Displaying publications 1161 - 1180 of 10538 in total

Abstract:
Sort:
  1. Ayub AD, Chiu HI, Mat Yusuf SNA, Abd Kadir E, Ngalim SH, Lim V
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):353-369.
    PMID: 30691309 DOI: 10.1080/21691401.2018.1557672
    The application of layer-by-layer (LbL) approach on nanoparticle surface coating improves the colon-specific drug delivery of insoluble drugs. Here, we aimed to formulate a self-assembled cysteamine-based disulphide cross-linked sodium alginate with LbL self-assembly to improve the delivery of paclitaxel (PCX) to colonic cancer cells. Cysteamine was conjugated to the backbone of oxidized SA to form a core of self-assembled disulphide cross-linked nanospheres. P3DL was selected for PCX loading and fabricated LbL with poly(allylamine hydrochloride) (PAH) and poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSCMA) resulting from characterization and drug release studies. P3DL-fabricated PCX-loaded nanospheres (P3DL/PAH/PSSCMA) exhibited an encapsulation efficiency of 77.1% with cumulative drug release of 45.1%. Dynamic light scattering analysis was reported at 173.6 ± 2.5 nm with polydispersity index of 0.394 ± 0.105 (zeta potential= -58.5 mV). P3DL/PAH/PSSCMA demonstrated a pH-dependent swelling transition; from pH 1 to 7 (102.2% increase). The size increased by 33.0% in reduction response study after incubating with 10 mM glutathione (day 7). HT-29 cells showed high viabilities (86.7%) after treatment with the fabricated nanospheres at 0.8 µg/mL. Cellular internalization was successful with more than 70.0% nanospheres detected in HT-29 cells. Therefore, this fabricated nanospheres may be considered as potential nanocarriers for colon cancer-targeted chemotherapeutic drug delivery.
    Matched MeSH terms: Alginates/chemistry*; Biocompatible Materials/chemistry*; Cysteamine/chemistry; Disulfides/chemistry*; Drug Carriers/chemistry; Paclitaxel/chemistry*; Nanoparticles/chemistry*; Nanospheres/chemistry
  2. Halim SZ, Zakaria ZA, Omar MH, Mohtarrudin N, Wahab IRA, Abdullah MNH
    BMC Complement Altern Med, 2017 Nov 09;17(1):488.
    PMID: 29121900 DOI: 10.1186/s12906-017-1992-9
    BACKGROUND: Melastoma malabathricum L. (family Melastomaceae; MM) and Muntingia calabura L. (family Elaeocarpaceae; MC) have been separately reported to possess gastroprotective activity. In an attempt to develop a pharmaceutical product with antiulcer potential, the synergistic gastroprotective activity of methanolic extract of a mixture of MM and MC (MMMC) at various ratios was evaluated in rat models.

    METHODS: Rats were pre-treated orally with 2% Tween 80 (vehicle), 100 mg/kg ranitidine (reference drug) or MMMC (ratios of 1:1, 1:3 and 3:1 (v/v); doses of 15, 150 or 300 mg/kg) and then subjected to the ethanol-induced gastric ulcer or pyloric ligation assays. Stomach of rats from the former assay was collected and subjected to the macroscopic and microscopic observations, and enzymatic and non-enzymatic antioxidant studies while the gastric juice content and tissue from the latter assay were subjected to the antisecretory activity study. The UHPLC analysis of MMMC was also performed.

    RESULT: MMMC, in the ratio 1:1, demonstrated the most effective (P 

    Matched MeSH terms: Anti-Ulcer Agents/chemistry; Antioxidants/chemistry; Gastric Juice/chemistry; Plant Extracts/chemistry; Stomach/chemistry; Plant Leaves/chemistry; Melastomataceae/chemistry*; Elaeocarpaceae/chemistry*
  3. Al-Alwani MAM, Ludin NA, Mohamad AB, Kadhum AAH, Mukhlus A
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Mar 05;192:487-498.
    PMID: 29133132 DOI: 10.1016/j.saa.2017.11.018
    The natural dyes anthocyanin and chlorophyll were extracted from Musa acuminata bracts and Alternanthera dentata leaves, respectively. The dyes were then applied as sensitizers in TiO2-based dye-sensitized solar cells (DSSCs). The ethanol extracts of the dyes had maximum absorbance. High dye yields were obtained under extraction temperatures of 70 to 80°C, and the optimal extraction temperature was approximately 80°C. Moreover, dye concentration sharply decreased under extraction temperatures that exceeded 80°C. High dye concentrations were obtained using acidic extraction solutions, particularly those with a pH value of 4. The DSSC fabricated with anthocyanin from M. acuminata bracts had a conversion efficiency of 0.31%, short-circuit current (Isc) of 0.9mA/cm2, open-circuit voltage (Voc) of 0.58V, and fill factor (FF) of 62.22%. The DSSC sensitized with chlorophyll from A. dentata leaves had a conversion efficiency of 0.13%, Isc of 0.4mA/cm-2,Voc of 0.54V, and FF of 67.5%. The DSSC sensitized with anthocyanin from M. acuminata bracts had a maximum incident photon-to-current conversion efficiency of 42%, which was higher than that of the DSSC sensitized with chlorophyll from A. dentata leaves (23%). Anthocyanin from M. acuminata bracts exhibited the best photosensitization effects.
    Matched MeSH terms: Anthocyanins/chemistry; Chlorophyll/chemistry; Electrochemistry; Plant Extracts/chemistry; Solvents/chemistry; Titanium/chemistry; Plant Leaves/chemistry*; Amaranthaceae/chemistry*; Musa/chemistry*
  4. Nehdi IA, Sbihi HM, Tan CP, Rashid U, Al-Resayes SI
    J Food Sci, 2018 Mar;83(3):624-630.
    PMID: 29377104 DOI: 10.1111/1750-3841.14033
    This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein.

    PRACTICAL APPLICATION: This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia.

    Matched MeSH terms: Fatty Acids/chemistry; Lauric Acids/chemistry; Plant Oils/chemistry*; Seeds/chemistry; Stearic Acids/chemistry; Oleic Acid/chemistry; Tocotrienols/chemistry; Phoeniceae/chemistry*
  5. Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35130-35142.
    PMID: 30328041 DOI: 10.1007/s11356-018-3402-3
    In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
    Matched MeSH terms: Biopolymers/chemistry; Carotenoids/chemistry; Graphite/chemistry*; Oxides/chemistry; Pesticides/chemistry*; Vegetables/chemistry*; Ferrosoferric Oxide/chemistry*; Magnetite Nanoparticles/chemistry
  6. Ceesay A, Nor Shamsudin M, Aliyu-Paiko M, Ismail IS, Nazarudin MF, Mohamed Alipiah N
    Biomed Res Int, 2019;2019:2640684.
    PMID: 31119160 DOI: 10.1155/2019/2640684
    The aim of the present study was to extract and characterize bioactive components from separate body organs of Holothuria leucospilota. Preliminary qualitative assessment of the crude extracts was positive for phenols, terpenoids, carbohydrates, flavonoids, saponins, glycosides, cardiac glycosides, steroids, phlobatannins, and tannins in all body organs evaluated. Phenolics were the most abundant group of bioactives accounting for approximately 80%. The extraction solvent mixtures that yielded most compounds evaluated were methanol/acetone (3:1, v:v) and methanol/distilled water (3:1, v:v). In other analyses, GC-MS data revealed diverse metabolic and biologically active compounds, where those in high concentrations included 2-Pentanone, 4-hydroxy-4-methyl- among the ketones; phenol- 2,4-bis(1,1-dimethylethyl)-, a phenol group; and 2-Chlorooctane, a hydrocarbon. Among FA and their methyl/ethyl esters, n-hexadecanoic acid, 5,8,11,14-eicosatetraenoic acid ethyl ester (arachidonic acid), and 5,8,11,14,17-eicosapentaenoic acid methyl ester (EPA) were among the most abundant FAMEs accounting for approximately 50% of the subgroups measured. Data from GC-FID analysis revealed methyl laurate (C12:0), methyl myristate (C14:0), methyl palmitate (C16:0), and methyl stearate (18:0) methyl esters as the most abundant saturated FA, whereas cis-9-oleic methyl ester (C18:1) and methyl linoleate (C18:2) were found as the major monounsaturated FA and PUFA FAMEs, respectively, in the body wall of the species. Taken together, the extraction and characterization of different categories of metabolically and biologically active compounds in various organ extracts of H. leucospilota suggest that the species is potentially a rich source of cholesterol-lowering, antioxidant, antimicrobial, and anticancer agents. These substances are known to benefit human health and assist in disease prevention. These findings justify the use of sea cucumbers in traditional folklore medication and the current interest and attention focused on the species to mine for bioactives in new drugs research.
    Matched MeSH terms: Anti-Infective Agents/chemistry*; Antioxidants/chemistry*; Fatty Acids, Monounsaturated/chemistry*; Flavonoids/chemistry; Glycosides/chemistry; Saponins/chemistry; Sea Cucumbers/chemistry*; Terpenes/chemistry
  7. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Cadmium/chemistry*; Carbon/chemistry; Ions/chemistry; Nitrogen/chemistry; Polyvinyl Alcohol/chemistry*; Water Pollutants, Chemical/chemistry; Quantum Dots/chemistry*; Waste Water/chemistry*
  8. Azman AR, Mahat NA, Abdul Wahab R, Abdul Razak FI, Hamzah HH
    Int J Mol Sci, 2018 May 25;19(6).
    PMID: 29799469 DOI: 10.3390/ijms19061576
    Waterways are popular locations for the disposition of criminal evidence because the recovery of latent fingerprints from such evidence is difficult. Currently, small particle reagent is a method often used to visualize latent fingerprints containing carcinogenic and hazardous compounds. This study proposes an eco-friendly, safranin-tinted Candida rugosa lipase (triacylglycerol ester hydrolysis EC 3.1.1.3) with functionalized carbon nanotubes (CRL-MWCNTS/GA/SAF) as an alternative reagent to the small particle reagent. The CRL-MWCNTS/GA/SAF reagent was compared with the small particle reagent to visualize groomed, full fingerprints deposited on stainless steel knives which were immersed in a natural outdoor pond for 30 days. The quality of visualized fingerprints using the new reagent was similar (modified-Centre for Applied Science and Technology grade: 4; p > 0.05) to small particle reagent, even after 15 days of immersion. Despite the slight decrease in quality of visualized fingerprints using the CRL-MWCNTS/GA/SAF on the last three immersion periods, the fingerprints remained forensically identifiable (modified-Centre for Applied Science and Technology grade: 3). The possible chemical interactions that enabled successful visualization is also discussed. Thus, this novel reagent may provide a relatively greener alternative for the visualization of latent fingerprints on immersed non-porous objects.
    Matched MeSH terms: Candida/chemistry; Fungal Proteins/chemistry*; Glutaral/chemistry; Lipase/chemistry*; Phenazines/chemistry*; Nanotubes, Carbon/chemistry; Green Chemistry Technology; Nanoconjugates/chemistry*
  9. Safaei MR, Mahian O, Garoosi F, Hooman K, Karimipour A, Kazi SN, et al.
    ScientificWorldJournal, 2014;2014:740578.
    PMID: 25379542 DOI: 10.1155/2014/740578
    This paper addresses erosion prediction in 3-D, 90° elbow for two-phase (solid and liquid) turbulent flow with low volume fraction of copper. For a range of particle sizes from 10 nm to 100 microns and particle volume fractions from 0.00 to 0.04, the simulations were performed for the velocity range of 5-20 m/s. The 3-D governing differential equations were discretized using finite volume method. The influences of size and concentration of micro- and nanoparticles, shear forces, and turbulence on erosion behavior of fluid flow were studied. The model predictions are compared with the earlier studies and a good agreement is found. The results indicate that the erosion rate is directly dependent on particles' size and volume fraction as well as flow velocity. It has been observed that the maximum pressure has direct relationship with the particle volume fraction and velocity but has a reverse relationship with the particle diameter. It also has been noted that there is a threshold velocity as well as a threshold particle size, beyond which significant erosion effects kick in. The average friction factor is independent of the particle size and volume fraction at a given fluid velocity but increases with the increase of inlet velocities.
    Matched MeSH terms: Copper/chemistry; Nanoparticles/chemistry*
  10. Zi-Ni T, Rosma A, Napisah H, Karim AA, Liong MT
    J Food Sci, 2015 Apr;80(4):H875-82.
    PMID: 25739421 DOI: 10.1111/1750-3841.12817
    Resistant starch type III (RS3 ) was produced from sago (Metroxylon sagu) and evaluated for its characteristics as a prebiotic. Two RS3 samples designated sago RS and HCl-sago RS contained 35.71% and 68.30% RS, respectively, were subjected to hydrolyses by gastric juice and digestive enzymes and to absorption. Both sago RS and HCl-sago RS were resistant to 180 min hydrolysis by gastric acidity at pH 1 to 4 with less than 0.85% hydrolyzed. Both samples were also resistant toward hydrolysis by gastrointestinal tract enzymes and intestinal absorption with 96.75% and 98.69% of RS3 were recovered respectively after 3.5 h digestion and overnight dialysis at 37 °C. Sago RS3 supported the growth of both beneficial (lactobacilli and Bifidobacteria) and pathogenic microbes (Escherichia coli, Campylobacter coli, and Clostridium perfringens) in the range of 2.60 to 3.91 log10 CFU/mL. Hence, prebiotic activity score was applied to describe the extent to which sago RS3 supports selective growth of the lactobacilli and bifidobacteria strains over pathogenic bacteria. The highest scores were obtained from Bifidobacterium sp. FTDC8943 grown on sago RS (+0.26) and HCl-sago RS (+0.24) followed by L. bulgaricus FTDC1511 grown on sago RS (+0.21). The findings had suggested that sago RS3 has the prebiotic partial characteristics and it is suggested to further assess the suitability of sago RS3 as a prebiotic material.
    Matched MeSH terms: Starch/chemistry*; Arecaceae/chemistry*
  11. Qi H, Huang G, Han Y, Zhang X, Li Y, Pingguan-Murphy B, et al.
    Tissue Eng Part B Rev, 2015 Jun;21(3):288-97.
    PMID: 25547514 DOI: 10.1089/ten.TEB.2014.0494
    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.
    Matched MeSH terms: DNA/chemistry*; Nanostructures/chemistry*
  12. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:727496.
    PMID: 25383380 DOI: 10.1155/2014/727496
    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.
    Matched MeSH terms: Titanium/chemistry*; Nanoparticles/chemistry*
  13. Yanagihara M, Tsuji T, Yusop MZ, Tanemura M, Ono S, Nagami T, et al.
    ScientificWorldJournal, 2014;2014:309091.
    PMID: 25302320 DOI: 10.1155/2014/309091
    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd(3+) : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd(3+) : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region.
    Matched MeSH terms: Lutetium/chemistry*; Neodymium/chemistry*
  14. Yu KX, Jantan I, Ahmad R, Wong CL
    Parasitol Res, 2014 Sep;113(9):3121-41.
    PMID: 25115733 DOI: 10.1007/s00436-014-4068-5
    Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.
    Matched MeSH terms: Insecticides/chemistry*; Seaweed/chemistry*
  15. Jaafar SA, Latif MT, Chian CW, Han WS, Wahid NB, Razak IS, et al.
    Mar Pollut Bull, 2014 Jul 15;84(1-2):35-43.
    PMID: 24930738 DOI: 10.1016/j.marpolbul.2014.05.047
    This study was conducted to determine the composition of surfactants in the sea-surface microlayer (SML) and atmospheric aerosol around the southern region of the Peninsular Malaysia. Surfactants in samples taken from the SML and atmospheric aerosol were determined using a colorimetric method, as either methylene blue active substances (MBAS) or disulphine blue active substances (DBAS). Principal component analysis with multiple linear regressions (PCA-MLR), using the anion and major element composition of the aerosol samples, was used to determine possible sources of surfactants in atmospheric aerosol. The results showed that the concentrations of surfactants in the SML and atmospheric aerosol were dominated by anionic surfactants and that surfactants in aerosol were not directly correlated (p>0.05) with surfactants in the SML. Further PCA-MLR from anion and major element concentrations showed that combustion of fossil fuel and sea spray were the major contributors to surfactants in aerosol in the study area.
    Matched MeSH terms: Aerosols/chemistry*; Surface-Active Agents/chemistry*
  16. Ch'ng HY, Ahmed OH, Majid NM
    ScientificWorldJournal, 2014;2014:506356.
    PMID: 25032229 DOI: 10.1155/2014/506356
    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.
    Matched MeSH terms: Charcoal/chemistry*; Soil/chemistry*
  17. Yakubu ML, Yusop Z, Yusof F
    ScientificWorldJournal, 2014;2014:361703.
    PMID: 25126597 DOI: 10.1155/2014/361703
    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance.
    Matched MeSH terms: Fresh Water/chemistry*; Rain/chemistry*
  18. Gobi K, Vadivelu VM
    Bioresour Technol, 2014 Jun;161:441-5.
    PMID: 24725384 DOI: 10.1016/j.biortech.2014.03.104
    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV).
    Matched MeSH terms: Fatty Acids, Volatile/chemistry; Waste Water/chemistry
  19. Bang LT, Long BD, Othman R
    ScientificWorldJournal, 2014;2014:969876.
    PMID: 24723840 DOI: 10.1155/2014/969876
    The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively coupled plasma (ICP) techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO4(4-)) and carbonate (CO3(2-)) ions competed to occupy the phosphate (PO4(3-)) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap. At 750°C heat-treatment temperature, the diametral tensile strengths (DTS) of Si-CO3Ap and CO3Ap were about 10.8 ± 0.3 and 11.8 ± 0.4 MPa, respectively.
    Matched MeSH terms: Silicon/chemistry*; Durapatite/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links