METHODS AND RESULTS: The rapid delayed rectifier potassium current (IKr), L-type Ca2+ current (ICa,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant IKr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed IKr in hiPSC-CMs by 67%∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression, and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine.
CONCLUSIONS: Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of IKr in human cardiomyocytes.
MATERIALS AND METHODS: Male and female Sprague-Dawley rats received three doses of mitragynine (1, 10, 100mg/kg, p.o) for 28 days respectively. Food intake and relative body weight were measured during the experiment. After completion of drug treatment biochemical, hematological, and histological analyses were performed.
RESULTS: No mortality was observed in any of the treatment groups. The groups of rats treated with the lower and intermediate doses showed no toxic effects during the study. However, the relative body weight of the group of female rats treated with the 100mg/kg dose was decreased significantly. Food intake also tended to decrease in the same group. Only relative liver weight increased after treatment with the high dose of mitragynine (100mg/ kg) in both the male and female treatment groups of rats. Biochemical and hematological parameters were also altered especially in high dose treatment group which corresponds to the histopathological changes.
CONCLUSIONS: The study demonstrated that mitragynine is relatively safe at lower sub-chronic doses (1-10mg/kg) but exhibited toxicity at a highest dose (sub-chronic 28 days: 100mg/kg). This was confirmed by liver, kidney, and brain histopathological changes, as well as hematological and biochemical changes.
OBJECTIVE: The objective of this study was the quantitative analysis of the alkaloid content of areca chewable products from different countries and regions using HPLC-UV, as well as the benefit of their safety evaluation products.
METHOD: An HPLC-UV method was established for qualitative and quantitative analyses of 65 batches of areca chewable products from different countries and regions. Additionally, similarity evaluation of chromatographic fingerprints was applied for data analysis.
RESULTS: These results reveal a significant variation in the levels of areca alkaloids among tested products, specifically guvacoline (0.060-1.216 mg/g), arecoline (0.376-3.592 mg/g), guvacine (0.028-1.184 mg/g), and arecaidine (0.184-1.291 mg/g). There were significant differences in the alkaloid content of areca chewable products from different producing areas.
CONCLUSIONS: The method will be useful in the safety evaluation of different areca chewable products.
HIGHLIGHTS: The established HPLC-UV method can be adopted for safety evaluation of areca chewable products from different countries and regions due to its general applicability.