of the pre-ADME and pre-tox predictions indicated that compounds 6e, 6f, 6h, and 6m to 6q were inferior and violated the most drug-like criteria. It was observed that 6a, 6b, 6c, 6d, 6i, 6j, 6r, 6s, and 6t displayed less binding free energy (PDB ID: 5Y7H) than the reference inhibitor and demonstrated drug-likeness properties, hence being selected for wet lab synthesis and the structures being confirmed by spectral analysis. In the in vitro enzyme assay, the standard drug Sitagliptin had an IC50 of 0.018 µM in the experiment which is the most potent. All the tested compounds also displayed significant inhibition of the DPP-IV enzyme, but 6i and 6j demonstrated 10.98 and 10.14 µM IC50 values, respectively, i.e., the most potent among the synthesized compounds. Based on our findings, we concluded that coumarin-based sulphonamide derivatives have significant DPP-IV binding ability and exhibit optimal enzyme inhibition in an in vitro enzyme assay.
  20. Foo JB, Yazan LS, Tor YS, Armania N, Ismail N, Imam MU, et al.
    PMID: 24947113 DOI: 10.1186/1472-6882-14-197
    Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links