Displaying publications 121 - 140 of 166 in total

Abstract:
Sort:
  1. Shimokawa Y, Akao Y, Hirasawa Y, Awang K, Hadi AH, Sato S, et al.
    J Nat Prod, 2010 Apr 23;73(4):763-7.
    PMID: 20192242 DOI: 10.1021/np9007987
    Gneyulins A (1) and B (2), two new stilbene trimers consisting of oxyresveratrol constituent units, and noidesols A (3) and B (4), two new dihydroflavonol-C-glucosides, were isolated from the bark of Gnetum gnemonoides. The structures and configurations of 1-4 were elucidated on the basis of 2D NMR correlations and X-ray analysis. Gneyulins A (1) and B (2) showed inhibition of Na(+)-glucose transporters (SGLT-1 and SGLT-2).
  2. Litaudon M, Bousserouel H, Awang K, Nosjean O, Martin MT, Dau ME, et al.
    J Nat Prod, 2009 Mar 27;72(3):480-3.
    PMID: 19161318 DOI: 10.1021/np8006292
    In an effort to find potent inhibitors of the antiapoptotic protein Bcl-xL, a systematic in vitro evaluation was undertaken on 1470 Malaysian plant extracts. The ethyl acetate extract obtained from the bark of Meiogyne cylindrocarpa was selected for its interaction with the Bcl-xL/Bak association. Bioassay-guided purification of this species led to the isolation of two new dimeric sesquiterpenoids (1 and 2) possessing an unprecedented substituted cis-decalin carbon skeleton. Meiogynin A (1) showed the strongest activity with a K(i) of 10.8 +/- 3.1 microM.
  3. Velu SS, Buniyamin I, Ching LK, Feroz F, Noorbatcha I, Gee LC, et al.
    Chemistry, 2008;14(36):11376-84.
    PMID: 19003831 DOI: 10.1002/chem.200801575
    Oligostilbenoids are polyphenols that are widely distributed in nature with multifaceted biological activities. To achieve biomimetic synthesis of unnatural derivatives, we subjected three resveratrol analogues to oligomerization by means of one-electron oxidants. Upon varying the metal oxidant (AgOAc, CuBr(2), FeCl(3)6 H(2)O, FeCl(3)6 H(2)O/NaI, PbO(2), VOF(3)), the solvent (over the whole range of polarities), and the oxygenated substitution pattern of the starting material, stilbenoid oligomers with totally different carbon skeletons were obtained. Here we propose to explain the determinism of the type of skeleton produced with the aid of hard and soft acid/base concepts in conjunction with the solvating properties of the solvents and the preferred alignment by the effect of pi stacking.
  4. Leong KH, Looi CY, Loong XM, Cheah FK, Supratman U, Litaudon M, et al.
    PLoS One, 2016;11(4):e0152652.
    PMID: 27070314 DOI: 10.1371/journal.pone.0152652
    Plants in the Meliaceae family are known to possess interesting biological activities, such as antimalaral, antihypertensive and antitumour activities. Previously, our group reported the plant-derived compound cycloart-24-ene-26-ol-3-one isolated from the hexane extracts of Aglaia exima leaves, which shows cytotoxicity towards various cancer cell lines, in particular, colon cancer cell lines. In this report, we further demonstrate that cycloart-24-ene-26-ol-3-one, from here forth known as cycloartane, reduces the viability of the colon cancer cell lines HT-29 and CaCO-2 in a dose- and time-dependent manner. Further elucidation of the compound's mechanism showed that it binds to tumour necrosis factor-receptor 1 (TNF-R1) leading to the initiation of caspase-8 and, through the activation of Bid, in the activation of caspase-9. This activity causes a reduction in mitochondrial membrane potential (MMP) and the release of cytochrome-C. The activation of caspase-8 and -9 both act to commit the cancer cells to apoptosis through downstream caspase-3/7 activation, PARP cleavage and the lack of NFkB translocation into the nucleus. A molecular docking study showed that the cycloartane binds to the receptor through a hydrophobic interaction with cysteine-96 and hydrogen bonds with lysine-75 and -132. The results show that further development of the cycloartane as an anti-cancer drug is worthwhile.
  5. Corlay N, Lecsö-Bornet M, Leborgne E, Blanchard F, Cachet X, Bignon J, et al.
    J Nat Prod, 2015 Jun 26;78(6):1348-56.
    PMID: 26034885 DOI: 10.1021/acs.jnatprod.5b00206
    A large-scale in vitro screening of tropical plants using an antibacterial assay permitted the selection of several species with significant antibacterial activities. Bioassay-guided purification of the dichloromethane extract of the leaves of the Malaysian species Vitex vestita, led to the isolation of six new labdane-type diterpenoids, namely, 12-epivitexolide A (2), vitexolides B and C (3 and 4), vitexolide E (8), and vitexolins A and B (5 and 6), along with six known compounds, vitexolides A (1) and D (7), acuminolide (9), 3β-hydroxyanticopalic acid (10), 8α-hydroxyanticopalic acid (11), and 6α-hydroxyanticopalic acid (12). Their structures were elucidated on the basis of 1D and 2D NMR analyses and HRMS experiments. Both variable-temperature NMR spectroscopic studies and chemical modifications were performed to investigate the dynamic epimerization of the γ-hydroxybutenolide moiety of compounds 1-4. Compounds were assayed against a panel of 46 Gram-positive strains. Vitexolide A (1) exhibited the most potent antibacterial activity with minimal inhibitory concentration values ranging from 6 to 96 μM, whereas compounds 2 and 6-9 showed moderate antibacterial activity. The presence of a β-hydroxyalkyl-γ-hydroxybutenolide subunit contributed significantly to antibacterial activity. Compounds 1-4 and 6-9 showed cytotoxic activities against the HCT-116 cancer cell line (1 < IC50s < 10 μM) and human fetal lung fibroblast MRC5 cell line (1 < IC50s < 10 μM for compounds 1, 2, 7, 8, and 9).
  6. Arshad NM, In LL, Soh TL, Azmi MN, Ibrahim H, Awang K, et al.
    Oncotarget, 2015 Jun 30;6(18):16151-67.
    PMID: 26158863
    Previous in vitro and in vivo studies have reported that 1'-S-1'-acetoxychavicol acetate (ACA) isolated from rhizomes of the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) induces apoptosis-mediated cell death in tumour cells via dysregulation of the NF-κB pathway. However there were some clinical development drawbacks such as poor in vivo solubility, depreciation of biological activity upon exposure to an aqueous environment and non-specific targeting of tumour cells. In the present study, all the problems above were addressed using the novel drug complex formulation involving recombinant human alpha fetoprotein (rhAFP) and ACA.
  7. Bihud NV, Rasol NE, Imran S, Awang K, Ahmad FB, Mai CW, et al.
    J Nat Prod, 2019 09 27;82(9):2430-2442.
    PMID: 31433181 DOI: 10.1021/acs.jnatprod.8b01067
    Eight new bis-styryllactones, goniolanceolatins A-H (1-8), possessing a rare α,β-unsaturated δ-lactone moiety with a (6S)-configuration, were isolated from the CH2Cl2 extract of the stembark and roots of Goniothalamus lanceolatus Miq., a plant endemic to Malaysia. Absolute structures were established through extensive 1D- and 2D-NMR data analysis, in combination with electronic dichroism (ECD) data. All of the isolates were evaluated for their cytotoxicity against human lung and colorectal cancer cell lines. Compounds 2 and 4 showed cytotoxicity, with IC50 values ranging from 2.3 to 4.2 μM, and were inactive toward human noncancerous lung and colorectal cells. Compounds 1, 3, 6, 7, and 8 showed moderate to weak cytotoxicity. Docking studies of compounds 2 and 4 showed that they bind with EGFR tyrosine kinase and cyclin-dependent kinase 2 through hydrogen bonding interactions with the important amino acids, including Lys721, Met769, Asn818, Arg157, Ile10, and Glu12.
  8. Ahmad K, Thomas NF, Hadi AH, Mukhtar MR, Mohamad K, Nafiah MA, et al.
    Chem Pharm Bull (Tokyo), 2010 Aug;58(8):1085-7.
    PMID: 20686264
    A phytochemical study on the bark of Neisosperma oppositifolia (Apocynaceae) yielded two new beta-carboline indole alkaloids, oppositinines A (1) and B (2), together with five known alkaloids, isoreserpiline, isocarapanaubine, vobasine, 10-methoxydihydrocorynantheol-N-oxide, and ochropposinine oxindole. Structural elucidation of 1 and 2 was performed using 2D NMR methods. Oppositinines A (1) and B (2) showed potent vasorelaxant effects on the rat aorta.
  9. Sivasothy Y, Hadi AH, Mohamad K, Leong KH, Ibrahim H, Sulaiman SF, et al.
    Bioorg Med Chem Lett, 2012 Jun 1;22(11):3831-6.
    PMID: 22546674 DOI: 10.1016/j.bmcl.2012.02.064
    The rhizomes of Zingiber spectabile yielded a new dimeric flavonol glycoside for which the name kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside-(I-6,II-8)-kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside; spectaflavoside A (1) was proposed, along with kaempferol and its four acetylrhamnosides (2-6), demethoxycurcumin (7) and curcumin (8). The structure of spectaflavoside A was elucidated by spectroscopic methods including, 1D and 2D NMR techniques. This is the first report on the occurrence of a dimeric flavonol glycoside in the Zingiberaceae and the second in nature. Spectaflavoside A was found to be a potent iron chelating agent.
  10. Hematpoor A, Paydar M, Liew SY, Sivasothy Y, Mohebali N, Looi CY, et al.
    Chem Biol Interact, 2018 Jan 05;279:210-218.
    PMID: 29174417 DOI: 10.1016/j.cbi.2017.11.014
    The aim of the present study is to isolate bioactive compounds from the roots of Piper sarmentosum and examine the mechanism of action using human breast cancer cell line (MDA-MB-231). Bioassay guided-fractionation of methanolic extract led to the isolation of asaricin (1) and isoasarone (2). Asaricin (1) and isoasarone (2) had significant cytotoxicity towards MDA-MB-231. MCF-10A (human normal breast epithelial cells) cells are less sensitive than MDA-MB-231, but they respond to the treatment with the same unit of measurement. Both compounds increase reactive oxygen species (ROS), decrease mitochondrial membrane potential (MMP) and enhance cytochrome c release in treated MDA-MB-231 cells. Isoasarone (2) markedly elevated caspase -8 and -3/7 activities and caused a decline in nuclear NF-κB translocation, suggesting extrinsic, death receptor-linked apoptosis pathway. Quantitative PCR results of MDA-MB-231 treated with asaricin (1) and isoasarone (2) showed altered expression of Bcl-2: Bax level. The inhibitory potency of these isolates may support the therapeutic uses of these compounds in breast cancer.
  11. Levaique H, Pamlard O, Apel C, Bignon J, Arriola M, Kuhner R, et al.
    Molecules, 2021 Mar 11;26(6).
    PMID: 33799883 DOI: 10.3390/molecules26061551
    Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.
  12. Coste C, Gérard N, Dinh CP, Bruguière A, Rouger C, Leong ST, et al.
    Biomolecules, 2020 09 02;10(9).
    PMID: 32887413 DOI: 10.3390/biom10091266
    Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1-4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1-4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties.
  13. Aziz AN, Ismail NH, Halim SNA, Looi CY, Anouar EH, Langat MK, et al.
    Phytochemistry, 2018 Dec;156:193-200.
    PMID: 30316148 DOI: 10.1016/j.phytochem.2018.10.002
    A phytochemical investigation of the stem barks of the Malaysian Croton oblongus Burm.f. (Syn. Croton laevifolius Blume) (Euphorbiaceae) yielded seven previously undescribed ent-neo-clerodane diterpenoids, laevifins A - G and the known crovatin (3). Structures were established by a combination of spectroscopic methods including HRESIMS, NMR spectroscopy and X-ray crystallography. The absolute configuration of crovatin and laevifins A-G was established by comparison of experimental ECD and theoretical TDDFT ECD calculated spectra. This is the first report on the occurrence of the sesquiterpenoid cryptomeridiol in a Croton species. In vitro cytotoxicity assays on laevifins A, B and G showed moderate activities against the MCF-7 cancer cell line (IC50 102, 115 and 106 μM, respectively) while β-amyrin and acetyl aleuritolic acid showed good anti-inflammatory activity on the LPS-induced NF-κB translocation inhibition in RAW 264.7 cells assay with IC50 values of 23.5 and 35.4 μg/mL, respectively.
  14. Bruguière A, Derbré S, Coste C, Le Bot M, Siegler B, Leong ST, et al.
    Fitoterapia, 2018 Nov;131:59-64.
    PMID: 30321650 DOI: 10.1016/j.fitote.2018.10.003
    Usually isolated from Garcinia (Clusiaceae) or Hypericum (Hypericaceae) species, some Polycyclic Polyprenylated AcylPhloroglucinols (PPAPs) have been recently reported as potential research tools for immunotherapy. Aiming at exploring the chemodiversity of PPAPs amongst Garcinia genus, a dereplication process suitable for such natural compounds has been developed. Although less sensitive than mass spectrometry, NMR spectroscopy is perfectly reproducible and allows stereoisomers distinction, justifying the development of 13C-NMR strategies. Dereplication requires the use of databases (DBs). To define if predicted DBs were accurate enough as dereplication tools, experimental and predicted δC of natural products usually isolated from Clusiaceae were compared. The ACD/Labs commercial software allowed to predict 73% of δC in a 1.25 ppm range around the experimental values. Consequently, with these parameters, the major PPAPs from a Garcinia bancana extract were successfully identified using a predicted DB.
  15. Quek A, Kassim NK, Lim PC, Tan DC, Mohammad Latif MA, Ismail A, et al.
    Pharm Biol, 2021 Dec;59(1):964-973.
    PMID: 34347568 DOI: 10.1080/13880209.2021.1948065
    CONTEXT: Melicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones.

    OBJECTIVE: This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents.

    MATERIALS AND METHODS: Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene bleaching assays.

    RESULTS: Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 μg/mL; DPP-4 IC50: 221.58 μg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 μg/mL; DPP-4 IC50: 37.16 μg/mL) and resulted in β-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 μM) and β-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 μM).

    DISCUSSION AND CONCLUSIONS: The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.

  16. Gény C, Abou Samra A, Retailleau P, Iorga BI, Nedev H, Awang K, et al.
    J Nat Prod, 2017 12 22;80(12):3179-3185.
    PMID: 29160716 DOI: 10.1021/acs.jnatprod.7b00494
    Four new compounds, (+)- and (-)-ecarlottone (1), (±)-fislatifolione (5), (±)-isofislatifolione (6), and (±)-fislatifolic acid (7), and the known desmethoxyyangonin (2), didymocarpin-A (3), and dehydrodidymocarpin-A (4) were isolated from the stem bark of Fissistigma latifolium, by means of bioassay-guided purification using an in vitro affinity displacement assay based on the modulation of Bcl-xL/Bak and Mcl-1/Bid interactions. The structures of the new compounds were elucidated by NMR spectroscopic data analysis, and the absolute configurations of compounds (+)-1 and (-)-1 were assigned by comparison of experimental and computed ECD spectra. (-)-Ecarlottone 1 exhibited a potent antagonistic activity on both protein-protein associations with Ki values of 4.8 μM for Bcl-xL/Bak and 2.4 μM for Mcl-1/Bid.
  17. Ablat A, Halabi MF, Mohamad J, Hasnan MH, Hazni H, Teh SH, et al.
    BMC Complement Altern Med, 2017 Feb 06;17(1):94.
    PMID: 28166749 DOI: 10.1186/s12906-017-1610-x
    Brucea javanica (B. javanica) seeds, also known as "Melada pahit" in Indo-Malay region are traditionally used to treat diabetes. The objective of this study was to determine antidiabetic, antioxidant and anti-inflammatory effects of B. javanica seeds on nicotinamide (NA)-streptozotocin (STZ) induced type 2 diabetic (T2D) rats and to analyze its chemical composition that correlate with their pharmacological activities.
  18. Ahmed U, Sivasothy Y, Khan KM, Khan NA, Wahab SMA, Awang K, et al.
    Acta Trop, 2023 Dec;248:107033.
    PMID: 37783284 DOI: 10.1016/j.actatropica.2023.107033
    Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.
  19. Husna Hasnan MH, Sivasothy Y, Khaw KY, Nafiah MA, Hazni H, Litaudon M, et al.
    Int J Mol Sci, 2023 Jun 27;24(13).
    PMID: 37445877 DOI: 10.3390/ijms241310699
    Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimer's disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 ± 0.80 µM and 2.90 ± 0.56 µM, respectively. The Lineweaver-Burk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD.
  20. Hirasawa Y, Hara M, Nugroho AE, Sugai M, Zaima K, Kawahara N, et al.
    J Org Chem, 2010 Jun 18;75(12):4218-23.
    PMID: 20469917 DOI: 10.1021/jo1006762
    Two new bisindole alkaloids, bisnicalaterines B and C (1 and 2) consisting of an eburnane and a corynanthe type of skeletons, were isolated from the bark of Hunteria zeylanica. Their absolute structures were determined by combination of NMR, CD, and computational methods, and each of them was shown to be in an atropisomeric relationship. Bisnicalaterines B and C (1 and 2) showed potent vasorelaxant activity on isolated rat aorta.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links