Displaying publications 81 - 100 of 160 in total

Abstract:
Sort:
  1. Nurrulhidayah, A.F., Arieff, S.R., Rohman, A., Amin, I., Shuhaimi, M., Khatib, A.
    MyJurnal
    Differential scanning calorimetry (DSC) is developed and used for detection of butter adulteration with lard. Butter has the similar characteristics to lard makes lard a desirable adulterant in butter. DSC provides unique thermal profiling for lard and butter. In the heating thermogram of the mixture, there was one major endothermic peak (peak A) with a smaller shoulder peak embedded in the major peak that gradually smoothed out to the major peak as the lard percent increased. In the cooling thermogram, there were one minor peak (peak B) and two major exothermic peaks, peak C which increased as lard percent increased and peak D which decreased in size as the lard percent increased. From Stepwise Multiple Linear Regression (SMLR) analysis, two independent variables were found to be able to predict lard percent adulteration in butter with R2 (adjusted) of 95.82. The SMLR equation of lard percent adulteration in butter is 293.1 - 11.36 (Te A) - 2.17 (Tr D); where Te A is the endset of peak A and Tr D is the range of thermal transition for peak D. These parameters can serve as a good measurement parameter in detecting lard adulteration in butter. DSC is a very useful means for halal screening technique to enhance the authenticity of Halal process.
    Matched MeSH terms: Calorimetry, Differential Scanning
  2. Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T
    Bioresour Technol, 2016 Jan;199:258-264.
    PMID: 26253419 DOI: 10.1016/j.biortech.2015.07.103
    The aim of this work was to characterize the natural low transition temperature mixtures (LTTMs) as promising green solvents for biomass pretreatment with the critical characteristics of cheap, biodegradable and renewable, which overcome the limitations of ionic liquids (ILs). The LTTMs were derived from inexpensive commercially available hydrogen bond acceptor (HBA) and l-malic acid as the hydrogen bond donor (HBD) in distinct molar ratios of starting materials and water. The peaks involved in the H-bonding shifted and became broader for the OH groups. The thermal properties of the LTTMs were not affected by water while the biopolymers solubility capacity of LTTMs was improved with the increased molar ratio of water and treatment temperature. The pretreatment of oil palm biomass was consistence with the screening on solubility of biopolymers. This work provides a cost-effective alternative to utilize microwave hydrothermal extracted green solvents such as malic acid from natural fruits and plants.
    Matched MeSH terms: Calorimetry, Differential Scanning
  3. Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C
    Int J Biol Macromol, 2021 Jan 15;167:906-920.
    PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047
    The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
    Matched MeSH terms: Calorimetry, Differential Scanning
  4. Venkata Srikanth M, Songa AS, Nali SR, Battu JR, Kolapalli VR
    Drug Dev Ind Pharm, 2014 Jan;40(1):33-45.
    PMID: 23317339 DOI: 10.3109/03639045.2012.744416
    The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.
    Matched MeSH terms: Calorimetry, Differential Scanning
  5. Bonthagarala B, Dasari V, Kotra V
    Ther Deliv, 2019 May 01;10(5):295-310.
    PMID: 31094300 DOI: 10.4155/tde-2019-0020
    Aim: The present study revolved around determining the effect of increase in the solubility of these drugs at the absorption site using ritonavir as a drug model. Materials & methods: Ritonavir per-oral tablets were prepared using versatile and nonionic surfactants having high solubilization rate, which were further marked with high rate of dissolution. The high rate of dissolution formula applied to the solid state characterization by means of transition electron microscopy, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction and infrared spectroscopy. Results & conclusion: The drug bioavailability was seen to increase expressively by administration of liquisolid tablets as compared with conventional tablets.
    Matched MeSH terms: Calorimetry, Differential Scanning
  6. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Calorimetry, Differential Scanning
  7. Mat Uzir Wahi, Azman Hassan, Akos Noel Ibrahim, Nurhayati Ahmad Zawawi, Kunasegeran K
    Sains Malaysiana, 2015;44:1615-1623.
    Polylactic acid (PLA)/Epoxidized natural rubber (ENR-50) blends were prepared by melt extrusion followed by injection
    molding to fabricate the test samples. The effect of ENR-50 loadings on the morphological, mechanical, chemical
    resistance and water absorption properties of the blends were studied using standard methods. The toughness of the
    blend improved with ENR loading up to 20 wt. % but flexural and tensile strength decreased. The balanced mechanical
    properties were obtained at 20 wt. % ENR-50 loading. SEM showed good distribution and increased ENR particle size
    as ENR content increased from 10 to 30 wt. %. The differential scanning calorimeter (DSC) showed a steady drop in
    crystallization temperature (Tc
    ) as ENR content increases while the glass transition temperature (Tg
    ) remained unchanged.
    Water absorption was observed to increase with ENR loadings. Increase in ENR content was also observed to reduce the
    chemical resistance of the blends.
    Matched MeSH terms: Calorimetry, Differential Scanning
  8. Cheong LZ, Tan CP, Long K, Affandi Yusoff MS, Lai OM
    J Sci Food Agric, 2010 Oct;90(13):2310-7.
    PMID: 20661900 DOI: 10.1002/jsfa.4088
    Diacylglycerol (DAG), which has health-enhancing properties, is sometimes added to bakery shortening to produce baked products with enhanced physical functionality. Nevertheless, the quantity present is often too little to exert any positive healthful effects. This research aimed to produce bakery shortenings containing significant amounts of palm diacyglycerol (PDG). Physicochemical, textural and viscoelastic properties of the PDG bakery shortenings during 3 months storage were evaluated and compared with those of commercial bakery shortening (CS).
    Matched MeSH terms: Calorimetry, Differential Scanning
  9. Goh CF, Hadgraft J, Lane ME
    Int J Pharm, 2022 Feb 25;614:121447.
    PMID: 34998922 DOI: 10.1016/j.ijpharm.2021.121447
    For effective topical and transdermal drug delivery, it is necessary for most actives to penetrate and permeate through the stratum corneum (SC). Extensive investigation of the thermal behaviour of mammalian SC has been performed to understand the barrier function of the skin. However, little attention has been paid to the related experimental variables in thermal analysis of the SC using differential scanning calorimetry that may influence the results obtained from such studies. In this review, we provide a comprehensive overview of the thermal transitions of the SC of both porcine and human skin. More importantly, the selection and impact of the experimental and instrumental parameters used in thermal analysis of the SC are critically evaluated. New opportunities for the use of thermal analysis of mammalian SC in advancing skin research, particularly for elucidation of the actions of excipients employed in topical and transdermal formulations on the skin are also highlighted.
    Matched MeSH terms: Calorimetry, Differential Scanning
  10. Dua K, Pabreja K, Ramana MV, Lather V
    J Pharm Bioallied Sci, 2011 Jul;3(3):417-25.
    PMID: 21966164 DOI: 10.4103/0975-7406.84457
    The objective of the present investigation was to study the effect of β-cyclodextrin (β-CD) on the in vitro dissolution of aceclofenac (AF) from molecular inclusion complexes. Aceclofenac molecular inclusion complexes in 1:1 and 1:2 M ratio were prepared using a kneading method. The in vitro dissolution of pure drug, physical mixtures, and cyclodextrin inclusion complexes was carried out. Molecular inclusion complexes of AF with β-CD showed a considerable increase in the dissolution rate in comparison with the physical mixture and pure drug in 0.1 N HCl, pH 1.2, and phosphate buffer, pH 7.4. Inclusion complexes with a 1:2 M ratio showed the maximum dissolution rate in comparison to other ratios. Fourier transform infrared spectroscopy and differential scanning calorimetry studies indicated no interaction between AF and β-CD in complexes in solid state. Molecular modeling results indicated the relative energetic stability of the β-CD dimer-AF complex as compared to β-CD monomer-AF. Dissolution enhancement was attributed to the formation of water soluble inclusion complexes with β-CD. The in vitro release from all the formulations was best described by first-order kinetics (R(2) = 0.9826 and 0.9938 in 0.1 N HCl and phosphate buffer, respectively) followed by the Higuchi release model (R(2) = 0.9542 and 0.9686 in 0.1 N HCl and phosphate buffer, respectively). In conclusion, the dissolution of AF can be enhanced by the use of a hydrophilic carrier like β-CD.
    Matched MeSH terms: Calorimetry, Differential Scanning
  11. Tan IS, Lee KT
    Bioresour Technol, 2015 May;184:386-94.
    PMID: 25465785 DOI: 10.1016/j.biortech.2014.10.146
    A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity.
    Matched MeSH terms: Calorimetry, Differential Scanning
  12. Haniffa MACM, Ching YC, Chuah CH, Kuan YC, Liu DS, Liou NS
    Polymers (Basel), 2017 May 01;9(5).
    PMID: 30970841 DOI: 10.3390/polym9050162
    Non-isocyanate polyurethane (NIPU) was prepared from Jatropha curcas oil (JCO) and its alkyd resin via curing with different diamines. The isocyanate-free approach is a green chemistry route, wherein carbon dioxide conversion plays a major role in NIPU preparation. Catalytic carbon dioxide fixation can be achieved through carbonation of epoxidized derivatives of JCO. In this study, 1,3-diaminopropane (DM) and isophorone diamine (IPDA) were used as curing agents separately. Cyclic carbonate conversion was catalyzed by tetrabutylammonium bromide. After epoxy conversion, carbonated JCO (CJCO) and carbonated alkyd resin (CC-AR) with carbonate contents of 24.9 and 20.2 wt %, respectively, were obtained. The molecular weight of CJCO and CC-AR were determined by gel permeation chromatography. JCO carbonates were cured with different amine contents. CJCO was blended with different weight ratios of CC-AR to improve its characteristics. The cured NIPU film was characterized by spectroscopic techniques, differential scanning calorimetry, and a universal testing machine. Field emission scanning electron microscopy was used to analyze the morphology of the NIPU film before and after solvent treatment. The solvent effects on the NIPU film interfacial surface were investigated with water, 30% ethanol, methyl ethyl ketone, 10% HCl, 10% NaCl, and 5% NaOH. NIPU based on CCJO and CC-AR (ratio of 1:3) with IPDA crosslink exhibits high glass transition temperature (44 °C), better solvent and chemical resistance, and Young's modulus (680 MPa) compared with the blend crosslinked with DM. Thus, this study showed that the presence of CC-AR in CJCO-based NIPU can improve the thermomechanical and chemical resistance performance of the NIPU film via a green technology approach.
    Matched MeSH terms: Calorimetry, Differential Scanning
  13. Marikkar JM, Ghazali HM, Long K
    J Oleo Sci, 2010;59(1):7-14.
    PMID: 20032594
    This study was to characterize the seed fat from Madhuca longifolia known as Mee fat and its solid and liquid fractions with the objective of distinguishing them. A sample of Mee fat was partitioned into solid and liquid fractions using acetone as the solvent medium. The isolated fractions were compared to the native Mee fat sample with respect to various physico-chemical parameters using standard chemical methods as well as instrumental techniques such as, gas liquid chromatography (GLC), reversed-phase high performance liquid chromatography (RP-HPLC), and differential scanning calorimetry (DSC). Basic analyses indicated that there were wide variations between the native sample and its fractions with respect to iodine value (IV), and slip melting point (SMP). The cloud point (CP) of the liquid fraction was found to be 10.5 degrees C. Fatty acid compositional analyses showed that the proportion of saturated fatty acids (SFA) such as palmitic and stearic went up in the high-melting fraction (HMF) while in low-melting fraction (LMF) the proportion of unsaturated fatty acid (USFA) such as oleic and lenoleic increased. According to the HPLC analyses, Mee fat had a tiacyl glycerol (TAG) sequence similar to that of palm oil. After fractionation, the solid and liquid fractions obtained were found to have TAG profiles very much different from the native sample. Thermal analyses by DSC showed that Mee fat had two-widely separated high and low melting thermal transitions, a feature which was beneficial for the effective separation of solid and liquid fractions. The thermal profiles displayed by the fractions were clearly distinguishable from that of the native sample.
    Matched MeSH terms: Calorimetry, Differential Scanning
  14. Chieng BW, Ibrahim NA, Then YY, Loo YY
    Molecules, 2014;19(10):16024-38.
    PMID: 25299820 DOI: 10.3390/molecules191016024
    Plasticized poly(lactic acid) PLA with epoxidized vegetable oils (EVO) were prepared using a melt blending method to improve the ductility of PLA. The plasticization of the PLA with EVO lowers the Tg as well as cold-crystallization temperature. The tensile properties demonstrated that the addition of EVO to PLA led to an increase of elongation at break, but a decrease of tensile modulus. Plasticized PLA showed improvement in the elongation at break by 2058% and 4060% with the addition of 5 wt % epoxidized palm oil (EPO) and mixture of epoxidized palm oil and soybean oil (EPSO), respectively. An increase in the tensile strength was also observed in the plasticized PLA with 1 wt % EPO and EPSO. The use of EVO increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The SEM micrograph of the plasticized PLA showed good compatible morphologies without voids resulting from good interfacial adhesion between PLA and EVO. Based on the results of this study, EVO may be used as an environmentally friendly plasticizer that can improve the overall properties of PLA.
    Matched MeSH terms: Calorimetry, Differential Scanning
  15. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, M Al-Oqla F
    Materials (Basel), 2019 Jun 29;12(13).
    PMID: 31261926 DOI: 10.3390/ma12132104
    Photovoltaic module backsheets are characterized according to their thermal, optical, mechanical, and technical properties. This work introduces new fabricated backsheets for PV modules using polyvinylidene fluoride (PVDF) reinforced with short sugar palm fiber (SSPF) composites. The preparation of composites undergoes multiple phases of fabrication. Thermal, optical, and technical investigations of their properties were conducted. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, in-situ scanning probe microscopy (SPM), dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and prolonged technical testing were accomplished to expansively understand the complex behavior of composites under various conditions. The optical properties of PV backsheets are critical components in determining the reflectance, absorbance, and transmittance of light. The PVDF-SSPF composites exhibited exceptional compatibility and thermal stability, further revealing a homogenous composite structure with enhanced interfacial bonding between the short fiber and polymer matrix.
    Matched MeSH terms: Calorimetry, Differential Scanning
  16. Sammour RMF, Taher M, Chatterjee B, Shahiwala A, Mahmood S
    Pharmaceutics, 2019 Jul 18;11(7).
    PMID: 31323799 DOI: 10.3390/pharmaceutics11070350
    In the contemporary medical model world, the proniosomal system has been serving as a new drug delivery system that is considered to significantly enhance the bioavailability of drugs with low water solubility. The application of this system can improve the bioavailability of aceclofenac that is used for the relief of pain and inflammation in osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. The present study is intended to develop an optimized proniosomal aceclofenac formula by the use of different carriers. Aceclofenac proniosomes have been prepared by slurry method, and different carriers such as maltodextrin, mannitol, and glucose were tried. Prepared proniosomes characterized by differential scanning calorimetry (DSC) analysis and Fourier transform infrared (FTIR) analysis revealed the compatibility of the drug chosen with the ingredient added, powder X-ray diffractometry (XRD) confirmed the amorphous phase of the prepared proniosomes, and finally, the surfactant layer was observed by scanning electron microscopy (SEM). Aceclofenac physical state transformations were confirmed with all formulas but maltodextrin proniosomes exhibited solubility more than other formulations. HPLC method has been used to analyze the niosomes derived from proniosomes in terms of their entrapment capability and drug content. The obtained results revealed that aceclofenac proniosomes can be successfully prepared by using different carriers.
    Matched MeSH terms: Calorimetry, Differential Scanning
  17. Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed AB
    J Mater Sci Mater Med, 2014 Aug;25(8):1925-39.
    PMID: 24831081 DOI: 10.1007/s10856-014-5228-y
    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
    Matched MeSH terms: Calorimetry, Differential Scanning
  18. Affandi MMRMM, Tripathy M, Majeed ABA
    Curr Drug Deliv, 2018;15(1):77-86.
    PMID: 28322162 DOI: 10.2174/1567201814666170320144259
    BACKGROUND: Categorized as a Biopharmaceutics Classification System (BCS) Class II drugs, statin exhibit low aqueous solubility and bioavailability thus presenting an obstacle and great challenge to formulation researchers. This paper describes a de novo approach to enhance the aqueous solubility of one of the most commonly prescribed statins i.e., simvastatin (SMV) by forming a complex (SMV-ARG) with cosolute arginine (ARG).

    METHODS: The complex has been characterized for its apparent solubility and in vitro dissolution. The solid state characterization has been carried out using Fourier Transform Infra-Red (FTIR) Spectroscopy, Elemental Analysis, X-Ray Powder Diffraction (XRD), Differential Scanning Calorimetry (DSC) analysis, Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM).

    RESULTS: Simvastatin-Arginine (SMV-ARG) complex exhibited massive solubility enhancement by 12,000 fold and significant improvement in both acidic and alkaline dissolution media. A conversion of coherent crystalline to non-coherent pattern, and certain extent of amorphization in SMV-ARG complex, fully justifies the enhanced solubility, and hence the dissolution profile.

    CONCLUSION: The present study provides a significant evidence that ARG molecules are capable to form a complex with small molecules and increase their aqueous solubility which prove to be beneficial in drug formulation and development.

    Matched MeSH terms: Calorimetry, Differential Scanning
  19. Aisha AF, Ismail Z, Abu-Salah KM, Majid AM
    J Pharm Sci, 2012 Feb;101(2):815-25.
    PMID: 22081501 DOI: 10.1002/jps.22806
    α-Mangostin is an oxygenated heterocyclic xanthone with remarkable pharmacological properties, but poor aqueous solubility and low oral bioavailability hinder its therapeutic application. This study sought to improve the compound's solubility and study the mechanism underlying solubility enhancement. Solid dispersions of α-mangostin were prepared in polyvinylpyrrolidone (PVP) by solvent evaporation method and showed substantial enhancement of α-mangostin's solubility from 0.2 ± 0.2 μg/mL to 2743 ± 11 μg/mL. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated interaction between α-mangostin and PVP. Transmission electron microscopy and dynamic light scattering showed self-assembly of round anionic nanomicelles with particle size in the range 99-127 nm. Powder X-ray diffraction indicated conversion of α-mangostin from crystalline into amorphous state, and scanning electron microscopy showed the presence of highly porous powder. Studies using the fluorescent probe pyrene showed that the critical micellar concentration is about 77.4 ± 4 μg/mL. Cellular uptake of nanomicelles was found to be mediated via endocytosis and indicated intracellular delivery of α-mangostin associated with potent cytotoxicity (median inhibitory concentration of 8.9 ± 0.2 μg/mL). Improved solubility, self-assembly of nanomicelles, and intracellular delivery through endocytosis may enhance the pharmacological properties of α-mangostin, particularly antitumor efficacy.
    Matched MeSH terms: Calorimetry, Differential Scanning
  20. Tan CP, Man YC
    Phytochem Anal, 2002 May-Jun;13(3):129-41.
    PMID: 12099103
    The melting curves of 11 vegetable oils have been characterised. Vegetable oil samples that were cooled at a constant rate (5 degrees C/min) from the melt showed between one and seven melting endotherms upon heating at four different heating rates (1, 5, 10 and 20 degrees C/min) in a differential scanning calorimeter (DSC). Triacylglycerol (TAG) profiles and iodine value analyses were used to complement the DSC data. Generally, the melting transition temperature shifted to higher values with increased rates of heating. The breadth of the melting endotherm and the area under the melting peak also increased with increasing heating rate. Although the number of endothermic peaks was dependent on heating rate, the melting curves of the oil samples were not straightforward in that there was no correlation between the number of endothermic peaks and heating rates. Multiple melting behaviour in DSC experiments with different heating rates could be explained by: (1) the melting of TAG populations with different melting points; and (2) TAG crystal reorganisation effects. On the basis of the corollary results obtained, vegetable oils and fats may be distinguished from their offset-temperature (Toff) values in the DSC melting curves. The results showed that Toff values of all oil samples were significantly (p < 0.01) different in the melting curves scanned at four different scanning rates. These calorimetric results indicate that DSC is a valuable technique for studying vegetable oils.
    Matched MeSH terms: Calorimetry, Differential Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links