Displaying publications 1281 - 1300 of 10377 in total

Abstract:
Sort:
  1. Pantong W, Pederick JL, Maenpuen S, Tinikul R, Jayapalan JJ, Jovcevski B, et al.
    Protein Sci, 2023 Jun;32(6):e4654.
    PMID: 37165541 DOI: 10.1002/pro.4654
    Methylenetetrahydrofolate reductase (MTHFR) is a key metabolic enzyme in colonization and virulence of Neisseria meningitidis, a causative agent of meningococcal diseases. Here, the biochemical and structural properties of MTHFR from a virulent strain of N. meningitidis serogroup B (NmMTHFR) were characterized. Unlike other orthologs, NmMTHFR functions as a unique homohexamer, composed of three homo-dimerization partners, as shown in our 2.7 Å resolution crystal structure. Six active sites were formed solely within monomers and located away from the oligomerization interfaces. Flavin adenine dinucleotide cofactor formed hydrogen bonds with conserved sidechains, positioning its isoalloxazine ring adjacent to the overlapping binding sites of nicotinamide adenine dinucleotide (NADH) coenzyme and CH2 -H4 folate substrate. NmMTHFR utilized NADH (Km  = 44 μM) as an electron donor in the NAD(P)H-CH2 -H4 folate oxidoreductase assay, but not nicotinamide adenine dinucleotide phosphate (NADPH) which is the donor required in human MTHFR. In silico analysis and mutagenesis studies highlighted the significant difference in orientation of helix α7A (Phe215-Thr225) with that in the human enzyme. The extended sidechain of Met221 on helix α7A plays a role in stabilizing the folded structure of NADH in the hydrophobic box. This supports the NADH specificity by restricting the phosphate group of NADPH that causes steric clashes with Glu26. The movement of Met221 sidechain allows the CH2 -H4 folate substrate to bind. The unique topology of its NADH and CH2 -H4 folate binding pockets makes NmMTHFR a promising drug target for the development of new antimicrobial agents that may possess reduced off-target side effects.
    Matched MeSH terms: Folic Acid/chemistry; NAD/chemistry
  2. Han W, Chai X, Zaaboul F, Sun Y, Tan CP, Liu Y
    Food Chem, 2024 Mar 01;435:137584.
    PMID: 37774617 DOI: 10.1016/j.foodchem.2023.137584
    This study investigates the impact of various chain lengths of hydrophilic polyglycerol fatty acid esters (HPGEs), namely SWA-10D, M-7D and M-10D on protein interactions and their influence on the surface morphology and interfacial properties of low-fat aerated emulsions under different pressures conditions. M-7D and M-10D samples exhibited larger particle sizes, higher ζ-potential and rougher surface compared to SWA-10D sample at 1 % concentration of HPGEs. Consequently, M-7D and M-10D samples demonstrated lower values of G', G'', and higher values tan δ at the oil-water interface as pressure increased, thereby promoting the formation of less viscoelastic structures. M-7D sample, characterized by lower content of α-helix structures, resulted in an observable redshift in the NH and CO groups of the protein. Molecular docking analysis affirmed that M-7D sample exhibited a lower absolute binding energy value, indicating stronger interaction with the protein compared to other samples, ultimately contributing to the unstable interfacial membrane formed.
    Matched MeSH terms: Emulsions/chemistry; Water/chemistry
  3. Singa PK, Isa MH, Sivaprakash B, Ho YC, Lim JW, Rajamohan N
    Environ Res, 2023 Aug 15;231(Pt 2):116191.
    PMID: 37211185 DOI: 10.1016/j.envres.2023.116191
    Polycyclic aromatic hydrocharbons (PAHs) are a class of highly toxic pollutants that are highly detrimental to the ecosystem. Landfill leechate emanated from municipal solid waste are reported to constitute significant PAHs. In the present investigation, three Fenton proceses, namely conventional Fenton, photo-fenton and electro-fenton methods have been employed to treat landfill leehcate for removing PAHs from a waste dumpig yard. Response surface methodology (RSM) and artificial neural network (ANN) methodologies were adopted to optimize and validate the conditions for optimum oxidative removal of COD and PAHs. The statistical analysis results showed that all independent variables chosen in the study are reported to have significant influence of the removal effects with P-values <0.05. Sensitivity analysis by the developed ANN model showed that the pH had the highest significance of 1.89 in PAH removal when compared to the other parameters. However for COD removal, H2O2 had the highest relative importance of 1.15, followed by Fe2+ and pH. Under optimal treatment conditions, the photo-fenton and electro-fenton processes showed better removal of COD and PAH compared to the Fenton process. The photo-fenton and electro-fenton treatment processes removed 85.32% and 74.64% of COD and 93.25% and 81.65% of PAHs, respectively. Also the investigations revelaed the presence of 16 distinct PAH compunds and the removal percentage of each of these PAHs are also reported. The PAH treatment research studies are generally limited to the assay of removal of PAH and COD levels. In the present investigation, in addition to the treatment of landfill leachate, particle size distribution analysis and elemental characterization of the resultant iron sludge by FESEM and EDX are reported. It was revealed that elemental oxygen is present in highest percentage, followed by iron, sulphur, sodium, chlorine, carbon and potassium. However, iron percentage can be reduced by treating the Fenton-treated sample with NaOH.
    Matched MeSH terms: Hydrogen Peroxide/chemistry; Iron/chemistry
  4. Kraevsky SV, Barinov NA, Morozova OV, Palyulin VV, Kremleva AV, Klinov DV
    Int J Mol Sci, 2023 Jun 06;24(12).
    PMID: 37372975 DOI: 10.3390/ijms24129827
    In the present work, complexes of DNA with nano-clay montmorillonite (Mt) were investigated by means of atomic force microscopy (AFM) under various conditions. In contrast to the integral methods of analysis of the sorption of DNA on clay, AFM allowed us to study this process at the molecular level in detail. DNA molecules in the deionized water were shown to form a 2D fiber network weakly bound to both Mt and mica. The binding sites are mostly along Mt edges. The addition of Mg2+ cations led to the separation of DNA fibers into separate molecules, which bound mainly to the edge joints of the Mt particles according to our reactivity estimations. After the incubation of DNA with Mg2+, the DNA fibers were capable of wrapping around the Mt particles and were weakly bound to the Mt edge surfaces. The reversible sorption of nucleic acids onto the Mt surface allows it to be used for both RNA and DNA isolation for further reverse transcription and polymerase chain reaction (PCR). Our results show that the strongest binding sites for DNA are the edge joints of Mt particles.
    Matched MeSH terms: Aluminum Silicates/chemistry; Cations/chemistry
  5. Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S
    Int J Biol Macromol, 2023 Jul 15;243:125125.
    PMID: 37263321 DOI: 10.1016/j.ijbiomac.2023.125125
    Chitosan is an abundant natural cationic polysaccharide with excellent biodegradability, bioadhesion, and biocompatibility. Chitosan is extensively researched for various particulate oral insulin drug delivery systems. Oral insulin is economically efficient and more convenient than injections, with greater patient compliance. Electrostatic ionic interaction between cationic chitosan and anionic polymer or insulin leads to the formation of spontaneously self-assembled nanoparticles. This simple technique attracted many researchers as it can be carried out quickly in mild conditions without harmful solvents, such as surfactants or chemical cross-linkers that might degrade the insulin structure. The formulated chitosan nanoparticles help to protect the core insulin from enzymatic degradation in the digestive system and improve paracellular intestinal uptake from the enterocytes due to mucoadhesion and reversible tight junction opening. Moreover, functionalized chitosan nanoparticles create newer avenues for targeted and prolonged delivery. This review focuses on modified chitosan-insulin nanoparticles and their implications on oral insulin delivery. Dependent variables and their optimal concentration ranges used in self-assembly techniques for chitosan-insulin nanoparticular synthesis are summarized. This review provides a comprehensive guide to fine-tune the essential factors to formulate stable insulin-chitosan nanoparticles using mild ionic interactions.
    Matched MeSH terms: Drug Carriers/chemistry; Insulin/chemistry
  6. Tsuji T, Ono T, Taguchi H, Leong KH, Hayashi Y, Kumada S, et al.
    Chem Pharm Bull (Tokyo), 2023;71(7):576-583.
    PMID: 37394606 DOI: 10.1248/cpb.c23-00214
    Time-domain NMR (TD-NMR) was used for continuous monitoring of the hydration behavior of hydrophilic matrix tablets. The model matrix tablets comprised high molecular weight polyethylene oxide (PEO), hydroxypropyl methylcellulose (HPMC), and polyethylene glycol (PEG). The model tablets were immersed in water. Their T2 relaxation curves were acquired by TD-NMR with solid-echo sequence. A curve-fitting analysis was conducted on the acquired T2 relaxation curves to identify the NMR signals corresponding to the nongelated core remaining in the samples. The amount of nongelated core was estimated from the NMR signal intensity. The estimated values were consistent with the experiment measurement values. Next, the model tablets immersed in water were monitored continuously using TD-NMR. The difference in hydration behaviors of the HPMC and PEO matrix tablets was then characterized fully. The nongelated core of the HPMC matrix tablets disappeared more slowly than that of the PEO matrix tablets. The behavior of HPMC was significantly affected by the PEG content in the tablets. It is suggested that the TD-NMR method has potential to be utilized to evaluate the gel layer properties, upon replacement of the immersion medium: purified (nondeuterated) water is replaced with heavy (deuterated) water. Finally, drug-containing matrix tablets were tested. Diltiazem hydrochloride (a highly water-soluble drug) was employed for this experiment. Reasonable in vitro drug dissolution profiles, which were in accordance with the results from TD-NMR experiments, were observed. We concluded that TD-NMR is a powerful tool to evaluate the hydration properties of hydrophilic matrix tablets.
    Matched MeSH terms: Methylcellulose/chemistry; Hypromellose Derivatives/chemistry
  7. Molahid VLM, Kusin FM, Syed Hasan SNM
    Environ Geochem Health, 2023 Jul;45(7):4439-4460.
    PMID: 36811700 DOI: 10.1007/s10653-023-01513-y
    Mining activities have often been associated with the issues of waste generation, while mining is considered a carbon-intensive industry that contributes to the increasing carbon dioxide emission to the atmosphere. This study attempts to evaluate the potential of reusing mining waste as feedstock material for carbon dioxide sequestration through mineral carbonation. Characterization of mining waste was performed for limestone, gold and iron mine waste, which includes physical, mineralogical, chemical and morphological analyses that determine its potential for carbon sequestration. The samples were characterized as having alkaline pH (7.1-8.3) and contain fine particles, which are important to facilitate precipitation of divalent cations. High amount of cations (CaO, MgO and Fe2O3) was found in limestone and iron mine waste, i.e., total of 79.55% and 71.31%, respectively, that are essential for carbonation process. Potential Ca/Mg/Fe silicates, oxides and carbonates have been identified, which was confirmed by the microstructure analysis. The limestone waste composed majorly of CaO (75.83%), which was mainly originated from calcite and akermanite minerals. The iron mine waste consisted of Fe2O3 (56.60%), mainly from magnetite and hematite, and CaO (10.74%) which was derived from anorthite, wollastonite and diopside. The gold mine waste was attributed to a lower cation content (total of 7.71%), associated mainly with mineral illite and chlorite-serpentine. The average capacity for carbon sequestration was between 7.73 and79.55%, which corresponds to 383.41 g, 94.85 g and 4.72 g CO2 that were potentially sequestered per kg of limestone, iron and gold mine waste, respectively. Therefore, it has been learned that the mine waste might be utilized as feedstock for mineral carbonation due to the availability of reactive silicate/oxide/carbonate minerals. Utilization of mine waste would be beneficial in light of waste restoration in most mining sites while tackling the issues of CO2 emission in mitigating the global climate change.
    Matched MeSH terms: Calcium Carbonate/chemistry; Minerals/chemistry
  8. Madadi M, Liu D, Qin Y, Zhang Y, Karimi K, Tabatabaei M, et al.
    Bioresour Technol, 2023 Sep;384:129370.
    PMID: 37343805 DOI: 10.1016/j.biortech.2023.129370
    This work aimed to study an integrated pretreatment technology employing p-toluenesulfonic acid (TsOH)-catalyzed liquid hot water (LHW) and short-time ball milling for the complete conversion of poplar biomass to xylooligosaccharides (XOS), glucose, and native-like lignin. The optimized TsOH-catalyzed LHW pretreatment solubilized 98.5% of hemicellulose at 160 °C for 40 min, releasing 49.8% XOS. Moreover, subsequent ball milling (20 min) maximized the enzymatic hydrolysis of cellulose from 65.8% to 96.5%, owing to the reduced particle sizes and cellulose crystallinity index. The combined pretreatment reduced the crystallinity by 70.9% while enlarging the average pore size and pore volume of the substrate by 29.5% and 52.4%, respectively. The residual lignin after enzymatic hydrolysis was rich in β-O-4 linkages (55.7/100 Ar) with less condensed structures. This lignin exhibited excellent antioxidant activity (RSI of 66.22) and ultraviolet absorbance. Thus, this research suggested a sustainable waste-free biorefinery for the holistic valorization of biomass through two-step biomass fractionation.
    Matched MeSH terms: Cellulose/chemistry; Water/chemistry
  9. Yang Y, Gupta VK, Amiri H, Pan J, Aghbashlo M, Tabatabaei M, et al.
    Int J Biol Macromol, 2023 Jun 01;239:124210.
    PMID: 37001778 DOI: 10.1016/j.ijbiomac.2023.124210
    Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions. Nevertheless, studies have shown that chitosan cannot be used as an efficient stabilizer because of its high hydrophilicity. Hence, this review aims to provide an overview of recent studies dealing with improving the emulsifying properties of chitosan. In general, two different approaches have been reported to improve the emulsifying properties of chitosan. The first approach tries to improve the stabilization property of chitosan by modifying its structure. The second one uses compounds such as polysaccharides, proteins, surfactants, essential oils, and polyphenols with more wettability and emulsifying properties than chitosan's particles in combination with chitosan to create complex particles. The tendency to use chitosan-based particles to stabilize Pickering emulsions has recently increased. For this reason, more studies have been conducted in recent years to improve the stabilizing properties of chitosan-based particles, especially using the electrostatic interaction method. In the electrostatic interaction method, numerous research has been conducted on using proteins and polysaccharides to increase the stabilizing property of chitosan.
    Matched MeSH terms: Emulsions/chemistry; Surface-Active Agents/chemistry
  10. Sadiq AC, Olasupo A, Rahim NY, Ngah WSW, Hanafiah MAKM, Suah FBM
    Int J Biol Macromol, 2023 Jul 31;244:125400.
    PMID: 37330084 DOI: 10.1016/j.ijbiomac.2023.125400
    Several water and wastewater technologies have been implored for the removal of dyes during wastewater treatments; however; different types have been reportedly found in surface and groundwater systems. Hence, there is a need to investigate other water treatment technologies for the complete remediation of dyes in aquatic environments. In this study, novel chitosan-based polymer inclusion membranes (PIMs) were synthesized for the removal of malachite green dye (MG) which is a recalcitrant of great concern in water. Two types of PIMs were synthesized in this study, the first PIM (PIMs-A) was composed of chitosan, bis-(2-ethylhexyl) phosphate (B2EHP), and dioctyl phthalate (DOP). While, the second PIMs (PIMs-B) were composed of chitosan, Aliquat 336, and DOP. The physico-thermal stability of the PIMs was investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), both PIMs demonstrated good stability with a weak intermolecular force of attraction amongst the various components of the membranes. The effects of the initial concentration of MG, pH of the MG solution, stripping solution, and time were investigated. At optimum conditions, both membranes (PIM-A and B) recorded the highest efficiencies of 96 % and 98 % at pH 4 and initial contaminants concentration of 50 mg/L, respectively. Finally, both PIMs were used for the removal of MG in different environmental samples (river water, seawater, and tap water) with an average removal efficiency of 90 %. Thus, the investigated PIMs can be considered a potential suitable technique for the removal of dyes and other contaminants from aquatic matrices.
    Matched MeSH terms: Coloring Agents/chemistry; Polymers/chemistry
  11. Ahamad Tarmizi AA, Nik Ramli NN, Adam SH, Abdul Mutalib M, Mokhtar MH, Tang SGH
    Molecules, 2023 Jul 10;28(14).
    PMID: 37513196 DOI: 10.3390/molecules28145322
    The advancement in nanotechnology is the trigger for exploring the synthesis of selenium nanoparticles and their use in biomedicine. Therefore, this study aims to synthesize selenium nanoparticles using M. oleifera as a reducing agent and evaluate their antioxidant and antidiabetic potential. Our result demonstrated a change in the color of the mixture from yellow to red, and UV-Vis spectrometry of the suspension solution confirmed the formation of MO-SeNPs with a single absorbance peak in the range of 240-560 nm wavelength. FTIR analysis revealed several bioactive compounds, such as phenols and amines, that could possibly be responsible for the reduction and stabilization of the MO-SeNPs. FESEM + EDX analysis revealed that the amorphous MO-SeNPs are of high purity, have a spherical shape, and have a size of 20-250 nm in diameter, as determined by HRTEM. MO-SeNPs also exhibit the highest DPPH scavenging activity of 84% at 1000 μg/mL with an IC50 of 454.1 μg/mL and noteworthy reducing ability by reducing power assay. Furthermore, MO-SeNPs showed promising antidiabetic properties with dose-dependent inhibition of α-amylase (26.7% to 44.53%) and α-glucosidase enzyme (4.73% to 19.26%). Hence, these results demonstrated that M. oleifera plant extract possesses the potential to reduce selenium ions to SeNPs under optimized conditions with notable antioxidant and antidiabetic activities.
    Matched MeSH terms: Antioxidants/chemistry; Hypoglycemic Agents/chemistry
  12. Khan MS, Gowda BHJ, Nasir N, Wahab S, Pichika MR, Sahebkar A, et al.
    Int J Pharm, 2023 Aug 25;643:123276.
    PMID: 37516217 DOI: 10.1016/j.ijpharm.2023.123276
    Breast cancer is the most prevalent type of cancer worldwide,particularly among women, with substantial side effects after therapy. Despite the availability of numerous therapeutic approaches, particularly chemotherapy, the survival rates for breast cancer have declined over time. The therapies currently utilized for breast cancer treatment do not specifically target cancerous cells, resulting in significant adverse effects and potential harm to healthy cells alongside the cancer cells. As a result, nanoparticle-based drug delivery systems have emerged. Among various types of nanoparticles, natural polysaccharide-based nanoparticles have gained significant attention due to their ability to precisely control the drug release and achieve targeted drug delivery. Moreover, polysaccharides are biocompatible, biodegradable, easily modifiable, and renewable, which makes them a unique material for nanoformulation. In recent years, dextran and its derivatives have gained much interest in the field of breast cancer therapy. Dextran is a hydrophilic polysaccharide composed of a main chain formed by α-1,6 linked glucopyranoside residues and a side chain composed of residues linked in α-1,2/3/4 positions. Different dextran-antitumor medication conjugates enhancethe efficacy of anticancer agents. With this context, the present review provides brief insights into dextran and its modification. Further, it meticulously discusses the role of dextran-based nanoparticles in breast cancer therapy and imaging, followed by snippets on their toxicity. Lastly, it presents clinical trials and future perspectives of dextran-based nanoparticles in breast cancer treatment.
    Matched MeSH terms: Dextrans/chemistry; Drug Carriers/chemistry
  13. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Mar 30;72(7):2392-401.
    PMID: 17341117
    The rates of the hydrolyses of N-(o-hydroxyphenyl)phthalimide (1) and N-(o-methoxyphenyl)phthalimide (2), studied at different pH, show that the hydrolysis of 1 involves intramolecular general base (IGB) assistance where the o-O- group of ionized 1 acts as IGB and H2O as the reactant. The rate enhancement due to the IGB-assisted reaction of H2O with ionized 1 is>8x10(4)-fold. Pseudo-first-order rate constant for the reaction of water with 2 is approximately 2x10(3)-fold smaller than the first-order rate constant (0.10 s-1) for pH-independent hydrolysis of 1 within the pH range of 9.60-10.10. Second-order rate constants (kOH) for hydroxide ion-assisted hydrolysis of ionized 1 and 2 are 3.0 and 29.1 M-1 s-1, respectively. The solvent deuterium kinetic isotope effect (dKIE) on the rate of alkaline hydrolysis of 1 and 2 reveals that the respective values of kOH/kOD are 0.84 and 0.78, where kOD represents the second-order rate constant for DO--assisted cleavage of these imides (1 and 2). The value of kwH2O/kdD2O is 2.04, with kwH2O and kdD2O representing pseudo-first-order rate constants for the reactions of ionized 1 with H2O and D2O, respectively.
    Matched MeSH terms: Alkalies/chemistry; Phthalimides/chemistry*
  14. Chatterjee S, Mahmood S, Hilles AR, Thomas S, Roy S, Provaznik V, et al.
    Int J Biol Macromol, 2023 Sep 01;248:125757.
    PMID: 37429342 DOI: 10.1016/j.ijbiomac.2023.125757
    Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
    Matched MeSH terms: Cations/chemistry; Polysaccharides/chemistry
  15. He S, Li M, Sun Y, Pan D, Zhou C, Lan H
    Food Chem, 2024 Jan 01;430:137053.
    PMID: 37549626 DOI: 10.1016/j.foodchem.2023.137053
    This study aimed to investigate the role of hydrolysis and guar gum (GG) participation on the emulsification of the duck myofibrillar protein (MP) and the related stability of oil-in-water emulsion in low-salt condition. Emulsions were prepared using one of each or both treatments, and that prepared with trypsin hydrolysis and GG (T-GG) exhibited the highest stability. FTIR analysis confirmed the hydrogen bond interactions between the system components. T-GG treatment improved emulsion properties and decreased oil droplet size. Moreover, CLSM indicated that aggregation of T-GG oil droplets was prevented. Physical stability was assessed such as Turbiscan stability index, creaming index, and rheological properties. The adsorbed percentage for T-GG was the lowest. However, interfacial tension, droplet size, stability, and peroxide value analyses indicated that a denser interfacial membrane structure is formed with T-GG. Thus, T-GG treatment could be applied in the food industry, such as in nutrient delivery systems and fat mimetics.
    Matched MeSH terms: Emulsions/chemistry; Water/chemistry
  16. Vo TP, Rintala J, Dai L, Oh WD, He C
    Water Res, 2023 Oct 15;245:120672.
    PMID: 37783176 DOI: 10.1016/j.watres.2023.120672
    Hydrothermal processing (HTP) is an efficient thermochemical technology to achieve sound treatment and resource recovery of sewage sludge (SS) in hot-compressed subcritical water. However, microplastics (MPs) and heavy metals can be problematic impurities for high-quality nutrients recovery from SS. This study initiated hydrothermal degradation of representative MPs (i.e., polyethylene (PE), polyamide (PA), polypropylene (PP)) under varied temperatures (180-300 °C) to understand the effect of four ubiquitous metal ions (i.e., Fe3+, Al3+, Cu2+, Zn2+) on MPs degradation. It was found that weight loss of all MPs in metallic reaction media was almost four times of that in water media, indicating the catalytic role of metal ions in HTP. Especially, PA degradation at 300 °C was promoted by Fe3+ and Al3+ with remarkable weight loss higher than 95% and 92%, respectively, which was ca. 160 °C lower than that in pyrolysis. Nevertheless, PE and PP were more recalcitrant polymers to be degraded under identical condition. Although higher temperature thermal hydrolysis reaction induced severe chain scission of polymers to reinforce degradation of MPs, Fe3+ and Al3+ ions demonstrated the most remarkable catalytic depolymerization of MPs via enhanced free radical dissociation rather than hydrolysis. Pyrolysis gas chromatography-mass spectrometry (Py GC-MS) was further complementarily applied with GC-MS to reveal HTP of MPs to secondary MPs and nanoplastics. This fundamental study highlights the crucial role of ubiquitous metal ions in MPs degradation in hot-compressed water. HTP could be an energy-efficient technology for effective treatment of MPs in SS with abundant Fe3+ and Al3+, which will benefit sustainable recovery of cleaner nutrients in hydrochar and value-added chemicals or monomers from MPs.
    Matched MeSH terms: Plastics/chemistry; Sewage/chemistry
  17. Paramjot, Wadhwa S, Sharma A, Singh SK, Vishwas S, Kumar R, et al.
    Curr Drug Deliv, 2024;21(1):16-37.
    PMID: 36627785 DOI: 10.2174/1567201820666230110140312
    Amongst different routes of drug delivery systems, ophthalmic drug delivery still requires a careful investigation and strict parameter measurements because the eyes are one of the most sensitive parts of the body and require special attention. The conventional systems for eyes lead to rapid elimination of formulation and hence very small contact time on the ocular epithelium. The current review article covers various types of polymers used in ocular drug delivery along with their applications/ limitations. Polymers are widely used by researchers in prodrug techniques and as a penetration enhancer in ocular delivery. This article covers the role and use of different polymeric systems which makes the final formulation a promising candidate for ophthalmic drug delivery. The researchers are still facing multiple challenges in order to maintain the therapeutic concentration of the drug in the eyes because of its complex structure. There are several barriers that further restrict the intraocular entry of the drug. In order to remove/reduce such challenges, these days various types of polymers are used for ocular delivery in order to develop different drug carrier systems for better efficacy and stability. The polymers used are highly helpful in increasing residence time by increasing the viscosity at the ocular epithelium layer. Such preparations also get easily permeated in ocular cells. The combination of different polymeric properties makes the final formulation stable with prolonged retention, high viscosity, high permeability, and better bioavailability, making the final formulation a promising candidate for ocular drug delivery.
    Matched MeSH terms: Drug Carriers/chemistry; Ophthalmic Solutions/chemistry
  18. Ojukwu M, Tan HL, Murad M, Nafchi AM, Easa AM
    Food Sci Technol Int, 2023 Dec;29(8):799-808.
    PMID: 36000280 DOI: 10.1177/10820132221121169
    In a bid to produce rice flour noodles with improved texture and reduced cooking time, rice flour-soy protein isolate noodles (RNS) were structurally enhanced by a combined treatment (COM) of microbial transglutaminase (MTG) with glucono-δ-lactone (GDL). The RNS-COM was either dried using superheated steam (SHS) to yield RNS-COM-SHS or steamed for 10 min (S10) before air drying to produce RNS-COM-S10 noodles. Control samples were SHS-dried rice flour (RN-SHS) and air-dried RN-S10 noodles. In general, textural and microstructural properties indicated higher textural properties and a more robust network in RNS-COM-SHS and RNS-COM-S10 than in other noodles. However, optimum cooking time (P < 0.5) was in the order; RN-SHS, RNS-COM-SHS < RN-S10 < RNS-COM-S10. As a result of the COM treatment, structurally enhanced noodles were more resistant to cooking. As applied in RNS-COM-SHS noodles, SHS was able to improve cooking quality, probably through the formation of bigger and evenly spread pores that had promoted faster gelatinisation of starch, with a high order of relative starch crystallinity.
    Matched MeSH terms: Transglutaminases/chemistry; Starch/chemistry
  19. Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, et al.
    Ultrason Sonochem, 2023 Dec;101:106702.
    PMID: 38041881 DOI: 10.1016/j.ultsonch.2023.106702
    Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
    Matched MeSH terms: Antioxidants/chemistry; Phenols/chemistry
  20. Juwita T, Melyani Puspitasari I, Levita J
    Pak J Biol Sci, 2018 Jan;21(4):151-165.
    PMID: 30311471 DOI: 10.3923/pjbs.2018.151.165
    In order to propose a prospective candidate for novel complementary phytopharmaceuticals, one of Zingiberaceae family plant, Etlingeraelatior or torch ginger, was being evaluated. The aim of this review was to provide a comprehensive literature research focused on the botanical aspects, nutritional quality, phytoconstituents and pharmacological activities of E. elatior. Researches on this particular plant were conducted in Malaysia (55.5%), Indonesia (33.3%), Thailand (8.3%) and Singapore (2.7%). This review article has revealed that the most prominent pharmacological activities were anti-microbial, anti-oxidant and anti-tumor activities in consistent with the dominated levels of flavonoids, terpenoids and phenols. However, extended and integrated research should be converged towards intensive investigations concerning to isolated phytoconstituents and its bioactivities, pharmacokinetics, bioavailability, molecular mechanism of its specific pharmacological activities, safety and efficacy studies for further development.
    Matched MeSH terms: Plant Extracts/chemistry*; Ginger/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links