Displaying publications 121 - 140 of 1298 in total

Abstract:
Sort:
  1. An'amt M, Huang N, Radiman S, Lim H, Muhamad M
    Sains Malaysiana, 2014;43:137-144.
    Titanate nanotubes were prepared by a rapid hydrothermal method in the presence of triethanolamine (TEA) using TiO2 nanoparticles as a precursor. The addition of TEA significantly reduced the formation time of the titanate nanotubes from 24 to 6 h. The crystalline structure of the titanate nanotubes was revealed to be H2Ti2O5 through the X-ray diffraction (xRD) measurement. The morphology of the titanate nanotubes was confirmed using transmission electron microscopy (TEM) while the surface area was characterized using Brunauer-Emmett-Teller (BET) surface area analysis. The titanate nanotubes produced were several hundred nanometers in length and had an average outer diameter of - 11.5 nm, inner diameter of -5.0 nm, interlayer spacing of 0.93 nm and surface area of >250 m2Ig. The photocatalytic activity of the titanate nanotubes was studied using methylene blue as a model dye; the titanate nanotubes showed better photocatalytic performance as compared to TiO2 nanoparticles.
    Matched MeSH terms: Microscopy, Electron, Transmission
  2. Chai CJ, Amirul AA, Vigneswari S
    Data Brief, 2020 Feb;28:104777.
    PMID: 31871967 DOI: 10.1016/j.dib.2019.104777
    Electrospinning is a promising approach to fabricate desirable electropsun nanofibrous scaffold that could be applied in the medical fields. In this study, bacterial copolymer poly(3-hydroxybutyrate-co-68 mol% 4-hydroxybutyrate) [P(3HB-co-68mol% 4HB)] copolymer produced was fabricated into electrospun nanofibers using various combination of electrospinning parameters including the polymer solution, applied voltage and injection speed. The morphology of the fabricated scaffolds were observed using scanning electron microscope (SEM). The SEM images were analysed for the fibre diameter distribution of the scaffolds using Image Analyser. The results revealed that the 8 wt% of polymer solution, 25 kV/cm of the applied voltage and 1.5 mL/h of the injection speed was the most suitable combination. This electrospinning parameters combination fabricated nanofibrous P(3HB-co-4HB) scaffold with smooth, beadles and uniform nanofibers with small fibre diameter distribution.
    Matched MeSH terms: Microscopy, Electron, Scanning
  3. Yousif, Emad, Ahmed, Dina S., Ahmed, Ahmed A., Hameed, Ayad S., Yusop, Rahimi M., Redwan, Amamer, et al.
    Science Letters, 2018;12(2):19-27.
    MyJurnal
    The photodegradation rate constant and surface morphology of poly(vinyl chloride), upon irradiation with ultraviolet light was investigated in the presence of polyphosphates as photostabilizers. Poly(vinyl chloride) photodegradation rate constant was lower for the films containing polyphosphates compared to the blank film. In addition, the surface morphology of the irradiated poly(vinyl chloride) containing polyphosphates, examined by scanning electron microscopy, indicates that the surface was much smoother compared to the blank film.
    Matched MeSH terms: Microscopy, Electron, Scanning
  4. Nizam MK, Sebastian D, Kairi MI, Khavarian M, Mohamed AR
    Sains Malaysiana, 2017;46:1039-1045.
    The synthesis of high quality graphene via economic way is highly desirable for practical applications. In this study, graphene flake was successfully synthesized on Cu/MgO catalyst derived from recovered Cu via etching in ammonium persulfate solution. Recovered Cu acted as efficient active metal in Cu/MgO catalyst with good crystal structure and composition according to XRD and XRF results. FESEM, EDX, HRTEM, Raman spectroscopy and SAED analysis were carried out on the synthesized graphene. The formation of single, bilayer and few layer of graphene from Cu/MgO catalyst derived from recovered Cu was feasible.
    Matched MeSH terms: Microscopy, Electron, Transmission
  5. M.O.H. Amuda, T.A. Olaniyan, L.O. Osoba, E.T. Akinlabi
    Sains Malaysiana, 2017;46:743-753.
    The mechanical properties of Dual Phase Steel (DPS)-duplex structure-produced by quenching in pre-heated bitumen have been investigated. Medium carbon steels intercritically heated at different temperatures and holding times were quenched in hot bitumen. Optical and scanning electron microscopy characterisation of the duplex structure showed extensive network of fibrous martensite in a ferritic matrix with occasional presence of polygonal martensite. The duplex phase structure exhibited continuous yielding dynamics, improving the tensile and hardness values by about 42 and 35%, respectively, relative to the normalised structure. But, the elongation and impact values decreased by about 42 and 50%, respectively, when compared to the normalised structure. These values are similar to those obtained in duplex structure produced using conventional oil quenching. The tensile fractured surface showed transition between a predominantly cleavage mode in the lower annealing temperature to a mixed mode in the upper bound of the annealing temperature. These findings suggest that pre-heated bitumen can be exploited for the production of DPSs.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. Ahmad Fikri Abdul Karim, Hanafi Ismail, Zulkifli Mohamad Ariff
    Sains Malaysiana, 2018;47:2163-2169.
    This research was carried out to study the effects of kenaf loading and alkaline treatment on tensile properties, density,
    thermal and morphological properties of kenaf filled natural rubber latex foam (NRLF). Samples were prepared using a
    Dunlop method. From the results, increasing loading of kenaf reduced the tensile strength and elongation at break for
    both samples, treated and untreated kenaf filled NRLF. Meanwhile, modulus at 100% elongation and density increased
    with an increased in kenaf loading. Samples with treated kenaf showed higher tensile strength, modulus at 100%
    elongation and density but low in elongation at break as compared with samples with untreated kenaf. Thermal study
    by using thermogravimetric analysis (TGA) showed that thermal stability reduced with increased in kenaf loading for
    both samples. Samples with treated kenaf have higher thermal stability compared with samples of untreated kenaf. The
    filler-matrix interaction and the pores size variation of both samples was clearly seen in the micrograph images by using
    scanning electron microscope (SEM).
    Matched MeSH terms: Microscopy, Electron, Scanning
  7. Jensen K, Pen IAM, Caira JN
    Zootaxa, 2021 Jul 12;4999(3):201-218.
    PMID: 34810491 DOI: 10.11646/zootaxa.4999.3.1
    The Rhoptrobothriidae are one of the more enigmatic families of cestodes of elasmobranchs. Opinions on the taxonomic status of the familys three original genera (i.e., Myzophyllobothrium, Rhoptrobothrium, and Myzocephalus) have varied over the 115 years since they were erected. Some authors have considered all three valid, others have considered Rhoptrobothrium to be a synonym of Myzopyllobothrium or a genus inquirendum, yet others have considered Myzocephalus to be a synonym of the phyllobothriid genus Thysanocephalum. All three genera were established for specimens collected from eagle rays off Sri Lanka. The erection of Mixophyllobothrium for two specimens from a cowtail stingray off India three decades ago added additional confusion to the situation, with some authors considering it valid and others a synonym of Myzocephalus. These disagreements stem largely from differences in interpretation of the complex morphology of the scolex of members of these genera. Furthermore, with the exception of Rhoptrobothrium comprising four species, each genus is monotypic. All but Rhoptrobothrium has not been considered in detail for nearly a century, largely because of a lack of available material. The taxonomic status of these genera is assessed here based on light and scanning electron microscopy, and molecular data generated from new material collected from eagle rays off Indonesian and Malaysian Borneo, Japan, Sri Lanka, and Viet Nam. Morphological work indicates that the genera differ largely only in the degree of folding of the four remi that extend from the cephalic peduncle. A molecular phylogeny based on sequence data for the D1D3 region of the 28S rRNA gene, which include new data for eight specimens of four species, indicates that Myzophyllobothrium, Myzocephalus, and Rhoptrobothrium are not mutually monophyletic. The latter two genera and Mixophyllobothrium are considered synonyms of Myzophyllobothrium and five species are transferred to that genus. Myzophyllobothrium okamuri n. comb. is considered a species inquirendum. Myzophyllobothrium nagasawai n. sp. is described from Aetobatus narutobiei off Japan. Myzophyllobothrium narinari n. comb. is re-described based on newly collected cestodes from the type host and locality (i.e., Aetobatus ocellatus off Sri Lanka). Despite consisting of only a single genus, the family status of the group is retained in recognition of the unusual configuration of the scolex, which bears four biloculate bothridia and four remi extending from the cephalic peduncle. The ordinal placement of the family remains uncertain, but affinities with the Phyllobothriidea, rather than Tetraphyllidea are considered.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Hammed, A. M., Jaswir, I., Simsek, S., Alam, Z., Amid, A.
    MyJurnal
    This study involves extraction of sulfated polysaccahride (SP) from brown seaweed (Turbinaria turbinata). Eight processing conditions affecting enzyme aided extraction (EAE) were screened using Plackett-Burman design. Three significant factors (hydrolysis time, enzyme concentration and extraction stage) were optimized using Faced Centred Central Composite Design in Random Surface Methods. Micrograph obtained using Field Emission Scanning Electron Microscopy revealed that cellulase degradation ruptured the seaweed cell matrix thus caused increase in the release of SP. The optimum conditions for extraction of SP from T. turbinata are: extraction stage of 2, hydrolysis time of 19.5 h and enzyme concentration of 1.5 μl/ml to produce 25.13% yield. The SP obtained from cellulase treated T. turbinata is a suitable anti-inflammatory agent for pharmaceutical applications.
    Matched MeSH terms: Microscopy, Electron, Scanning
  9. Fatimah, A.R.H., Supri, A.G., Firuz, Z.
    MyJurnal
    In this study, compatibilizing effects of caprolactam-maleic anhydride (CL-MAH) and
    polyethylene-grafted-maleic anhydride (PE-g-MAH) with different blend compositions on polymer
    blends of recycled high density polyethylene (RHDPE) and ethylene vinyl acetate (EVA) blends were
    investigated by tensile properties and swelling behavior. The use of CL-MAH improved the
    compatibility of RHDPE80/EVA20 blend composition, and tensile properties of the resultant blend
    compared well with those of RHDPE/EVA blends. Addition of PE-g-MAH improved the tensile
    properties of RHDPE/EVA/PE-g-MAH blends than RHDPE/EVA blends without compatibilizer. The
    scanning electron microscopy (SEM) morphologies of fracture surface for RHDPE/EVA blends with
    presence of compatibilizers showing better incorporation of two different phases of polymer matrix.
    Matched MeSH terms: Microscopy, Electron, Scanning
  10. Zulkefli NN, Noor Azam AMI, Masdar MS, Baharuddin NA, Wan Isahak WNR, Mohd Sofian N
    Molecules, 2022 Dec 17;27(24).
    PMID: 36558155 DOI: 10.3390/molecules27249024
    This study reports on the synthesis of bi-metal compound (BMC) adsorbents based on commercial coconut activated carbon (CAC), surface-modified with metal acetate (ZnAc2), metal oxide (ZnO), and the basic compounds potassium hydroxide (KOH) and sodium hydroxide (NaOH). The adsorbents were then characterized by scanning electron microscopy and elemental analysis, microporosity analysis through Brunauer-Emmett-Teller (BET) analysis, and thermal stability via thermogravimetric analysis. Adsorption-desorption test was conducted to determine the adsorption capacity of H2S via 1 L adsorber and 1000 ppm H2S balanced 49.95% for N2 and CO2. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties. The adsorption test result reveals that the ZnAc2/ZnO/CAC_B had a higher H2S breakthrough adsorption capacity and performed at larger than 90% capability compared with a single modified adsorbent (ZnAc2/CAC). Therefore, the synthesized BMC adsorbents have a high H2S loading, and the abundance and low cost of CAC may lead to favorable adsorbents in H2S captured.
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Mostafa SA, Ahmed N, Almeshal I, Tayeh BA, Elgamal MS
    Environ Sci Pollut Res Int, 2022 Oct;29(50):75380-75401.
    PMID: 35655017 DOI: 10.1007/s11356-022-20779-w
    This research aimed to investigate the effect of nanorice husk ash (NRHA) prepared using different thermal treatment methods on ultra-high-performance concrete (UHPC) behaviour. NRHA was prepared by two methods: (1) burning for 3 h at 300, 500, 700 and 900 °C and (2) burning for different durations (9, 7, 5 and 3 h) at 300, 500, 700 and 900 °C. NRHA was added to UHPC to make 25 mixtures with three dosages (1%, 3% and 5%). Density, compressive strength, tensile strength, flexure strength and ultrasonic pulse velocity tests were performed at the experimental level. Moreover, full microstructure analysis, including X-ray diffractometry, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, scanning electron microscopy and energy-dispersive X-ray spectroscopy, was performed. The best performances in in the first method (constant duration, different temperatures) were obtained by 1% NRHA burned at 900 °C with 12.5% compressive strength and 1% NRHA burned at 700 °C with increased ratio (10%). Moreover, the best performance in the second method (different burning durations and temperatures) was obtained by 3% NRHA with a ratio of 22.5% at 700 °C for 5 h. Burning rice husk ash improved the compressive strength. It also remarkably improved the splitting tensile strength and flexure strength by 32% and 47%, respectively, at 3% NRHA treated at 700 °C for 3 h. The microstructural analysis showed the efficient role of NRHA in the compactness of concrete sections. It improved the formation of new calcium silicate hydrate gel; decreased the cracks, voids, CaCO3 and Ca(OH)2; and increased the Ca/Si composition. The obtained experimental results were used to build an artificial neural network (ANN) to predict UHPC properties. The ANN model was used as a validation tool to determine the correlation between results. Results showed a remarkable improvement in the mechanical properties of UHPC incorporating NRHA for all mixtures. The ANN model indicated a reliable correlation between input and output variables. The R2 values for the training, validation and testing steps were all 0.99.
    Matched MeSH terms: Microscopy, Electron, Scanning
  12. Au LF, Othman F, Mustaffa R, Vidyadaran S, Rahmat A, Besar I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:16-7.
    PMID: 19024962
    Biofilms are adherent, multi-layered colonies of bacteria that are typically more resistant to the host immune response and routine antibiotic therapy. HA biomaterial comprises of a single-phased hydroxyapatite scaffold with interconnected pore structure. The device is designed as osteoconductive space filler to be gently packed into bony voids or gaps following tooth extraction or any surgical procedure. Gentamycin-coated biomaterial (locally made hydroxyapatite) was evaluated to reduce or eradicate the biofilm on the implant materials. The results indicated that the HA coated with gentamycin was biocompatible to human osteoblast cell line and the biofilm has been reduced after being treated with different concentrations of gentamycin-coated hydroxyapatite (HA).
    Matched MeSH terms: Microscopy, Electron, Scanning/instrumentation*; Microscopy, Electron, Scanning/methods
  13. Noroozi M, Zakaria A, Radiman S, Abdul Wahab Z
    PLoS One, 2016;11(4):e0152699.
    PMID: 27064575 DOI: 10.1371/journal.pone.0152699
    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods; Microscopy, Electron, Transmission
  14. Razak HA, Wahid NBA, Latif MT
    Arch Environ Contam Toxicol, 2019 Nov;77(4):587-593.
    PMID: 31359072 DOI: 10.1007/s00244-019-00656-3
    Anionic surfactants are one of the pollutants derived from particulate matter (PM) and adversely affect the health of living organisms. In this study, the compositions of surfactants extracted from PM and vehicle soot collected in an urban area were investigated. A high-volume air sampler was used to collect PM sample at urban area based on coarse (> 1.5 µm) and fine (electron microscope. Results revealed that the MBAS concentration was dominated by fine mode particles (6.03 ± 3.97 µmol g-1), whereas heavy-duty vehicles, such as buses, demonstrated the highest surfactant concentration with an average value of 0.340 ± 0.180 µmol g-1. The structure of collected PM for all samples mostly appeared to be an irregular shape with the size range of ultrafine particles (0.05-0.2 µm). The emission of surfactants from diesel and petrol vehicles, especially at urban areas, should be a major concern, because they could negatively affect human health and the environment.
    Matched MeSH terms: Microscopy, Electron, Scanning/instrumentation; Microscopy, Electron, Scanning/methods
  15. Chen SH, Cheow YL, Ng SL, Ting ASY
    J Hazard Mater, 2019 01 15;362:394-402.
    PMID: 30248661 DOI: 10.1016/j.jhazmat.2018.08.077
    Penicillium simplicissimum (isolate 10), a metal tolerant fungus, tolerated 1000 mg/L Cu and 500 mg/L Zn, but were inhibited by Cd (100 mg/L), evident by the Tolerance Index (TI) of 0.88, 0.83, and 0.08, respectively. Live cells of P. simplicissimum were more effective in removing Cr (88.6%), Pb (73.7%), Cu (63.8%), Cd (33.1%), and Zn (28.3%) than dead cells (5.3-61.7%). Microscopy approach via SEM-EDX and TEM-EDX suggested that metal removal involved biosorption and bioaccumulation, with metal precipitates detected on the cell wall, and in the cytoplasm and vacuoles. FTIR analysis revealed metals interacted with amino, carbonyl, hydroxyl, phosphoryl (except Cd) and nitro groups in the cell wall. Biosorption and bioaccumulation of metals by live cells reduced Cu and Pb toxicity, observed from good root and (4.00-4.28 cm) and shoot (8.07-8.36 cm) growth of Vigna radiata in the phytotoxicity assay.
    Matched MeSH terms: Microscopy, Electron; Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  16. Dadrasnia A, Chuan Wei KS, Shahsavari N, Azirun MS, Ismail S
    Int J Environ Res Public Health, 2015 Dec;12(12):15321-38.
    PMID: 26633454 DOI: 10.3390/ijerph121214985
    The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya) 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG⁰, ΔH⁰, and ΔS⁰) indicated that the mechanism of Cr(VI) adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation.
    Matched MeSH terms: Microscopy, Electron, Scanning
  17. Basirun WJ, Sookhakian M, Baradaran S, Endut Z, Mahmoudian MR, Ebadi M, et al.
    Sci Rep, 2015;5:9108.
    PMID: 25765731 DOI: 10.1038/srep09108
    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Rosmi MS, Yusop MZ, Kalita G, Yaakob Y, Takahashi C, Tanemura M
    Sci Rep, 2014;4:7563.
    PMID: 25523645 DOI: 10.1038/srep07563
    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp(2) hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction.
    Matched MeSH terms: Microscopy, Electron, Transmission
  19. Jamlus SA, Jauhari I, Khalid HM
    Mater Sci Eng C Mater Biol Appl, 2014 Oct;43:566-72.
    PMID: 25175251 DOI: 10.1016/j.msec.2014.06.034
    In this study, HA is superplastically embedded into Titanium substrate and the sample is subsequently deformed superplastically until 70% deformation degree. The former process is termed as superplastic embedment (SPE) while the later as superplastic deformation (SPD). After the SPE, HA is successfully embedded into the substrate, forming a layer with a thickness of about 249 nm. After the SPD the embedded HA layer thickness decreases to 111 nm. The SPD sample is then immersed in simulated body fluid (SBF) to evaluate its biological properties. A newly grown apatite is formed as a result of the immersion and the HA layer thickness increases with immersion time. The cohesion and adhesion strength within the HA coating and coating-substrate interface of the SPD samples before and after immersion in the SBF is evaluated through the nanoscratch test technique. The results indicate that the HA layer after SPD is still strong even though after being exposed in SBF environment for quite some time. The study suggests that the superplastically embedded HA nanolayer is still intact mechanically and functioning appropriately as biological activity base even after the SPD process.
    Matched MeSH terms: Microscopy, Electron, Scanning
  20. Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TM, Ali AM, et al.
    Bull. Exp. Biol. Med., 2014 Jan;156(3):393-8.
    PMID: 24771384 DOI: 10.1007/s10517-014-2357-8
    Morphological and phenotypical signs of cultured readaptation osteoblasts were studied after a short-term space mission. The ultrastructure and phenotype of human osteoblasts after Soyuz TMA-11 space flight (2007) were evaluated by scanning electron microscopy, laser confocal microscopy, and ELISA. The morphofunctional changes in cell cultures persisted after 12 passages. Osteoblasts retained the drastic changes in their shape and size, contour deformation, disorganization of the microtubular network, redistribution of organelles and specialized structures of the plasmalemma in comparison with the ground control cells. On the other hand, the expression of osteoprotegerin and osteocalcin (bone metabolism markers) increased; the expression of bone resorption markers ICAM-1 and IL-6 also increased, while the expression of VCAM-1 decreased. Hence, space flight led to the development of persistent shifts in cultured osteoblasts indicating injuries to the cytoskeleton and the phenotype changes, indicating modulation of bone metabolism biomarkers.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links