METHOD: This study proposes a combination of decision tree and logistic regression techniques to model crash severity (injury vs. noninjury), because the combined approach allows the specification of nonlinearities and interactions in addition to main effects. Both a scobit model and a random parameters logit model, respectively accounting for an imbalance response variable and unobserved heterogeneities, are tested and compared. The study data set contains a total of 5 years of crash data (2008-2012) on selected mountainous highways in Malaysia. To enrich the data quality, an extensive field survey was conducted to collect detailed information on horizontal alignment, longitudinal grades, cross-section elements, and roadside features. In addition, weather condition data from the meteorology department were merged using the time stamp and proximity measures in AutoCAD-Geolocation.
RESULTS: The random parameters logit model is found to outperform both the standard logit and scobit models, suggesting the importance of accounting for unobserved heterogeneity in crash severity models. Results suggest that proportion of segment lengths with simple curves, presence of horizontal curves along steep gradients, highway segments with unsealed shoulders, and highway segments with cliffs along both sides are positively associated with injury-producing crashes along rural mountainous highways. Interestingly, crashes during rainy conditions are associated with crashes that are less likely to involve injury. It is also found that the likelihood of injury-producing crashes decreases for rear-end collisions but increases for head-on collisions and crashes involving heavy vehicles. A higher order interaction suggests that single-vehicle crashes involving light and medium-sized vehicles are less severe along straight sections compared to road sections with horizontal curves. One the other hand, crash severity is higher when heavy vehicles are involved in crashes as single vehicles traveling along straight segments of rural mountainous highways.
CONCLUSION: In addition to unobserved heterogeneity, it is important to account for higher order interactions to have a better understanding of factors that influence crash severity. A proper understanding of these factors will help develop targeted countermeasures to improve road safety along rural mountainous highways.
DESIGN: Ongoing observational database collating clinical data on HIV-infected children and adolescents in Asia.
METHODS: Data from 2001 to 2016 relating to adolescents (10-19 years) with perinatal HIV infection were analysed to describe characteristics at adolescent entry and transition and combination antiretroviral therapy (cART) regimens across adolescence. A competing risk regression analysis was used to determine characteristics at adolescent entry associated with mortality. Outcomes at transition were compared on the basis of age at cART initiation.
RESULTS: Of 3448 PHIVA, 644 had reached transition. Median age at HIV diagnosis was 5.5 years, cART initiation 7.2 years and transition 17.9 years. At adolescent entry, 35.0% had CD4+ cell count less than 500 cells/μl and 51.1% had experienced a WHO stage III/IV clinical event. At transition, 38.9% had CD4+ cell count less than 500 copies/ml, and 53.4% had experienced a WHO stage III/IV clinical event. Mortality rate was 0.71 per 100 person-years, with HIV RNA ≥1000 copies/ml, CD4+ cell count less than 500 cells/μl, height-for-age or weight-for-age z-score less than -2, history of a WHO stage III/IV clinical event or hospitalization and at least second cART associated with mortality. For transitioning PHIVA, those who commenced cART age less than 5 years had better virologic and immunologic outcomes, though were more likely to be on at least second cART.
CONCLUSION: Delayed HIV diagnosis and cART initiation resulted in considerable morbidity and poor immune status by adolescent entry. Durable first-line cART regimens to optimize disease control are key to minimizing mortality. Early cART initiation provides the best virologic and immunologic outcomes at transition.