Displaying publications 81 - 100 of 10152 in total

Abstract:
Sort:
  1. Erfanian A, Mirhosseini H, Rasti B, Hair-Bejo M, Bin Mustafa S, Abd Manap MY
    J Agric Food Chem, 2015 Jun 24;63(24):5795-804.
    PMID: 26022498 DOI: 10.1021/acs.jafc.5b01468
    The aim of this study was to evaluate the effects of fortification and nano-size reduction on calcium absorption and bioavailability of milk powder formula in sham, ovariectomized, and ovariectomized-osteoporosis rats as a menopause and menopause-osteoporosis model. Skim milk powder and skim milk powder fortified with calcium citrate and the suitable doses of inulin, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and vitamins D3, K1, and B6 were formulated based on the North American and Western European recommended dietary allowances. Optimization on cycle and pressure of high-pressure homogenizer was done to produce nano-fortified milk powder. In vivo study demonstrated that fortification and calcium citrate nano-fortified milk powder increased absorption and bioavailability of calcium, as well as bone stiffness and bone strength in sham, ovariectomized, and ovariectomized-osteoporosis rats. This study successfully developed an effective fortified milk powder for food application.
    Matched MeSH terms: Milk/chemistry; Powders/chemistry
  2. Yasin NH, Mumtaz T, Hassan MA, Abd Rahman N
    J Environ Manage, 2013 Nov 30;130:375-85.
    PMID: 24121591 DOI: 10.1016/j.jenvman.2013.09.009
    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.
    Matched MeSH terms: Hydrogen/chemistry*
  3. Frimayanti N, Zain SM, Lee VS, Wahab HA, Yusof R, Abd Rahman N
    In Silico Biol. (Gedrukt), 2011;11(1-2):29-37.
    PMID: 22475750 DOI: 10.3233/ISB-2012-0442
    Publication year=2011-2012
    Matched MeSH terms: Serine Proteinase Inhibitors/chemistry*; Zingiberaceae/chemistry*; Chalcones/chemistry
  4. Mohd Bakhori SK, Mahmud S, Ling CA, Sirelkhatim AH, Hasan H, Mohamad D, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Sep 01;78:868-877.
    PMID: 28576061 DOI: 10.1016/j.msec.2017.04.085
    ZnO with two different morphologies were used to study the inhibition of Streptococcus sobrinus and Streptococcus mutans which are closely associated with tooth cavity. Rod-like shaped ZnO-A and plate-like shaped ZnO-B were produced using a zinc boiling furnace. The nanopowders were characterized using energy filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy and dynamic light scattering (DLS) to confirm the properties of the ZnO polycrystalline wurtzite structures. XRD results show that the calculated crystallite sizes of ZnO-A and ZnO-B were 36.6 and 39.4nm, respectively, whereas DLS revealed particle size distributions of 21.82nm (ZnO-A) and 52.21nm (ZnO-B). PL spectra showed ion vacancy defects related to green and red luminescence for both ZnO particles. These defects evolved during the generation of reactive oxygen species which contributed to the antibacterial activity. Antibacterial activity was investigated using microdilution technique towards S. sobrinus and S. mutans at different nanopowder concentrations. Results showed that ZnO-A exhibited higher inhibition on both bacteria compared with ZnO-B. Moreover, S. mutans was more sensitive compared with S. sobrinus because of its higher inhibition rate.
    Matched MeSH terms: Nanostructures/chemistry*
  5. Wong CF, Salleh AB, Basri M, Abd Rahman RN
    Biotechnol Appl Biochem, 2010 Sep;57(1):1-7.
    PMID: 20726840 DOI: 10.1042/BA20100224
    The structural gene of elastase strain K (elastase from Pseudomonas aeruginosa strain K), namely HindIII1500PstI, was successfully sequenced to contain 1497 bp. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consists of 301 amino acids, with a molecular mass of 33.1 kDa, and contains a conserved motif HEXXH, zinc ligands and residues involved in the catalysis of elastase strain K. The structural gene was successfully cloned to a shuttle vector, pUCP19, and transformed into Escherichia coli strains TOP10, KRX, JM109 and Tuner™ pLacI as well as P. aeruginosa strains PA01 (A.T.C.C. 47085) and S5, with detection of significant protein expression. Overexpression was detected from transformants KRX/pUCP19/HindIII1500PstI of E. coli and PA01/pUCP19/HindIII1500PstI of P. aeruginosa, with increases in elastolytic activity to 13.83- and 5.04-fold respectively relative to their controls. In addition, recombinant elastase strain K showed considerable stability towards numerous organic solvents such as methanol, ethanol, acetone, toluene, undecan-1-ol and n-dodecane, which typically pose a detrimental effect on enzymes; our finding provides further information to support the potential application of the enzyme in synthetic industries, particularly peptide synthesis.
    Matched MeSH terms: Organic Chemicals/chemistry; Pancreatic Elastase/chemistry*; Recombinant Proteins/chemistry*; Solvents/chemistry
  6. Ramli MR, Siew WL, Ibrahim NA, Kuntom A, Abd Razak RA
    PMID: 25798697 DOI: 10.1080/19440049.2015.1032368
    This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.
    Matched MeSH terms: alpha-Chlorohydrin/chemistry*
  7. Ahmad AL, Oh PC, Abd Shukor SR
    Biotechnol Adv, 2009 May-Jun;27(3):286-96.
    PMID: 19500550 DOI: 10.1016/j.biotechadv.2009.01.003
    Over the past decade, L-homophenylalanine is extensively used in the pharmaceutical industry as a precursor for production of angiotensin-converting enzyme (ACE) inhibitor, which possesses significant clinical application in the management of hypertension and congestive heart failure (CHF). A number of chemical methods have been reported thus far for the synthesis of L-homophenylalanine. However, chemical methods generally suffer from process complexity, high cost, and environmental pollution. On the other hand, enantiomerically pure L-homophenylalanine can be obtained elegantly and efficiently by employing biocatalytic methods, where it appears to be the most attractive process in terms of potential industrial applications, green chemistry and sustainability. Herein we review the biocatalytic synthesis of vital L-homophenylalanine as potentially useful intermediate in the production of pharmaceutical drugs in environmentally friendly conditions, using membrane bioreactor for sustainable biotransformation process. One envisages the future prospects of developing an integrated membrane bioreactor system with improved performance for L-homophenylalanine production.
    Matched MeSH terms: Green Chemistry Technology/methods*
  8. Ahmad AL, Tan LS, Abd Shukor SR
    J Hazard Mater, 2008 Jun 15;154(1-3):633-8.
    PMID: 18055106
    This study examined the performance of nanofiltration membranes to retain atrazine and dimethoate in aqueous solution under different pH conditions. Four nanofiltration membranes, NF90, NF200, NF270 and DK are selected to be examined. The operating pressure, feed pesticide and stirring rate were kept constant at 6x10(5) Pa, 10 mg/L and 1000 rpm. It was found that increasing the solution's pH increased atrazine and dimethoate rejection but reduced the permeate flux performance for NF200, NF270 and DK. However, NF90 showed somewhat consistent performance in both rejection and permeate flux regardless of the solution's pH. NF90 maintained above 90% of atrazine rejection and approximately 80% of dimethoate rejection regardless of the changes in solution's pH. Thus, NF90 is deemed the more suitable nanofiltration membrane for atrazine and dimethoate retention from aqueous solution compared to NF200, NF270 and DK.
    Matched MeSH terms: Atrazine/chemistry*; Dimethoate/chemistry*; Herbicides/chemistry*; Insecticides/chemistry*
  9. Ahmad A, Ghufran R, Abd Wahid Z
    J Hazard Mater, 2011 Dec 30;198:40-8.
    PMID: 22047724 DOI: 10.1016/j.jhazmat.2011.10.008
    The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.
    Matched MeSH terms: Oxides/chemistry*; Calcium Compounds/chemistry*
  10. Zanirun Z, Bahrin EK, Lai-Yee P, Hassan MA, Abd-Aziz S
    Appl Biochem Biotechnol, 2014 Jan;172(1):423-35.
    PMID: 24085387 DOI: 10.1007/s12010-013-0530-6
    The effect of cultivation condition of two locally isolated ascomycetes strains namely Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 were compared in submerged and solid state fermentation. Physical evaluation on water absorption index, solubility index and chemical properties of lignin, hemicellulose and cellulose content as well as the cellulose structure on crystallinity and amorphous region of treated oil palm empty fruit bunch (OPEFB) (resulted in partial removal of lignin), sago pith residues (SPR) and oil palm decanter cake towards cellulases production were determined. Submerged fermentation shows significant cellulases production for both strains in all types of substrates. Crystallinity of cellulose and its chemical composition mainly holocellulose components was found to significantly affect the total cellulase synthesis in submerged fermentation as the higher crystallinity index, and holocellulose composition will increase cellulase production. Treated OPEFB apparently induced the total cellulases from T. asperellum UPM1 and A. fumigatus UPM2 with 0.66 U/mg FPase, 53.79 U/mg CMCase, 0.92 U/mg β-glucosidase and 0.67 U/mg FPase, 47.56 U/mg and 0.14 U/mg β-glucosidase, respectively. Physical properties of water absorption and solubility for OPEFB and SPR also had shown significant correlation on the cellulases production.
    Matched MeSH terms: Carbon/chemistry*; Lignin/chemistry; Plant Oils/chemistry
  11. Chaibakhsh N, Rahman MB, Basri M, Salleh AB, Abd-Aziz S
    Biotechnol J, 2010 Aug;5(8):848-55.
    PMID: 20632329 DOI: 10.1002/biot.201000063
    Dimethyl adipate (DMA) was synthesized by immobilized Candida antarctica lipase B-catalyzed esterification of adipic acid and methanol. To optimize the reaction conditions of ester production, response surface methodology was applied, and the effects of four factors namely, time, temperature, enzyme concentration, and molar ratio of substrates on product synthesis were determined. A statistical model predicted that the maximum conversion yield would be 97.6%, at the optimal conditions of 58.5 degrees C, 54.0 mg enzyme, 358.0 min, and 12:1 molar ratio of methanol to adipic acid. The R(2) (0.9769) shows a high correlation between predicted and experimental values. The kinetics of the reaction was also investigated in this study. The reaction was found to obey the ping-pong bi-bi mechanism with methanol inhibition. The kinetic parameters were determined and used to simulate the experimental results. A good quality of fit was observed between the simulated and experimental initial rates.
    Matched MeSH terms: Adipates/chemistry; Methanol/chemistry; Enzymes, Immobilized/chemistry; Lipase/chemistry
  12. Jenol MA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S
    Bioprocess Biosyst Eng, 2020 Nov;43(11):2027-2038.
    PMID: 32572569 DOI: 10.1007/s00449-020-02391-9
    Sago hampas is a starch-based biomass from sago processing industries consisted of 58% remaining starch. This study has demonstrated the bioconversion of sago hampas to volatile fatty acids (VFAs) by Clostridium beijerinckii SR1 via anaerobic digestion. Higher total VFAs were obtained from sago hampas (5.04 g/L and 0.287 g/g) as compared to commercial starch (5.94 g/L and 0.318 g/g). The physical factors have been investigated for the enhancement of VFAs production using one-factor-at-a-time (OFAT). The optimum condition; 3% substrate concentration, 3 g/L of yeast extract concentration and 2 g/L of ammonium nitrate enhanced the production of VFAs by 52.6%, resulted the total VFAs produced is 7.69 g/L with the VFAs yield of 0.451 g/g. VFAs hydrolysate produced successfully generated 273.4 mV of open voltage circuit and 61.5 mW/m2 of power density in microbial fuel cells. It was suggested that sago hampas provide as an alternative carbon feedstock for bioelectricity generation.
    Matched MeSH terms: Carbon/chemistry*; Nitrogen/chemistry*
  13. Md Badrul Hisham NH, Ibrahim MF, Ramli N, Abd-Aziz S
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323813 DOI: 10.3390/molecules24142617
    Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or skin contact, which could lead to liver damage, cancer, and other severe conditions in the long term. Biosurfactant as an efficient biological surface-active agent may provide an alternative solution for the removal of heavy metals from industrial wastes. Biosurfactants exhibit the properties of reducing surface and interfacial tension, stabilizing emulsions, promoting foaming, high selectivity, and specific activity at extreme temperatures, pH, and salinity, and the ability to be synthesized from renewable resources. This study aimed to produce biosurfactant from renewable feedstock, which is used cooking oil (UCO), by a local isolate, namely Bacillus sp. HIP3 for heavy metals removal. Bacillus sp. HIP3 is a Gram-positive isolate that gave the highest oil displacement area with the lowest surface tension, of 38 mN/m, after 7 days of culturing in mineral salt medium and 2% (v/v) UCO at a temperature of 30 °C and under agitation at 200 rpm. An extraction method, using chloroform:methanol (2:1) as the solvents, gave the highest biosurfactant yield, which was 9.5 g/L. High performance liquid chromatography (HPLC) analysis confirmed that the biosurfactant produced by Bacillus sp. HIP3 consists of a lipopeptide similar to standard surfactin. The biosurfactant was capable of removing 13.57%, 12.71%, 2.91%, 1.68%, and 0.7% of copper, lead, zinc, chromium, and cadmium, respectively, from artificially contaminated water, highlighting its potential for bioremediation.
    Matched MeSH terms: Surface-Active Agents/chemistry*; Metals, Heavy/chemistry*
  14. Fathy SA, Mohamed MR, Emam MA, Mohamed SS, Ghareeb DA, Elgohary SA, et al.
    Trop Biomed, 2019 Dec 01;36(4):972-986.
    PMID: 33597467
    Candida is the most frequent common causes of invasive fungal infections and associated with high morbidity and mortality. Most of available antifungal agents have side effects. This opened up new avenues to investigate the antifungal efficacy of active extracts from marine algae. So the aim of this study was to evaluate the protective and the curative effect of Ulva fasciata extract against an invasive candidiasis in mice and to study its underlying mechanism. The active ingredients of Ulva fasciata extract were evaluated using HPLC and GC/MS. Fifty mice were included in current work, and the level of inflammatory markers; Interleukin (IL)-4, IL-12, Interferon-gamma (IFN-γ) and Tumor necrosis factor-alpha (TNF-α) were determined using ELISA kits. Hematological, biochemical and oxidative stress parameters were determined using commercial kits. Moreover, the histopathological examinations were carried on liver, kidney and spleen for all groups. The results obtained showed that treatment with U. fasciata either before or after Candida infection significantly improved the hematological, biochemical alterations and antioxidant status caused by this infection. Furthermore, the U. fasciata reduced histopathological changes induced by Candida as well as it could increase the expression of IL-12 and IFN-γ while minimized the expression of TNF-α and IL-4 in all infected mice compared to infected untreated mice. These data propose that U. fasciata can ameliorate inflammatory reactions related to Candida albicans cytotoxicity via its ability to augment cellular antioxidant defenses by its active compounds.
    Matched MeSH terms: Seaweed/chemistry; Ulva/chemistry*
  15. Jamaludin FA, Ab-Kadir MZA, Izadi M, Azis N, Jasni J, Abd-Rahman MS
    PLoS One, 2017;12(11):e0187892.
    PMID: 29136025 DOI: 10.1371/journal.pone.0187892
    Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability.
    Matched MeSH terms: Polymers/chemistry*
  16. Lee SK, Tan KW, Ng SW, Ooi KK, Ang KP, Abdah MA
    PMID: 24231745 DOI: 10.1016/j.saa.2013.10.084
    A cationic Schiff base ligand, TSB (L) and its Zn (II) complex (1) were synthesized and characterized by using CHN, (1)H-NMR, FT-IR, UV, LC-MS, and X-ray methods. Their ability to inhibit topoisomerase I, DNA cleavage activities, and cytotoxicity were studied. X-ray diffraction study shows that the mononuclear complex 1 is four coordinated with distorted tetrahedral geometry. The singly deprotonated Schiff base ligand L acts as a bidentate ON-donor ligand. Complexation of L increases the inhibitory strength on topoisomerase I activity. Complex 1 could fully inhibit topoisomerase I activity at 250 μM, while L did not show any inhibitory effect on topoisomerase I activity. In addition, L and complex 1 could cleave pBR322 DNA in a concentration and time dependent profile. Surprisingly, L has better DNA cleavage activity than complex 1. The cleavage of DNA by complex 1 is altered in the presence of hydrogen peroxide. Furthermore, L and complex 1 are mildly cytotoxic towards human ovarian cancer A2780 and hepatocellular carcinoma HepG2.
    Matched MeSH terms: Schiff Bases/chemistry
  17. Norhaizan ME, Ng SK, Norashareena MS, Abdah MA
    Malays J Nutr, 2011 Dec;17(3):367-75.
    PMID: 22655458 MyJurnal
    Phytic acid (PA) has been shown to have positive nutritional benefits. There are also claims that it is able to prevent cancer through its antioxidant capability. This study investigated antioxidant activity and cytotoxic effect of PA extracted from rice bran against selected cancer cell lines (i.e. ovarian, breast and liver cancer).
    Matched MeSH terms: Seeds/chemistry*
  18. Penjumras P, Rahman RA, Talib RA, Abdan K
    ScientificWorldJournal, 2015;2015:293609.
    PMID: 26167523 DOI: 10.1155/2015/293609
    Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R (2)) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m(2), respectively.
    Matched MeSH terms: Biocompatible Materials/chemistry*; Cellulose/chemistry*; Polymers/chemistry*; Lactic Acid/chemistry*; Bombacaceae/chemistry*
  19. Mohamed SM, Abou-Ghadir OMF, El-Mokhtar MA, Aboraia AS, Abdel Aal AM
    J Nat Prod, 2023 May 26;86(5):1150-1158.
    PMID: 37098901 DOI: 10.1021/acs.jnatprod.2c00793
    Cancer is often associated with an aberrant increase in tubulin and microtubule activity required for cell migration, invasion, and metastasis. A new series of fatty acid conjugated chalcones have been designed as tubulin polymerization inhibitors and anticancer candidates. These conjugates were designed to harness the beneficial physicochemical properties, ease of synthesis, and tubulin inhibitory activity of two classes of natural components. New lipidated chalcones were synthesized from 4-aminoacetophenone via N-acylation followed by condensation with different aromatic aldehydes. All new compounds showed strong inhibition of tubulin polymerization and antiproliferative activity against breast and lung cancer cell lines (MCF-7 and A549) at low or sub-micromolar concentrations. A significant apoptotic effect was shown using a flow cytometry assay that corresponded to cytotoxicity against cancer cell lines, as indicated by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. Decanoic acid conjugates were more potent than longer lipid analogues, with the most active being more potent than the reference tubulin inhibitor, combretastatin-A4 and the anticancer drug, doxorubicin. None of the newly synthesized compounds caused any detectable cytotoxicity against the normal cell line (Wi-38) or hemolysis of red blood cells below 100 μM. It is unlikely that the new conjugates described would affect normal cells or interrupt with cell membranes due to their lipidic nature. A quantitative structure-activity relationship analysis was performed to determine the influence of 315 descriptors of the physicochemical properties of the new conjugates on their tubulin inhibitory activity. The obtained model revealed a strong correlation between the tubulin inhibitory activity of the investigated compounds and their dipole moment and degree of reactivity.
    Matched MeSH terms: Tubulin Modulators/chemistry
  20. Bzour M, Zuki FM, Mispan MS, Jodeh S, Abdel-Latif M
    Bull Environ Contam Toxicol, 2019 Aug;103(2):348-353.
    PMID: 31069403 DOI: 10.1007/s00128-019-02625-x
    The residual activity of herbicides may be detrimental to the environment, requiring analysis of the persistent residues in the soil and water. A field study was conducted to measure the residues of Imidazolinone (IMI) in three Clearfield® rice field soils at three different locations in Malaysia. The analyses of IMI in the soil samples were carried out using a high-performance liquid chromatography (HPLC). These herbicides are widely used; however, few studies have been conducted on both residues, especially in the context of Malaysian soil. Residues of imazapic and imazapyr were found to fall within 0.03-0.58 µg/mL and 0.03-1.96 µg/mL, respectively, in three locations. IMI herbicides are persistent in the soil, and their residues remain for up to 85 days after application. A pre-harvest study was suggested for these herbicides on water, which will provide a clearer indicator on the use of IMI in Clearfield® rice fields.
    Matched MeSH terms: Soil/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links