Displaying publications 81 - 100 of 108 in total

Abstract:
Sort:
  1. Ma HQ, Ebrahimi F, Low BS, Khan NAK, Chan KL
    Phytother Res, 2017 Dec;31(12):1875-1882.
    PMID: 28948658 DOI: 10.1002/ptr.5930
    Eurycoma longifolia Jack is popularly sought in Southeast Asian countries for traditional remedies to improve sexual performance and fertility. 13α(21)-Epoxyeurycomanone and eurycomanone, two major quassinoids in a root extract (TAF2) were reported to improve rat spermatogenesis and fertility. Unfortunately, these quassinoids possess low bioavailability because of high aqueous solubility and low lipid membrane permeability. Often, other possible barriers may be P-glycoprotein (P-gp) efflux in the gut and presystemic hepatic metabolism. The present study attempted to solve these problems by formulating a lipid-based solid dispersion (TAF2-SD) of optimized mixture of TAF2 and emulsifiers, which was then orally administered to rats prior to sperm count analysis. The TAF2-SD-treated rats showed significantly twofold (p 
    Matched MeSH terms: Eurycoma/chemistry*
  2. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(14):1657-1671.
    PMID: 29468964 DOI: 10.2174/1389450119666180219123815
    BACKGROUND: Eurycoma longifolia (E. longifolia) has gained widespread recognition due to its versatile pharmacological activities including aphrodisiac, anticancer, antimicrobial, antioxidant, anti-inflammatory, anxiolytic, anti-diabetic, ergogenic, insecticidal, anti-rheumatism, bone protection, and anti-ulcer effects.

    OBJECTIVE: This review was aimed to critically overview the literature and summarizes the antibacterial, antiprotozoal, and antifungal trends of E. longifolia and its medicinally active components.

    RESULTS: Besides its well-documented safety, efficacy, and tolerability, a plethora of in vitro, in vivo, and human clinical studies has evidenced the antimicrobial efficacy of E. longifolia and its bioactive constituents. Phytochemical screening of various types of extracts (methanolic, ethyl acetate, and nbutanolic) from different parts (roots, stem, and leaves) of E. longifolia displayed a dose-dependent antibacterial, antiprotozoal, and antifungal responses. Comparative analysis revealed that the root extract of E. longifolia exhibited the highest antimicrobial efficacy compared to other parts of the plant. Bioactivity-guided fractionation identified that among all of the medicinal compounds isolated/ extracted from different parts of E. longifolia, eurycomanone displayed the strongest antibacterial, antiprotozoal and antifungal activities.

    CONCLUSION: Based on the critical analysis of the literature, we identified that E. longifolia exhibits promising antibacterial, antiprotozoal, and antifungal efficacies against various pathogenic microbes and thus can be considered as a potential complementary and alternative antimicrobial therapy.

    Matched MeSH terms: Eurycoma/chemistry*
  3. Abubakar BM, Salleh FM, Shamsir Omar MS, Wagiran A
    Pharm Biol, 2018 Dec;56(1):368-377.
    PMID: 30058427 DOI: 10.1080/13880209.2018.1479869
    CONTEXT: Eurycoma longifolia Jack (Simaroubaceae) commonly known as Tongkat Ali is one of the most important plants in Malaysia. The plant extracts (particularly roots) are widely used for the treatment of cough and fever besides having antimalarial, antidiabetic, anticancer and aphrodisiac activities.

    OBJECTIVES: This study assesses the extent of adulteration of E. longifolia herbal medicinal products (HMPs) using DNA barcoding validated by HPLC analysis.

    MATERIALS AND METHODS: Chloroplastic rbcL and nuclear ITS2 barcode regions were used in the present study. The sequences generated from E. longifolia HMPs were compared to sequences in the GenBank using MEGABLAST to verify their taxonomic identity. These results were verified by neighbor-joining tree analysis in which branches of unknown specimen are compared to the reference sequences established from this study and other retrieved from the GenBank. The HMPs were also analysed using HPLC analysis for the presence of eurycomanone bioactive marker.

    RESULTS: Identification using DNA barcoding revealed that 37% of the tested HMPs were authentic while 27% were adulterated with the ITS2 barcode region proven to be the ideal marker. The validation of the authenticity using HPLC analysis showed a situation in which a species which was identified as authentic was found not to contain the expected chemical compound.

    DISCUSSION AND CONCLUSIONS: DNA barcoding should be used as the first screening step for testing of HMPs raw materials. However, integration of DNA barcoding with HPLC analysis will help to provide detailed knowledge about the safety and efficacy of the HMPs.

    Matched MeSH terms: Eurycoma/genetics*
  4. Farouk AE, Benafri A
    Saudi Med J, 2007 Sep;28(9):1422-4.
    PMID: 17768473
    Objective: To evaluate methanolic, ethanolic, acetone and aqueous extracts from different parts of Eurycoma longifolia (E. longifolia) (leave, stem, and root) for antibacterial activity against Gram-positive and Gram-negative bacteria and to utilize the leaves and stem parts rather than the root, which is already used for male sexual enhancement in Malaysia.

    Methods: The study took place in the Laboratory of Molecular Biology of Biotechnology Engineering Department, Malaysia between January 2005 and June 2006. Methanolic, ethanolic, acetone and aqueous extracts of leaves, stems and roots of E. longifolia were investigated for their antibacterial properties using Agar-well diffusion method.

    Results: The alcoholic and acetone extracts of the leaves and stem extracts were active on both Gram-positive and Gram-negative bacteria except against 2 strains of Gram-negative bacteria (Escherichia coli and Salmonella typhi). The root extracts had no antibacterial activity against Gram-positive and Gram-negative bacteria tested. Aqueous leaves extract showed antibacterial activity against Staphylococcus aureus and Serratia marscesens.

    Conclusion: The alcoholic and acetone extracts from leaves and stems of E. longifolia contain potent antibacterial agent(s). This plant can serve as a potential source of antibacterial compounds.
    Matched MeSH terms: Eurycoma*
  5. Muniandy S, Yahya HM, Shahar S, Kamisan Atan I, Mahdy ZA, Rajab NF, et al.
    BMJ Open, 2023 Nov 01;13(11):e073323.
    PMID: 37914304 DOI: 10.1136/bmjopen-2023-073323
    INTRODUCTION: Eurycoma longifolia Jack (EL), profoundly recognised as 'Tongkat Ali', is a medicinal herb originating from Southeast Asia. It is commonly used in traditional 'antiageing' treatments to address decreased energy, mood, libido and hormonal imbalances. While the benefits of EL have been extensively studied among the male population, less attention has been given to its effects on women. Menopause can impact the overall well-being of middle-aged women and incorporation of herbal supplements can aid them in managing the menopausal symptoms.

    METHODS AND ANALYSIS: This 12-week randomised double-blind, placebo-controlled, parallel-group study aims to evaluate the efficacy of the standardised water extract of EL known as Physta in increasing the quality of life of perimenopausal and postmenopausal women. The study involves 150 women aged 40-55 years who score more than 61 on the Menopause-Specific Quality of Life (MENQOL) assessment. These participants will be randomised into three groups, receiving Physta at either 50 mg or 100 mg or a placebo. The outcomes measures include mood state, quality of life, fatigue, sleep quality, sexual function and pain score assessed using Profile of Mood State, MENQOL, Chalder Fatigue Scale, Pittsburgh Sleep Quality Index, Female Sexual Function Index and the Brief Pain Inventory questionnaires, respectively. The secondary outcome of the study includes full blood analysis, urine analysis, female reproductive hormone profiling, inflammatory and oxidative stress biomarkers analysis.

    ETHICS AND DISSEMINATION: The research protocol of the study was reviewed and approved by the Research Ethics Committee of Universiti Kebangsaan Malaysia (UKM/PPI/111/8/JEP-2021-898). The findings will be disseminated to participants, healthcare professionals and researchers via conference presentations and peer-reviewed publications.

    TRIAL REGISTRATION NUMBER: ACTRN12622001341718.

    Matched MeSH terms: Eurycoma*
  6. M Chinnappan S, George A, Ashok G, Choudhary YK
    BMC Complement Med Ther, 2020 Feb 05;20(1):31.
    PMID: 32024514 DOI: 10.1186/s12906-020-2814-z
    BACKGROUND: Each year 1.5 million women experience menopause when menstrual cycles cease resulting from the loss of ovarian function and oestrogen deprivation, a hormone that helps prevent bone loss. This study investigated the effects of Physta®, a standardized herbal extract of Eurycoma longifolia Jack (PEL), on hormonal balance and parameters associated with hormonal imbalance, namely body and uterus weight and bone biochemical markers relevant in menopausal symptoms.

    METHODS: Forty-eight Sprague Dawley rats were randomly divided into six groups of eight rats each: (A) Sham operated; control (B) Untreated (ovariectomised (OVX) with vehicle), (C) PEL 100 (OVX + 100 mg/kg body weight (bw)), (D) PEL 300 (OVX + 300 mg/kg bw), (E) PEL 500 (OVX + 500 mg/kg bw) and (F) Positive control, testosterone undecanoate (TU) (OVX+ 10 mg/kg bw). Group A and B received daily oral administrations of the vehicle, Group C-E received daily oral administration of PEL and Group F received testosterone undecanoate intramuscularly weekly. At the end of 8 weeks, serum calcium, phosphate, bone alkaline phosphatase (BALP), osteocalcin, follicle stimulating hormone (FSH), luteinising hormone (LH), oestrogen, progesterone and testosterone were measured, then the animals were sacrificed and uterus was isolated, while weight was recorded in all experimental groups.

    RESULTS: Treatment of OVX rats with PEL at a dose of 500 mg/kg showed decreased serum FSH (P 

    Matched MeSH terms: Eurycoma/chemistry*
  7. Dieng H, Satho T, Abang F, Miake F, Azman FAB, Latip NA, et al.
    Indian J Med Res, 2018 Sep;148(3):334-340.
    PMID: 30425225 DOI: 10.4103/ijmr.IJMR_1604_16
    Background & objectives: In sterile insect technology (SIT), mating competitiveness is a pre-condition for the reduction of target pest populations and a crucial parameter for judging efficacy. Still, current SIT trials are being hindered by decreased effectiveness due to reduced sexual performance of released males. Here, we explored the possible role of a herbal aphrodisiac in boosting the mating activity of Aedes aegypti.

    Methods: Males were fed one of two diets in this study: experimental extract of Eurycoma longifolia (MSAs) and sugar only (MSOs). Differences in life span, courtship latency, copulation activity and mating success were examined between the two groups.

    Results: No deaths occurred among MSA and MSO males. Life span of MSOs was similar to that of MSAs. The courtship latency of MSAs was shorter than that of MSOs (P<0.01). MSAs had greater copulation success than MSOs (P<0.001). In all female treatments, MSAs mated more than MSOs, but the differences in rate were significant only in the highest female density (P<0.05). In MSAs, mating success varied significantly with female density (P<0.01), with the 20-female group (P<0.01) having the lowest rate. Single MSA had better mating success at the two lowest female densities. In MSOs, there were no significant differences in mating success rate between the different female densities.

    Interpretation & conclusions: Our results suggested that the herbal aphrodisiac, E. longifolia, stimulated the sexual activity of Ae. aegypti and may be useful for improving the mating competitiveness of sterile males, thus improving SIT programmes.

    Matched MeSH terms: Eurycoma*
  8. Lulu T, Park SY, Ibrahim R, Paek KY
    J Biosci Bioeng, 2015 Jun;119(6):712-7.
    PMID: 25511788 DOI: 10.1016/j.jbiosc.2014.11.010
    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.
    Matched MeSH terms: Eurycoma/drug effects; Eurycoma/growth & development*; Eurycoma/metabolism
  9. Rodrigues, K. F., Tam, H. K.
    MyJurnal
    This paper describes the first reported attempt to isolate DNA sequences containing repeat motifs in Eurycoma longifolia and Orthosiphon stamineus. A library enriched for genomic repeat motifs was developed using novel oligonucleotides designed with inosine residues incorporated at predetermined positions. A total of eight and twelve specific molecular markers were developed for O. stamineus and E. longifolia respectively. These markers have a potential application in estimating population diversity levels and QTL mapping in these two medicinal plants, which are widely used in the Malaysian herbal industry.
    Matched MeSH terms: Eurycoma
  10. Nor Nasriah Zaini, Mardiana Saaid, Hafizan Juahir, Rozita Osman
    MyJurnal
    Tongkat Ali (Eurycoma longifolia) is one of the most popular tropical herbal plants as it is believed to enhance virility and sexual prowess. This study looked examined chromatographic fingerprint of Tongkat Ali roots and its products generated using online solid phase-extraction liquid chromatography (SPE-LC) combined with chemometric approaches. The aim was to determine its quality. Pressurised liquid extraction (PLE) technique was used prior to online SPE-LC using polystyrene divinyl benzene (PSDVB) and C18 columns. Seventeen Tongkat Ali roots and 10 products (capsules) were analysed. Chromatographic dataset was subjected to chemometric techniques, namely cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) using 37 selected peaks. The samples were grouped into three clusters based on their quality. The PCA resulted in 11 latent factors describing 90.8% of the whole variance. Pattern matching analysis showed no significant difference (p>0.05) between the roots and products within the same CA grouping. The findings showed the combination of chromatographic fingerprint and chemometric techniques provided comprehensive evaluation for efficient quality control of Tongkat Ali formulation.
    Matched MeSH terms: Eurycoma
  11. Ezzat SM, Okba MM, Ezzat MI, Aborehab NM, Mohamed SO
    PMID: 31223329 DOI: 10.1155/2019/4341592
    Background. Eurycoma longifolia Jack (Fam.: Simaroubaceae), known as Tongkat Ali (TA), has been known as a symbol of virility and sexual power. The aim of the study was to screen E. longifolia aqueous extract (AE) and isolates for ROCK-II inhibition. Results. The AE (1-10 μg/ml) showed a significant inhibition for ROCK-II activity (62.8-81%) at P < 0.001 with an IC50 (651.1 ± 32.9 ng/ml) compared to Y-27632 ([(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride]) (68.15-89.9 %) at same concentrations with an IC50 (192 ± 8.37 ng/ml). Chromatographic purification of the aqueous extract (AE) allowed the isolation of eight compounds; stigmasterol T1, trans-coniferyl aldehyde T2, scopoletin T3, eurycomalactone T4, 6α- hydroxyeurycomalactone T5, eurycomanone T6, eurycomanol T7, and eurycomanol-2-O-β-D-glucopyranoside T8. This is the first report for the isolation of T1 and T3 from E. longifolia and for the isolation of T2 from genus Eurycoma. The isolates (at 10 μg/ml) exhibited maximum inhibition % of ROCK-II 82.1 ± 0.63 (T2), 78.3 ± 0.38 (T6), 77.1 ± 0.11 (T3), 76.2 ± 3.53 (T4), 74.5 ± 1.27 (T5), 74.1 ± 2.97 (T7), 71.4 ± 2.54 (T8), and 60.3 ± 0.14 (T1), where the newly isolated compound trans-coniferyl aldehyde T2 showed the highest inhibitory activity among the tested isolated compounds and even higher than the total extract AE. The standard Y-27632 (10 μg/ml) showed 89.9 ± 0.42 % inhibition for ROCK-II activity when compared to control at P < 0.0001. Conclusion. The traditional use of E. longifolia as aphrodisiac and for male sexual disorders might be in part due to the ROCK-II inhibitory potential.
    Matched MeSH terms: Eurycoma
  12. Tajul Ariff AS, Soelaiman IN, Pramanik J, Shuid AN
    PMID: 22966245 DOI: 10.1155/2012/818072
    Testosterone replacement is the choice of treatment in androgen-deficient osteoporosis. However, long-term use of testosterone is potentially carcinogenic. Eurycoma longifolia (EL) has been reported to enhance testosterone level and prevent bone calcium loss but there is a paucity of research regarding its effect on the bone structural parameters. This study was conducted to explore the bone structural changes following EL treatment in normal and androgen-deficient osteoporosis rat model. Thirty-six male Sprague-Dawley rats aged 12 months were divided into normal control, normal rat supplemented with EL, sham-operated, orchidectomised-control, orchidectomised with testosterone replacement, and orchidectomised with EL supplementation groups. Testosterone serum was measured both before and after the completion of the treatment. After 6 weeks of the treatment, the femora were processed for bone histomorphometry. Testosterone replacement was able to raise the testosterone level and restore the bone volume of orchidectomised rats. EL supplementation failed to emulate both these testosterone actions. The inability of EL to do so may be related to the absence of testes in the androgen deficient osteoporosis model for EL to stimulate testosterone production.
    Matched MeSH terms: Eurycoma
  13. Chua LS, Amin NA, Neo JC, Lee TH, Lee CT, Sarmidi MR, et al.
    J Chromatogr B Analyt Technol Biomed Life Sci, 2011 Dec 15;879(32):3909-19.
    PMID: 22119436 DOI: 10.1016/j.jchromb.2011.11.002
    A number of three LC-MS/MS hybrid systems (QTof, TripleTof and QTrap) has been used to profile small metabolites (m/z 100-1000) and to detect the targeted metabolites such as quassinoids, alkaloids, triterpene and biphenylneolignans from the aqueous extracts of Eurycoma longifolia. The metabolite profiles of small molecules showed four significant clusters in the principle component analysis for the aqueous extracts of E. longifolia, which had been collected from different geographical terrains (Perak and Pahang) and processed at different extraction temperatures (35°C and 100°C). A small peptide of leucine (m/z 679) and a new hydroxyl methyl β-carboline propionic acid have been identified to differentiate E. longifolia extracts that prepared at 35°C and 100°C, respectively. From the targeted metabolites identification, it was found that 3,4ɛ-dihydroeurycomanone (quassinoids) and eurylene (squalene-type triterpene) could only be detected in the Pahang extract, whereas canthin-6-one-3N-oxide could only be detected in the Perak extract. Overall, quassinoids were present in the highest concentration, particularly eurycomanone and its derivatives compared to the other groups of metabolites. However, the concentration of canthin-6-one and β-carboline alkaloids was significantly increased when the roots of the plant samples were extracted at 100°C.
    Matched MeSH terms: Eurycoma/metabolism; Eurycoma/chemistry*
  14. Sholikhah EN, Wijayanti MA, Nurani LH, Mustofa
    Med J Malaysia, 2008 Jul;63 Suppl A:98-9.
    PMID: 19025003
    In previous study, in vitro antiplasmodial activity fractions isolated from methanol extract of E. longifolia, Jack. have been evaluated. Among 5 isolates evaluated from the study, isolate 4 showed high in vitro antiplasmodial activity. However, which stage specificity of the isolates on P. falciparum cycles has not been evaluated. This study was intended to evaluate the stage specificity of the isolate on P. falciparum cycles. The study was conducted by observing the percentage of each stages of P. falciparum microscopically after 8, 16, 24, 32, 40, 48, 56, 64, and 72 hours incubation periods with 3 various concentration of isolate 4 compared with control. The result showed that isolate 4 of E. longifolia root methanol soluble fractions most potent at trophozoites stages of P. falciparum.
    Matched MeSH terms: Eurycoma/physiology; Eurycoma/chemistry*
  15. Mohd-Fuat AR, Kofi EA, Allan GG
    Trop Biomed, 2007 Dec;24(2):49-59.
    PMID: 18209708 MyJurnal
    Three popular medicinal plants regarded as improving human sexual function in some parts of Southeast Asia were analysed for their mutagenic properties using modified Ames test (fluctuation test). Extract of one of the plants, Tacca integrifolia Ker-Gawl., was found to be mutagenic using Salmonella typhimurium strains TA98 and TA100. Extract of T. integrifolia, Eurycoma longifolia Jack and Helmintostachys zeylanica (L.) Hook were cytotoxic to human cell lines, Hep2 and HFL1, with IC50 ranging from 11 mug/ml to 55 mug/ml. Extract of E. longifolia was the most cytotoxic with IC50 of 11 mug/ml and 13 mug/ml on Hep2 and HFL1 cell lines respectively. Combined extract of T. integrifolia and H. zeylanica was more cytotoxic than single extract on both Hep2 and HFL1 cell lines while combined extract of E. longifolia and H. zeylanica was more cytotoxic than single extract on Hep2 cell lines. Under the conditions of this study it can be concluded that T. integrifolia is mutagenic and the combined extracts of the medicinal plants was highly cytotoxic.
    Matched MeSH terms: Eurycoma/classification; Eurycoma/chemistry*
  16. Ebrahimi F, Ibrahim B, Teh CH, Murugaiyah V, Lam CK
    Planta Med, 2017 Jan;83(1-02):172-182.
    PMID: 27399233 DOI: 10.1055/s-0042-110857
    Quassinoids, the major secondary metabolites of Eurycoma longifolia roots, improve male fertility. Hence, it is crucial to investigate their quantitative level in E. longifolia extracts. A profile was established to identify the primary metabolites and major quassinoids, and quantify quassinoids using external calibration curves. Furthermore, the metabolic discrimination of E. longifolia roots from different regions was investigated. The (1)H-NMR spectra of the quassinoids, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside were obtained. The (1)H-NMR profiles of E. longifolia root aqueous extracts from Perak (n = 30) were obtained and used to identify primary metabolites and the quassinoids. Selangor, Kedah, Terengganu (n = 5 for each), and Perak samples were checked for metabolic discrimination. Hotelling's T(2) plot was used to check for outliers. Orthogonal partial least-squares discriminant analysis was run to reveal the discriminatory metabolites. Perak samples contained formic, succinic, methylsuccinic, fumaric, lactic, acetic and syringic acids as well as choline, alanine, phenylalanine, tyrosine, α-glucose, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside. The extracts from other locations contained the same metabolites. The limit of quantification values were 1.96 (eurycomanone), 15.62 (eurycomanol), 3.91 (13,21-dihydroeurycomanone), and 31.25 (eurycomanol-2-O-β-D-glycopyranoside) ppm. The Hotelling's T(2) plot revealed no outlier. The orthogonal partial least-squares discriminant analysis model showed that choline, eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, and lactic and succinic acid levels were different among regions. Terengganu and Perak samples contained higher amounts of eurycomanol and eurycomanol-2-O-β-D-glycopyranoside, respectively. The current approach efficiently detected E. longifolia root metabolites, quantified the quassinoids, and discriminated E. longifolia roots from different locations. These findings could be applicable to future research on E. longifolia where the higher content of quassinoids is required.
    Matched MeSH terms: Eurycoma/metabolism*; Eurycoma/chemistry
  17. Rehman SU, Choe K, Yoo HH
    Molecules, 2016 Mar 10;21(3):331.
    PMID: 26978330 DOI: 10.3390/molecules21030331
    Eurycoma longifolia Jack (known as tongkat ali), a popular traditional herbal medicine, is a flowering plant of the family Simaroubaceae, native to Indonesia, Malaysia, Vietnam and also Cambodia, Myanmar, Laos and Thailand. E. longifolia, is one of the well-known folk medicines for aphrodisiac effects as well as intermittent fever (malaria) in Asia. Decoctions of E. longifolia leaves are used for washing itches, while its fruits are used in curing dysentery. Its bark is mostly used as a vermifuge, while the taproots are used to treat high blood pressure, and the root bark is used for the treatment of diarrhea and fever. Mostly, the roots extract of E. longifolia are used as folk medicine for sexual dysfunction, aging, malaria, cancer, diabetes, anxiety, aches, constipation, exercise recovery, fever, increased energy, increased strength, leukemia, osteoporosis, stress, syphilis and glandular swelling. The roots are also used as an aphrodisiac, antibiotic, appetite stimulant and health supplement. The plant is reported to be rich in various classes of bioactive compounds such as quassinoids, canthin-6-one alkaloids, β-carboline alkaloids, triterpene tirucallane type, squalene derivatives and biphenyl neolignan, eurycolactone, laurycolactone, and eurycomalactone, and bioactive steroids. Among these phytoconstituents, quassinoids account for a major portion of the E. longifolia root phytochemicals. An acute toxicity study has found that the oral Lethal Dose 50 (LD50) of the alcoholic extract of E. longifolia in mice is between 1500-2000 mg/kg, while the oral LD50 of the aqueous extract form is more than 3000 mg/kg. Liver and renal function tests showed no adverse changes at normal daily dose and chronic use of E. longifolia. Based on established literature on health benefits of E. longifolia, it is important to focus attention on its more active constituents and the constituents' identification, determination, further development and most importantly, the standardization. Besides the available data, more evidence is required regarding its therapeutic efficacy and safety, so it can be considered a rich herbal source of new drug candidates. It is very important to conserve this valuable medicinal plant for the health benefit of future generations.
    Matched MeSH terms: Eurycoma/classification; Eurycoma/chemistry*
  18. Osman A, Jordan B, Lessard PA, Muhammad N, Haron MR, Riffin NM, et al.
    Plant Physiol, 2003 Mar;131(3):1294-301.
    PMID: 12644679 DOI: 10.1104/pp.012492
    Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites.
    Matched MeSH terms: Eurycoma/genetics*; Eurycoma/metabolism
  19. Ang HH, Sim MK
    Arch Pharm Res, 1997 Dec;20(6):656-8.
    PMID: 18982276 DOI: 10.1007/BF02975228
    The effects ofEurycoma longifolia Jack were studied on the sexual behaviour of male rats. Sexually normal male rats were treated twice daily with 500 mg kg(-1) of different fractions ofE. longifolia Jack for 10 days prior to test and were then observed for their copulatory behaviour with a receptive female in a copulation cage. Results showed that was a significant increase (p<0.05) in EL-1, EL-2, EL-3 but significant decrease (p<0.05) in both PEI-1 and PEI-2 in treated male rats as compared to the control male rats indicating thatE. longifolia Jack increased the sexual performance of the treated male rats by extending the duration of coitus and decreasing the refractory period between the different series of copulation. Hence, this preliminary work supports the folk use of this plant as having aphrodisiac property.
    Matched MeSH terms: Eurycoma
  20. Chua LS, Abdul-Rahman N, Rosidi B, Lee CT
    Nat Prod Res, 2013 Mar;27(4-5):314-8.
    PMID: 22468741 DOI: 10.1080/14786419.2012.676552
    A water extraction method has been used to extract plant proteins from the roots of Eurycoma longifolia harvested from Perak and Pahang, Malaysia. On the basis of the spectroscopic Bradford assay, Tongkat Ali Perak and Pahang contained 0.3868 and 0.9573 mg mL(-1) of crude protein, respectively. The crude proteins were separated by one dimensional 15% sodium dodecyl sulphate polyacrylamide gel electrophoresis into two (49.8 and 5.5 kD) and four (49.8, 24.7, 21.1 and 5.5 kD) protein spots for Tongkat Ali Perak and Pahang, respectively. Isoleucine was present in the highest concentration significantly. Both plant samples showed differences in the mineral and trace element profiles, but the minerals calcium, magnesium and potassium were present in the highest concentration. The highly concerned toxic metals such as arsenic and lead were not detected.
    Matched MeSH terms: Eurycoma/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links