Displaying publications 1001 - 1020 of 10538 in total

Abstract:
Sort:
  1. Cheong JN, Mirhosseini H, Tan CP
    Int J Food Sci Nutr, 2010 Jun;61(4):417-24.
    PMID: 20151850 DOI: 10.3109/09637481003591574
    The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P < 0.05) by increasing the chain length of fatty acids and also by increasing the hydrophile-lipophile balance value. Among the prepared nanodispersions, the nanoemulsion containing Polysorbate 20 showed the smallest average droplet size (202 nm) and narrowest size distribution for tocopherol-tocotrienol nanodispersions, while sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.
    Matched MeSH terms: Caseins/chemistry*; Emulsions/chemistry*; Esters/chemistry; Fatty Acids/chemistry*; Polysorbates/chemistry*; Arecaceae/chemistry*
  2. Shukor MY, Baharom NA, Masdor NA, Abdullah MP, Shamaan NA, Jamal JA, et al.
    J Environ Biol, 2009 Jan;30(1):17-22.
    PMID: 20112858
    A new inhibitive heavy metals determination method using trypsin has been developed. The enzyme was assayed using the casein-Coomassie-dye-binding method. In the absence of inhibitors, casein was hydrolysed to completion and the Coomassie-dye was unable to stain the protein and the solution became brown. In the presence of metals, the hydrolysis of casein was inhibited and the solution remained blue. The bioassay was able to detect zinc and mercury with IC50 (concentration causing 50% inhibition) values of 5.78 and 16.38 mg l(-1) respectively. The limits of detection (LOD), for zinc and mercury were 0.06 mg l(-1) (0.05-0.07, 95% confidence interval) and 1.06 mg l(-1) (1.017-1.102, 95% confidence interval), respectively. The limits of quantitation (LOQ) for zinc and mercury were 0.61 mg l(-1) (0.51-0.74 at a 95% confidence interval) and 1.35 mg l(-1) (1.29-1.40 at a 95% confidence interval), respectively. The IC50 value for zinc was much higher than the IC50 values for papain and Rainbow trout, but was within the range of Daphnia magna and Microtox. The IC50 value for zinc was only lower than those for immobilized urease. Other toxic heavy metals, such as lead, silver arsenic, copper and cadmium, did not inhibit the enzyme at 20 mg l(-1). Using this assay we managed to detect elevated zinc concentrations in several environmental samples. Pesticides, such as carbaryl, flucythrinate, metolachlor glyphosate, diuron, diazinon, endosulfan sulphate, atrazine, coumaphos, imidacloprid, dicamba and paraquat, showed no effect on the activity of trypsin relative to control (One-way ANOVA, F(12,26)= 0.3527, p> 0.05). Of the 17 xenobiotics tested, only (sodium dodecyl sulphate) SDS gave positive interference with 150% activity higher than that of the control at 0.25% (v/v).
    Matched MeSH terms: Pesticides/chemistry; Trypsin/chemistry*; Trypsin Inhibitors/chemistry; Zinc/chemistry; Xenobiotics/chemistry; Metals, Heavy/chemistry
  3. Lee SY, Pereira BP, Yusof N, Selvaratnam L, Yu Z, Abbas AA, et al.
    Acta Biomater, 2009 Jul;5(6):1919-25.
    PMID: 19289306 DOI: 10.1016/j.actbio.2009.02.014
    A poly(vinyl alcohol) (PVA) hydrogel composite scaffold containing N,O-carboxymethylated chitosan (NOCC) was tested to assess its potential as a scaffold for cartilage tissue engineering in a weight-bearing environment. The mechanical properties under unconfined compression for different hydration periods were investigated. The effect of supplementing PVA with NOCC (20wt.% PVA:5vol.% NOCC) produced a porosity of 43.3% and this was compared against a non-porous PVA hydrogel (20g PVA: 100ml of water, control). Under non-hydrated conditions, the porous PVA-NOCC hydrogel behaved in a similar way to the control non-porous PVA hydrogel, with similar non-linear stress-strain response under unconfined compression (0-30% strain). After 7days' hydration, the porous hydrogel demonstrated a reduced stiffness (0.002kPa, at 25% strain), resulting in a more linear stiffness relationship over a range of 0-30% strain. Poisson's ratio for the hydrated non-porous and porous hydrogels ranged between 0.73 and 1.18, and 0.76 and 1.33, respectively, suggesting a greater fluid flow when loaded. The stress relaxation function for the porous hydrogel was affected by the hydration period (from 0 to 600s); however the percentage stress relaxation regained by about 95%, after 1200s for all hydration periods assessed. No significant differences were found between the different hydration periods between the porous hydrogels and control. The calculated aggregate modulus, H(A), for the porous hydrogel reduced drastically from 10.99kPa in its non-hydrated state to about 0.001kPa after 7days' hydration, with the calculated shear modulus reducing from 30.92 to 0.14kPa, respectively. The porous PVA-NOCC hydrogel conformed to a biphasic, viscoelastic model, which has the desired properties required for any scaffold in cartilage tissue engineering.
    Matched MeSH terms: Biocompatible Materials/chemistry*; Extracellular Matrix/chemistry*; Polyvinyl Alcohol/chemistry*; Water/chemistry*; Hydrogels/chemistry; Chitosan/chemistry*
  4. Dahlan I, Ahmad Z, Fadly M, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2010 Jun 15;178(1-3):249-57.
    PMID: 20137857 DOI: 10.1016/j.jhazmat.2010.01.070
    In this work, the application of response surface and neural network models in predicting and optimizing the preparation variables of RHA/CaO/CeO(2) sorbent towards SO(2)/NO sorption capacity was investigated. The sorbents were prepared according to central composite design (CCD) with four independent variables (i.e. hydration period, RHA/CaO ratio, CeO(2) loading and the use of RHA(raw) or pretreated RHA(600 degrees C) as the starting material). Among all the variables studied, the amount of CeO(2) loading had the largest effect. The response surface models developed from CCD was effective in providing a highly accurate prediction for SO(2) and NO sorption capacities within the range of the sorbent preparation variables studied. The prediction of CCD experiment was verified by neural network models which gave almost similar results to those determined by response surface models. The response surface models together with neural network models were then successfully used to locate and validate the optimum hydration process variables for maximizing the SO(2)/NO sorption capacities. Through this optimization process, it was found that maximum SO(2) and NO sorption capacities of 44.34 and 3.51 mg/g, respectively could be obtained by using RHA/CaO/CeO(2) sorbents prepared from RHA(raw) with hydration period of 12h, RHA/CaO ratio of 2.33 and CeO(2) loading of 8.95%.
    Matched MeSH terms: Cesium/chemistry*; Nitric Oxide/chemistry*; Oxides/chemistry*; Oryza/chemistry*; Sulfur Dioxide/chemistry*; Calcium Compounds/chemistry*
  5. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2009;58(9):467-71.
    PMID: 19654456
    N,N'-Carbonyl difatty amides (CDFAs) have been synthesized from palm oil using sodium ethoxide as catalyst. Ethyl fatty esters (EFEs) were produced as a by-product as well as glycerol. The synthesis was carried out by reflux palm oil and urea in presence of ethanol. In this process, palm oil gave 79% pure CDFAs after 8 hours and molar ratio of urea to palm oil was 6.2: 1 at 78 degrees C. Both CDFAs and EFEs have been characterized using elemental analysis, Fourier transform infrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique.
    Matched MeSH terms: Ethanol/chemistry; Amides/chemistry*; Esters/chemistry; Fatty Acids/chemistry*; Plant Oils/chemistry*; Urea/chemistry
  6. Daud NK, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):938-44.
    PMID: 20042285 DOI: 10.1016/j.jhazmat.2009.11.130
    The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H(2)O(2)](o)), the initial concentration of AR1 ([AR1](o)) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst=5.0 g L(-1), initial pH=2.0, [H(2)O(2)](o)=8 mM, [AR1](o)=50 mg L(-1) at temperature 30 degrees C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction.
    Matched MeSH terms: Hydrogen Peroxide/chemistry*; Iron/chemistry*; Rhodamines/chemistry*; Oryza/chemistry*; Water Pollutants, Chemical/chemistry*; Xylem/chemistry*
  7. Natasha AN, Sopyan I, Mel M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:85-6.
    PMID: 19024996
    The effect of Manganese (Mn) addition on the Vickers hardness and relative density of nanocrystalline hydroxyapatite (HA) dense bodies were studied. The starting Mn doped HA powders was synthesized via sol-gel method with Mn concentration varies from 2 mol% up to 15 mol% Mn. The Mn doped HA disc samples were prepared by uniaxial pressing at 200MPa and subsequently sintered at 1300 degrees C. Characterization was carried out where appropriate to determine the phases present, bulk density, Vickers hardness of the various content of Mn doped HA dense bodies. The addition of Mn was observed to influence the color appearance of the powders and dense bodies as well. Higher Mn concentration resulted in dark grey powders. It was also found that the hardness and relative density of the material increased as the Mn content increased and influenced by the crystallinity of the prepared Mn doped HA powders.
    Matched MeSH terms: Powders/chemistry*; Durapatite/chemistry*; Manganese Compounds/chemistry*; Bone Substitutes/chemistry*; Coated Materials, Biocompatible/chemistry; Nanoparticles/chemistry*
  8. Awang M, Seng GM
    ChemSusChem, 2008;1(3):210-4.
    PMID: 18605208 DOI: 10.1002/cssc.200700083
    The cost of chemicals prohibits many technically feasible enhanced oil recovery methods to be applied in oil fields. It is shown that by-products from oil palm processing can be a source of valuable chemicals. Analysis of the pyrolysis oil from oil palm shells, a by-product of the palm oil industry, reveals a complex mixture of mainly phenolic compounds, carboxylic acids, and aldehydes. The phenolic compounds were extracted from the pyrolysis oil by liquid-liquid extraction using alkali and an organic solvent and analyzed, indicating the presence of over 93% phenols and phenolic compounds. Simultaneous sulfonation and alkylation of the pyrolysis oil was carried out to produce surfactants for application in oil fields. The lowest measured surface tension and critical micelle concentration was 30.2 mNm(-1) and 0.22 wt%, respectively. Displacement tests showed that 7-14% of the original oil in place was recovered by using a combination of surfactants and xanthan (polymer) as additives.
    Matched MeSH terms: Plant Oils/chemistry*; Polymers/chemistry; Sulfones/chemistry*; Sulfonic Acids/chemistry; Surface-Active Agents/chemistry; Phenol/chemistry*
  9. Wan Ibrahim WA, Hermawan D, Sanagi MM, Aboul-Enein HY
    J Sep Sci, 2009 Feb;32(3):466-71.
    PMID: 19142910 DOI: 10.1002/jssc.200800512
    A CD-modified micellar EKC (CD-MEKC) method with 2-hydroxypropyl-gamma-CD (HP-gamma-CD) as chiral selector for the enantioseparation of three chiral triazole fungicides, namely hexaconazole, penconazole, and myclobutanil, is reported for the first time. Simultaneous enantioseparation of the three triazole fungicides was successfully achieved using a CD-MEKC system containing 40 mM HP-gamma-CD and 50 mM SDS in 25 mM phosphate buffer (pH 3.0) solution with resolutions (R(s)) greater than 1.60, peak efficiencies (N) greater than 200,000 for all enantiomers and an analysis time within 15 min compared to 36 min as previously reported using sulfated-beta-CD.
    Matched MeSH terms: Chemistry Techniques, Analytical/instrumentation*; Chemistry Techniques, Analytical/methods*; Cyclodextrins/chemistry*; Nitriles/chemistry; Triazoles/chemistry
  10. Karim AA, Toon LC, Lee VP, Ong WY, Fazilah A, Noda T
    J Food Sci, 2007 Mar;72(2):C132-8.
    PMID: 17995828
    Effects of phosphorus content (510 to 987 ppm) on the gelatinization and retrogradation of 6 potato cultivars (Benimaru, Hokkaikogane, Irish Cobbler, Konafubuki, Sakurafubuki, and Touya) were studied. Pasting properties were analyzed by RVA, thermal properties by DSC, and mechanical properties of the starch gels by TA. Phosphorus was positively correlated with swelling power (r= 0.84) and negatively correlated with solubility (r= 0.83). Phosphorus content showed significant effect on certain pasting properties of potato starch such as peak viscosity, breakdown, and setback. Phosphorus content showed a significant positive correlation with peak viscosity (r= 0.95) and breakdown (r= 0.90). Increasing concentration of phosphorus tends to decrease the setback. Phosphorus content had no influence on thermal properties and mechanical properties of potato starch gel.
    Matched MeSH terms: Amylose/chemistry; Chemistry, Physical; Gels/chemistry; Phosphorus/chemistry*; Solanum tuberosum/chemistry*; Starch/chemistry*
  11. Chong TT, Hashim R, Bryce RA
    J Phys Chem B, 2006 Mar 16;110(10):4978-84.
    PMID: 16526739
    Comparative molecular dynamics simulations of n-octyl-beta-D-galactopyranoside (beta-C8Gal) and n-octyl-beta-D-glucopyranoside (beta-C8Glc) micelles in aqueous solution have been performed to explore the influence of carbohydrate stereochemistry on glycolipid properties at the atomic level. In particular, we explore the hypothesis that differences in T(m) and T(c) for beta-C8Gal and beta-C8Glc in lyotropic systems arise from a more extensive hydrogen bonding network between beta-C8Gal headgroups relative to beta-C8Glc, due to the axial 4-OH group in beta-C8Gal. Good agreement of the 13 ns micelle-water simulations with available experimental information is found. The micelles exhibit a similar shape, size, and degree of exposed alkyl chain surface area. We find net inter- and intra-headgroup hydrogen bonding is also similar for beta-C8Gal and beta-C8Glc, although n-octyl-beta-D-galactopyranoside micelles do exhibit a slightly greater degree of inter- and intra-headgroup hydrogen bonding. However, the main distinction in the calculated microscopic behavior of beta-C8Glc and beta-C8Gal micelles lies in solvent interactions, where beta-d-glucosyl headgroups are considerably more solvated (mainly at the equatorial O4 oxygen). These results agree with preceding theoretical and experimental studies of monosaccharides in aqueous solution. A number of long water residence times are found for solvent surrounding both micelle types, the largest of which are associated with surface protrusions involving headgroup clusters. Our simulations, therefore, predict differences in hydrogen bonding for the two headgroup stereochemistries, including a small difference in inter-headgroup interactions, which may contribute to the higher T(m) and T(c) values of beta-C8Gal surfactants relative to beta-C8Glc in lyotropic systems.
    Matched MeSH terms: Carbohydrates/chemistry*; Galactosides/chemistry; Glucosides/chemistry; Glycosides/chemistry*; Solutions/chemistry; Water/chemistry*
  12. Amid BT, Mirhosseini H
    Int J Mol Sci, 2012 Nov 13;13(11):14871-88.
    PMID: 23203099 DOI: 10.3390/ijms131114871
    In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.
    Matched MeSH terms: Biopolymers/chemistry*; Plant Extracts/chemistry*; Plant Proteins/chemistry*; Polysaccharides/chemistry*; Seeds/chemistry*; Bombacaceae/chemistry*
  13. Zainol S, Basri M, Basri HB, Shamsuddin AF, Abdul-Gani SS, Karjiban RA, et al.
    Int J Mol Sci, 2012;13(10):13049-64.
    PMID: 23202937 DOI: 10.3390/ijms131013049
    Response surface methodology (RSM) was utilized to investigate the influence of the main emulsion composition; mixture of palm and medium-chain triglyceride (MCT) oil (6%-12% w/w), lecithin (1%-3% w/w), and Cremophor EL (0.5%-1.5% w/w) as well as the preparation method; addition rate (2-20 mL/min), on the physicochemical properties of palm-based nanoemulsions. The response variables were the three main emulsion properties; particle size, zeta potential and polydispersity index. Optimization of the four independent variables was carried out to obtain an optimum level palm-based nanoemulsion with desirable characteristics. The response surface analysis showed that the variation in the three responses could be depicted as a quadratic function of the main composition of the emulsion and the preparation method. The experimental data could be fitted sufficiently well into a second-order polynomial model. The optimized formulation was stable for six months at 4 °C.
    Matched MeSH terms: Chemistry, Pharmaceutical; Emulsions/chemistry*; Glycerol/chemistry; Levodopa/chemistry*; Plant Oils/chemistry*; Nanostructures/chemistry*
  14. Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP
    Food Chem, 2016 Mar 1;194:416-23.
    PMID: 26471574 DOI: 10.1016/j.foodchem.2015.08.045
    A solvent displacement method was used to prepare lutein nanodispersions. The effects of processing parameters (addition method, addition rate, stirring time and stirring speed) and emulsifiers with different stabilizing mechanisms (steric, electrostatic, electrosteric and combined electrostatic-steric) on the particle size and particle size distribution (PSD) of the nanodispersions were investigated. Among the processing parameters, only the addition method and stirring time had significant effects (p<0.05) on the particle size and PSD. For steric emulsifiers, Tween 20, 40, 60 and 80 were used to produce nanodispersions successfully with particle sizes below 100nm. Tween 80 (steric) was then chosen for further comparison against sodium dodecyl sulfate (SDS) (electrostatic), sodium caseinate (electrosteric) and SDS-Tween 80 (combined electrostatic-steric) emulsifiers. At the lowest emulsifier concentration of 0.1%, all the emulsifiers invariably produced stable nanodispersions with small particle sizes (72.88-142.85nm) and narrow PSDs (polydispersity index<0.40).
    Matched MeSH terms: Caseins/chemistry; Polysorbates/chemistry; Surface-Active Agents/chemistry*; Lutein/chemistry*; Emulsifying Agents/chemistry*; Nanoparticles/chemistry
  15. Gođevac D, Stanković J, Novaković M, Anđelković B, Dajić-Stevanović Z, Petrović M, et al.
    J Nat Prod, 2015 Sep 25;78(9):2198-204.
    PMID: 26290401 DOI: 10.1021/acs.jnatprod.5b00273
    From the aerial parts of Atriplex littoralis, three new flavonoid glycosides named atriplexins I-III (1-3), a known flavonoid glycoside, spinacetin 3-O-β-d-glucopyranoside (4), arbutin (5), and 4-hydroxybenzyl-β-d-glucopyranoside (6) were isolated. Their structures were elucidated on the basis of detailed spectroscopic analysis, including 1D and 2D NMR (COSY, NOESY, TOCSY, HSQC, HMBC) and HRESITOF MS data. The compounds were tested for in vitro protective effects on chromosome aberrations in peripheral human lymphocytes using a cytochalasin-B-blocked micronucleus (MN) assay in a concentration range of 0.8-7.4 μM of final culture solution. Chromosomal damage was induced by 2 Gy of γ-radiation on binucleated human lymphocytes, and the effects of the compounds were tested 2 to 19 h after irradiation. The frequency of micronuclei (MNi) was scored in binucleated cells, and the nuclear proliferation index was calculated. The highest prevention of in vitro biochemical and cytogenetic damage of human lymphocytes induced by γ-radiation was exhibited by 3 (reduction of MN frequency by 31%), followed by 4 and 6.
    Matched MeSH terms: Coumarins/chemistry; Fruit/chemistry; Phenols/chemistry; Plant Leaves/chemistry; Plant Bark/chemistry; Atriplex/chemistry*
  16. Rafieerad AR, Ashra MR, Mahmoodian R, Bushroa AR
    Mater Sci Eng C Mater Biol Appl, 2015 Dec 1;57:397-413.
    PMID: 26354281 DOI: 10.1016/j.msec.2015.07.058
    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features.
    Matched MeSH terms: Body Fluids/chemistry*; Calcium Phosphates/chemistry*; Titanium/chemistry*; Bone Substitutes/chemistry; Coated Materials, Biocompatible/chemistry*; Plasma Gases/chemistry*
  17. Sun RW, Zhang M, Li D, Zhang ZF, Cai H, Li M, et al.
    Chemistry, 2015 Dec 14;21(51):18534-8.
    PMID: 26459298 DOI: 10.1002/chem.201503656
    A dinuclear gold(I) pyrrolidinedithiocarbamato complex (1) with a bidentate carbene ligand has been constructed and shows potent in vitro cytotoxic activities towards cisplatin-resistant ovarian cancer cells A2780cis. Its rigid scaffold enables a zinc(II)-based metal-organic framework (Zn-MOF) to be used as a carrier in facilitating the uptake and release of 1 in solutions. Instead of using a conventional dialysis approach for the drug-release testing, in this study, a set of transwell assay-based experiments have been designed and employed to examine the cytotoxic and antimigratory activities of 1@Zn-MOF towards A2780cis.
    Matched MeSH terms: Cisplatin/chemistry*; Gold/chemistry*; Ovarian Neoplasms/chemistry*; Thiocarbamates/chemistry*; Zinc/chemistry*; Gold Compounds/chemistry*
  18. Pramanik BK, Pramanik SK, Suja F
    J Water Health, 2016 Feb;14(1):90-6.
    PMID: 26837833 DOI: 10.2166/wh.2015.159
    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.
    Matched MeSH terms: Arsenic/chemistry*; Charcoal/chemistry*; Iron/chemistry*; Seeds/chemistry; Water Pollutants, Chemical/chemistry*; Moringa oleifera/chemistry*
  19. Ibrahim WA, Nodeh HR, Sanagi MM
    Crit Rev Anal Chem, 2016 Jul 03;46(4):267-83.
    PMID: 26186420 DOI: 10.1080/10408347.2015.1034354
    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.
    Matched MeSH terms: DNA/chemistry; Graphite/chemistry*; Ions/chemistry; Organic Chemicals/chemistry; Proteins/chemistry; Trace Elements/chemistry
  20. Wan Daud WR, Djuned FM
    Carbohydr Polym, 2015 Nov 5;132:252-60.
    PMID: 26256348 DOI: 10.1016/j.carbpol.2015.06.011
    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA.
    Matched MeSH terms: Acetone/chemistry; Biocompatible Materials/chemistry*; Cellulose/chemistry; Fruit/chemistry*; Plant Oils/chemistry*; Arecaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links