Displaying publications 161 - 180 of 873 in total

Abstract:
Sort:
  1. Che Marzuki NH, Mahat NA, Huyop F, Buang NA, Wahab RA
    Appl Biochem Biotechnol, 2015 Oct;177(4):967-84.
    PMID: 26267406 DOI: 10.1007/s12010-015-1791-z
    The chemical production of methyl oleate using chemically synthesized fatty acid alcohols and other toxic chemicals may lead to significant environmental hazards to mankind. Being a highly valuable fatty acid replacement raw material in oleochemical industry, the mass production of methyl oleate via environmentally favorable processes is of concern. In this context, an alternative technique utilizing Candida rugosa lipase (CRL) physically adsorbed on multi-walled carbon nanotubes (MWCNTs) has been suggested. In this study, the acid-functionalized MWCNTs prepared using a mixture of HNO3 and H2SO4 (1:3 v/v) was used as support for immobilizing CRL onto MWCNTs (CRL-MWCNTs) as biocatalysts. Enzymatic esterification was performed and the efficiency of CRL-MWCNTs was evaluated against the free CRL under varying conditions, viz. temperature, molar ratio of acid/alcohol, solvent log P, and enzyme loading. The CRL-MWCNTs resulted in 30-110 % improvement in the production of methyl oleate over the free CRL. The CRL-MWCNTs attained its highest yield (84.17 %) at 50 °C, molar ratio of acid/alcohol of 1:3, 3 mg/mL of enzyme loading, and iso-octane (log P 4.5) as solvent. Consequently, physical adsorption of CRL onto acid-functionalized MWCNTs has improved the activity and stability of CRL and hence provides an environmentally friendly means for the production of methyl oleate.
    Matched MeSH terms: Adsorption
  2. Che Othman FE, Yusof N, Yub Harun N, Bilad MR, Jaafar J, Aziz F, et al.
    Polymers (Basel), 2020 Sep 10;12(9).
    PMID: 32927881 DOI: 10.3390/polym12092064
    Various types of activated carbon nanofibers' (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs' structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.
    Matched MeSH terms: Adsorption
  3. Cheah WK, Ishikawa K, Othman R, Yeoh FY
    J Biomed Mater Res B Appl Biomater, 2017 07;105(5):1232-1240.
    PMID: 26913694 DOI: 10.1002/jbm.b.33475
    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017.
    Matched MeSH terms: Adsorption
  4. Chen K, Ng KH, Cheng CK, Cheng YW, Chong CC, Vo DN, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132222.
    PMID: 34826917 DOI: 10.1016/j.chemosphere.2021.132222
    Biomass, which defined as plant- or animal-based materials, is intriguing tremendous scientific attentions due to its renewable attribute in serving energy security. Amongst, the plant-based biomasses, particularly those that co-generated in the agriculture activities, are commonly regarded as fuel for burning, which overlooked their hidden potentials for high-end applications. Organically, the plant-based biomass constitutes of lignocellulose components, which can be served as promising precursors for functionalized carbon materials. Meanwhile, its inorganic counterpart made up of various minerals, with Si being the most concerned one. With the advancement of biomass technologies and material synthesis in recent years, numerous attempts were endeavoured to obtain valorised products from biomass. Particularly, syntheses of catalytic and adsorptive materials are actively researched in the field of biomass reutilization. Herein, our work systematically summarized the advancements of biomass-materials for these applications in recent 10 years (2010-2020), with a special focus on the carbon-based and Si-based catalytic/adsorptive materials. Significantly, the deriving steps, inclusive of both pre-treatment and post-treatment of such materials, are incorporated in the discussion, alongside with their significances revealed too. The performance of the as-obtained materials in the respective application is systematically correlated to their physicochemical properties, hence providing valuable insights to the readers. Challenges and promising directions to be explored are raised too at the end of the review, aiming to advocate better-usage of biomass while offering great opportunities to sustain catalysis and adsorption in the industrial scale.
    Matched MeSH terms: Adsorption
  5. Chen KH, Lee SY, Show PL, Hong SC, Chang YK
    J Chromatogr B Analyt Technol Biomed Life Sci, 2018 Nov 15;1100-1101:65-75.
    PMID: 30292951 DOI: 10.1016/j.jchromb.2018.09.039
    Dye-ligand affinity chromatography in a stirred fluidized bed has been developed for the rapid recovery of malate dehydrogenase (MDH) from highly turbid baker's yeast cell homogenate in a single step. The most suitable dye, namely Reactive Orange 4, in its optimal immobilized concentration of 8.78 mg/mL was immobilized onto high-density STREAMLINE matrix. To further examine optimal adsorption and elution conditions, the enzyme recovery operation was carried out using unclarified cell homogenates in stirred fluidized bed system. Aiming to develop a non-specific eluent, namely NaCl, to effectively elute the MDH adsorbed, direct recovery of MDH from highly turbid cell homogenate (50% w/v) in a stirred fluidized bed adsorption system was performed. The proposed system successfully achieved a recovery yield of 73.6% and a purification factor of 73.5 in a single step by using 0.6 M NaCl as an eluent at a high liquid velocity of 200 cm/h.
    Matched MeSH terms: Adsorption
  6. Chen SH, Cheow YL, Ng SL, Ting ASY
    J Hazard Mater, 2019 01 15;362:394-402.
    PMID: 30248661 DOI: 10.1016/j.jhazmat.2018.08.077
    Penicillium simplicissimum (isolate 10), a metal tolerant fungus, tolerated 1000 mg/L Cu and 500 mg/L Zn, but were inhibited by Cd (100 mg/L), evident by the Tolerance Index (TI) of 0.88, 0.83, and 0.08, respectively. Live cells of P. simplicissimum were more effective in removing Cr (88.6%), Pb (73.7%), Cu (63.8%), Cd (33.1%), and Zn (28.3%) than dead cells (5.3-61.7%). Microscopy approach via SEM-EDX and TEM-EDX suggested that metal removal involved biosorption and bioaccumulation, with metal precipitates detected on the cell wall, and in the cytoplasm and vacuoles. FTIR analysis revealed metals interacted with amino, carbonyl, hydroxyl, phosphoryl (except Cd) and nitro groups in the cell wall. Biosorption and bioaccumulation of metals by live cells reduced Cu and Pb toxicity, observed from good root and (4.00-4.28 cm) and shoot (8.07-8.36 cm) growth of Vigna radiata in the phytotoxicity assay.
    Matched MeSH terms: Adsorption
  7. Chen Y, Chen Y, Shi W, Hu S, Huang Q, Liu GS, et al.
    Biosens Bioelectron, 2022 Feb 15;198:113787.
    PMID: 34864241 DOI: 10.1016/j.bios.2021.113787
    High sensitivity and capturing ratio are strongly demanded for surface plasmon resonance (SPR) sensors when applied in detection of small molecules. Herein, an SPR sensor is combined with a novel smart material, namely, MoS2 nanoflowers (MNFs), to demonstrate programmable adsorption/desorption of small bipolar molecules, i.e., amino acids. The MNFs overcoated on the plasmonic gold layer increase the sensitivity by 25% compared to an unmodified SPR sensor, because of the electric field enhancement at the gold surface. Furthermore, as the MNFs have rich edge sites and negatively charged surfaces, the MNF-SPR sensors exhibit not only much higher bipolar-molecule adsorption capability, but also efficient desorption of these molecules. It is demonstrated that the MNF-SPR sensors enable controllable detection of amino acids by adjusting solution pH according to their isoelectric points. In addition, the MNFs decorated on the plasmonic interface can be as nanostructure frameworks and modified with antibody, which allows for specific detection of proteins. This novel SPR sensor provides a new simple strategy for pre-screening of amino acid disorders in blood plasma and a universal high-sensitive platform for immunoassay.
    Matched MeSH terms: Adsorption
  8. Cheng SY, Show PL, Lau BF, Chang JS, Ling TC
    Trends Biotechnol, 2019 Nov;37(11):1255-1268.
    PMID: 31174882 DOI: 10.1016/j.tibtech.2019.04.007
    Heavy metal pollution is one of the most pervasive environmental problems globally. Novel finely tuned algae have been proposed as a means to improve the efficacy and selectivity of heavy metal biosorption. This article reviews current research on selective algal heavy metal adsorption and critically discusses the performance of novel biosorbents. We emphasize emerging state-of-the-art techniques that customize algae for enhanced performance and selectivity, particularly molecular and chemical extraction techniques as well as nanoparticle (NP) synthesis approaches. The mechanisms and processes for developing novel algal biosorbents are also presented. Finally, we discuss the applications, challenges, and future prospects for modified algae in heavy metal biosorption.
    Matched MeSH terms: Adsorption/physiology*
  9. Cheng TH, Sankaran R, Show PL, Ooi CW, Liu BL, Chai WS, et al.
    Int J Biol Macromol, 2021 Aug 31;185:761-772.
    PMID: 34216668 DOI: 10.1016/j.ijbiomac.2021.06.177
    Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu2+, Zn2+, Ni2+, and Co2+) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu2+ > Zn2+ > Co2+ > Ni2+. Bovine serum albumin (BSA) was utilized as a model of proteins used in the waste adsorption process by NaY zeolite. The adsorption capacities of NaY zeolite and Cu/NaY zeolite for BSA were 14.90 mg BSA/g zeolite and 84.61 mg BSA/g zeolite, respectively. Moreover, Cu/NaY zeolite was highly stable in the solutions made of 2 M NaCl, 500 mM imidazole or 125 mM EDTA solutions. These conditions indicated that the minimal probability of secondary contamination caused by metal ions and soluble proteins in the waste stream. This study demonstrates the potential of Cu/NaY zeolite complex as an efficient pseudo-metal chelate adsorbent that could remove metal ions and water-soluble proteins from wastewater concurrently.
    Matched MeSH terms: Adsorption
  10. Cheng YW, Chong CC, Lam MK, Ayoub M, Cheng CK, Lim JW, et al.
    J Hazard Mater, 2021 05 05;409:124964.
    PMID: 33418292 DOI: 10.1016/j.jhazmat.2020.124964
    Thriving oil palm agroindustry comes at a price of voluminous waste generation, with palm oil mill effluent (POME) as the most cumbersome waste due to its liquid state, high strength, and great discharge volume. In view of incompetent conventional ponding treatment, a voluminous number of publications on non-conventional POME treatments is filed in the Scopus database, mainly working on alternative or polishing POME treatments. In dearth of such comprehensive review, all the non-conventional POME treatments are rigorously reviewed in a conceptual and comparative manner. Herein, non-conventional POME treatments are sorted into the five major routes, viz. biological (bioconversions - aerobic/anaerobic biodegradation), physical (flotation & membrane filtration), chemical (Fenton oxidation), physicochemical (photooxidation, steam reforming, coagulation-flocculation, adsorption, & ultrasonication), and bioelectrochemical (microbial fuel cell) pathways. For aforementioned treatments, the constraints, pros, and cons are qualitatively and quantitatively (with compiled performance data) detailed to indicate their process maturity. Authors recommended (i) bioconversions, adsorption, and steam reforming as primary treatments, (ii) flotation and ultrasonication as pretreatments, (iii) Fenton oxidation, photooxidation, and membrane filtration as polishing treatments, and (iv) microbial fuel cell and coagulation-flocculation as pretreatment or polishing treatment. Life cycle assessments are required to evaluate the environmental, economic, and energy aspects of each process.
    Matched MeSH terms: Adsorption
  11. Chew TL, Ahmad AL, Bhatia S
    Adv Colloid Interface Sci, 2010 Jan 15;153(1-2):43-57.
    PMID: 20060956 DOI: 10.1016/j.cis.2009.12.001
    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.
    Matched MeSH terms: Adsorption
  12. Chew TL, Ding SH, Oh PC, Ahmad AL, Ho CD
    Polymers (Basel), 2020 Oct 09;12(10).
    PMID: 33050226 DOI: 10.3390/polym12102312
    The development of mixed matrix membranes (MMMs) for effective gas separation has been gaining popularity in recent years. The current study aimed at the fabrication of MMMs incorporated with various loadings (0-4 wt%) of functionalized KIT-6 (NH2KIT-6) [KIT: Korea Advanced Institute of Science and Technology] for enhanced gas permeation and separation performance. NH2KIT-6 was characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and N2 adsorption-desorption analysis. The fabricated membranes were subjected to FESEM and FTIR analyses. The effect of NH2KIT-6 loading on the CO2 permeability and ideal CO2/CH4 selectivity of the fabricated membranes were investigated in gas permeation and separation studies. The successfulness of (3-Aminopropyl) triethoxysilane (APTES) functionalization on KIT-6 was confirmed by FTIR analysis. As observed from FESEM images, MMMs with no voids in the matrix were successfully fabricated at a low NH2KIT-6 loading of 0 to 2 wt%. The CO2 permeability and ideal CO2/CH4 selectivity increased when NH2KIT-6 loading was increased from 0 to 2 wt%. However, a further increase in NH2KIT-6 loading beyond 2 wt% led to a drop in ideal CO2/CH4 selectivity. In the current study, a significant increase of about 47% in ideal CO2/CH4 selectivity was achieved by incorporating optimum 2 wt% NH2KIT-6 into the MMMs.
    Matched MeSH terms: Adsorption
  13. Chin JF, Heng ZW, Teoh HC, Chong WC, Pang YL
    Chemosphere, 2022 Mar;291(Pt 3):133035.
    PMID: 34848231 DOI: 10.1016/j.chemosphere.2021.133035
    Heavy metal contamination in water bodies is currently in an area of greater concern due to the adverse effects on human health. Despite the good adsorption performance of biochar, various modifications have been performed on the pristine biochar to further enhance its adsorption capability, at the same time overcome the difficulty of particles separation and mitigate the secondary pollution issues. In this review, the feasibility of chitosan-modified magnetic biochar for heavy metal removal from aqueous solution is evaluated by critically analysing existing research. The effective strategies that applied to introduce chitosan and magnetic substances into the biochar matrix are systematically reviewed. The physicochemical changes of the modified-biochar composite are expounded in terms of surface morphology, pore properties, specific surface area, surface functional groups and electromagnetism. The detailed information regarding the adsorption performances of various modified biochar towards different heavy metals and their respective underlying mechanisms are studied in-depth. The current review also analyses the kinetic and isotherm models that dominated the adsorption process and summarizes the common models that fitted well to most of the experimental adsorption data. Moreover, the operating parameters that affect the adsorption process which include solution pH, temperature, initial metal concentration, adsorbent dosage, contact time and the effect of interfering ions are explored. This review also outlines the stability of modified biochar and their regeneration rate after cycles of heavy metal removal process. Lastly, constructive suggestions on the future trends and directions are provided for better research and development of chitosan-modified magnetic biochar.
    Matched MeSH terms: Adsorption
  14. Chin YP, Mohamad S, Abas MR
    Int J Mol Sci, 2010 Sep 20;11(9):3459-71.
    PMID: 20957106 DOI: 10.3390/ijms11092459
    The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results.
    Matched MeSH terms: Adsorption
  15. Choi D, Oh JI, Lee J, Park YK, Lam SS, Kwon EE
    Environ Int, 2019 11;132:105037.
    PMID: 31437646 DOI: 10.1016/j.envint.2019.105037
    In an effort to seek a new technical platform for disposal of drinking water treatment sludge (DWTS: alum sludge), pyrolysis of DWTS was mainly investigated in this study. To establish a more sustainable thermolytic platform for DWTS, this study particularly employed CO2 as reactive gas medium. Thus, this study laid great emphasis on elucidating the mechanistic roles of CO2 during the thermolysis of DWTS. A series of the TGA tests of DWTS in CO2 in reference to N2 revealed no occurrence of the heterogeneous reaction between CO2 and the sample surface of DWTS. As such, at the temperature regime before initiating the Boudouard reaction (i.e., ≥700 °C), the mass decay patterns of DWTS in N2 and CO2 were nearly identical. However, the gaseous effluents from lab-scale pyrolysis of DWTS in CO2 in reference to N2 were different. In sum, the homogeneous reactions between CO2 and volatile matters (VMs) evolved from the thermolysis of DWTS led to the enhanced generation of CO. Also, CO2 suppressed dehydrogenation of VMs. Such the genuine mechanistic roles of CO2 in the thermolysis of DWTS subsequently led to the compositional modifications of the chemical species in pyrolytic oil. Furthermore, the biochar composite was obtained as byproduct of pyrolysis of DWTS. Considering that the high content of Al2O3 and Fe-species in the biochar composite imparts a strong affinity for As(V), the practical use of the biochar composite as a sorptive material for arsenic (V) was evaluated at the fundamental levels. This work reported that adsorption of As(V) onto the biochar composite followed the pseudo-second order model and the Freundlich isotherm model.
    Matched MeSH terms: Adsorption
  16. Chong FC, Tan WS, Biak DR, Ling TC, Tey BT
    J Chromatogr A, 2010 Feb 19;1217(8):1293-7.
    PMID: 20044094 DOI: 10.1016/j.chroma.2009.12.039
    A direct recovery of recombinant nucleocapsid protein of Nipah virus (NCp-NiV) from crude Escherichia coli (E. coli) homogenate was developed successfully using a hydrophobic interaction expanded bed adsorption chromatography (HI-EBAC). The nucleic acids co-released with the recombinant protein have increased the viscosity of the E. coli homogenate, thus affected the axial mixing in the EBAC column. Hence, DNase was added to reduce the viscosity of feedstock prior to its loading into the EBAC column packed with the hydrophobic interaction chromatography (HIC) adsorbent. The addition of glycerol to the washing buffer has reduced the volume of washing buffer applied, and thus reduced the loss of the NCp-NiV during the washing stage. The influences of flow velocity, degree of bed expansion and viscosity of mobile phase on the adsorption efficiency of HI-EBAC were studied. The dynamic binding capacity at 10% breakthrough of 3.2mg/g adsorbent was achieved at a linear flow velocity of 178 cm/h, bed expansion of two and feedstock viscosity of 3.4 mPas. The adsorbed NCp-NiV was eluted with the buffer containing a step gradient of salt concentration. The purification of hydrophobic NCp-NiV using the HI-EBAC column has recovered 80% of NCp-NiV from unclarified E. coli homogenate with a purification factor of 12.5.
    Matched MeSH terms: Adsorption
  17. Chong HL, Chia PS, Ahmad MN
    Bioresour Technol, 2013 Feb;130:181-6.
    PMID: 23306127 DOI: 10.1016/j.biortech.2012.11.136
    Oil palm shell, a waste from palm oil industry, was cleaned and utilized as adsorbent. Its particle size distribution gave the uniformity coefficient of approximately two indicating that it can be used as filter bed media for continuous operation without resting. Its measured pH(pzc) of 4.1 is below the common pH of constructed wetland water body suggesting positive adsorption for heavy metal. The effect of various parameters on its adsorption was studied via batch experiments. The adsorption of Cu(II) and Pb(II) ions by oil palm shell showed a slightly better fit with the Freundlich compared to Langmuir. Its monolayer adsorption capacities were found to be 1.756 and 3.390mg/g for Cu(II) and Pb(II), respectively. High correlation coefficient of over 0.99 given by the pseudo-second-order model suggests that the rate limiting factor may be chemisorption. These findings suggest its potential application as constructed wetland media for the removal of heavy metal.
    Matched MeSH terms: Adsorption
  18. Chong MF, Lee KP, Chieng HJ, Syazwani Binti Ramli II
    Water Res, 2009 Jul;43(13):3326-34.
    PMID: 19487007 DOI: 10.1016/j.watres.2009.04.044
    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.
    Matched MeSH terms: Adsorption
  19. Chong S, Yang TC
    Materials (Basel), 2017 Jul 05;10(7).
    PMID: 28773110 DOI: 10.3390/ma10070756
    This paper remarks the general correlations of the shape and crystallinity of titanium dioxide (TiO₂) support on gold deposition and carbon monoxide (CO) oxidation. It was found that due to the larger rutile TiO₂ particles and thus the pore volume, the deposited gold particles tended to agglomerate, resulting in smaller catalyst surface area and limited gold loading, whilst anatase TiO₂ enabled better gold deposition. Those properties directly related to gold particle size and thus the number of low coordinated atoms play dominant roles in enhancing CO oxidation activity. Gold deposited on anatase spheroidal TiO₂ at photo-deposition wavelength of 410 nm for 5 min resulted in the highest CO oxidation activity of 0.0617 mmol CO/s.gAu (89.5% conversion) due to the comparatively highest catalyst surface area (114.4 m²/g), smallest gold particle size (2.8 nm), highest gold loading (7.2%), and highest Au⁰ content (68 mg/g catalyst). CO oxidation activity was also found to be directly proportional to the Au⁰ content. Based on diffuse reflectance infrared Fourier transform spectroscopy, we postulate that anatase TiO₂-supported Au undergoes rapid direct oxidation whilst CO oxidation on rutile TiO₂-supported Au could be inhibited by co-adsorption of oxygen.
    Matched MeSH terms: Adsorption
  20. Chong, Saw Peng, Norellia Bahari, Mustapha Akil, Norazlina Noordin
    MyJurnal
    There are many methods to separate or purify the rebaudioside A compound from Stevia rebaudiana extract. However, the ion-exchange chromatography using macroporous resin is still the most popular among those methods. The separation of rebaudioside A from stevia crude extract by macroporous resin AB-8 was optimised in this adsorption separation study. This approach was applied to evaluate the influence of four factors such as the adsorption temperature, desorption time, elution solution ratio, and adsorption volume on rebaudioside A yield of the purified stevia extract. The results showed that the low polarity resin AB-8 is able to separate rebaudioside A from stevia extract with 0.601 in yield compared to the high polarity resin HPD 600 with 0.204 in yield used in Anvari and Khayati study. The best conditions for rebaudioside A separation by macroporous resin AB-8 were at 35°C of adsorption temperature, 30 min of desorption time, elution solution ratio 2:1, and 50 mL of adsorption volume.
    Matched MeSH terms: Adsorption
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links