Displaying publications 161 - 180 of 192 in total

Abstract:
Sort:
  1. Israf DA, Lajis NH, Somchit MN, Sulaiman MR
    Life Sci, 2004 Jun 11;75(4):397-406.
    PMID: 15147827
    An experiment was conducted with the objective to enhance mucosal immunity against ovalbumin (OVA) by co-administration of OVA with an aqueous extract from the fruit of Solanum torvum (STE). Five groups of female ICR mice aged approximately 8 weeks at the commencement of the experiment were caged in groups of eight and received various treatments. The treatments included OVA alone, OVA with cholera toxin (CT), and OVA with various doses of STE. Mice were primed intraperitoneally with 500 microg of OVA alone or co-administered with 0.1 microg CT, or with 1 microg STE. All mice were boosted orally via gastric intubation 14 days after priming with 10 mg OVA alone, or co-administered with 10 microg CT or with 10 mg, 1 mg or 0.1 mg STE. One week later all mice were killed and organs obtained for analysis of the immune response. Intestinal, faecal and pulmonary OVA-specific sIgA concentration was significantly increased (p<0.05) in mice that received booster combinations of OVA/CT and OVA with all extract doses (p<0.05). Specific serum IgG titres did not differ significantly between groups. It is concluded that STE can significantly enhance secretory immunity in the intestine to OVA with mucosal homing to the lungs. The adjuvant effect of STE is comparable to that of CT.
    Matched MeSH terms: Plant Extracts/administration & dosage
  2. Subramaniyan V, Shaik S, Bag A, Manavalan G, Chandiran S
    Pak J Pharm Sci, 2018 Mar;31(2):509-516.
    PMID: 29618442
    To determine the ameliorative potential of the active fraction from different extracts of Rumex vesicarius against potassium dichromate and gentamicin induced nephrotoxicity in experimental rats and its possible mechanism of action. Both sex wistar rats were divided into 6 groups (n=6/group) were fed with a control, potassium dichromate and gentamicin supplemented with different extracts at the doses of 200 and 400mg/kg respectively. Oral administration of EERV offered a significant (p<0.01 and p<0.001) dose dependent protection against PD and GN induced nephrotoxicity. Potassium dichromate and gentamicin nephrotoxicity assessed in terms of body weight, kidney weight, creatinine, urea, uric acid, BUN, albumin and total protein. Thus the present study revealed that EERV phytochemical constituents play an important role in protection against kidney damage.
    Matched MeSH terms: Plant Extracts/administration & dosage
  3. Hsieh CF, Jheng JR, Lin GH, Chen YL, Ho JY, Liu CJ, et al.
    Emerg Microbes Infect, 2020 Dec;9(1):1194-1205.
    PMID: 32397909 DOI: 10.1080/22221751.2020.1767512
    Enterovirus A71 (EV-A71), a positive-stranded RNA virus of the Picornaviridae family, may cause neurological complications or fatality in children. We examined specific factors responsible for this virulence using a chemical genetics approach. Known compounds from an anti-EV-A71 herbal medicine, Salvia miltiorrhiza (Danshen), were screened for anti-EV-A71. We identified a natural product, rosmarinic acid (RA), as a potential inhibitor of EV-A71 by cell-based antiviral assay and in vivo mouse model. Results also show that RA may affect the early stage of viral infection and may target viral particles directly, thereby interfering with virus-P-selectin glycoprotein ligand-1 (PSGL1) and virus-heparan sulfate interactions without abolishing the interaction between the virus and scavenger receptor B2 (SCARB2). Sequencing of the plaque-purified RA-resistant viruses revealed a N104K mutation in the five-fold axis of the structural protein VP1, which contains positively charged amino acids reportedly associated with virus-PSGL1 and virus-heparan sulfate interactions via electrostatic attraction. The plasmid-derived recombinant virus harbouring this mutation was confirmed to be refractory to RA inhibition. Receptor pull-down showed that this non-positively charged VP1-N104 is critical for virus binding to heparan sulfate. As the VP1-N104 residue is conserved among different EV-A71 strains, RA may be useful for inhibiting EV-A71 infection, even for emergent virus variants. Our study provides insight into the molecular mechanism of virus-host interactions and identifies a promising new class of inhibitors based on its antiviral activity and broad spectrum effects against a range of EV-A71.
    Matched MeSH terms: Plant Extracts/administration & dosage
  4. Ibrahim A, Shafie NH, Mohd Esa N, Shafie SR, Bahari H, Abdullah MA
    Nutrients, 2020 Oct 09;12(10).
    PMID: 33050310 DOI: 10.3390/nu12103077
    The present study aimed to determine the effect of an ethyl acetate extract of Mikania micrantha stems (EAMMS) in hypercholesterolemia-induced rats. Rats were divided into a normal group (NC) and hypercholesterolemia induced groups: hypercholesterolemia control group (PC), simvastatin group (SV) (10 mg/kg) and EAMMS extract groups at different dosages of 50, 100 and 200 mg/kg, respectively. Blood serum and tissues were collected for haematological, biochemical, histopathological, and enzyme analysis. Total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, creatinine, malondialdehyde (MDA) level, as well as enzymes of HMG-CoA reductase (HMGCR) and acetyl-CoA acetyltransferase 2 (ACAT2), were measured. Feeding rats with high cholesterol diet for eight weeks resulted in a significantly (p < 0.05) increased of TC, TG, LDL-C, AST, ALT and MDA levels. Meanwhile, the administration of EAMMS extract (50, 100 and 200 mg/kg) and simvastatin (10 mg/kg) significantly reduced (p < 0.05) the levels of TC, TG, LDL-C and MDA compared to rats in the PC group. Furthermore, all EAMMS and SV-treated groups showed a higher HDL-C level compared to both NC and PC groups. No significant difference was found in the level of ALT, AST, urea and creatinine between the different dosages in EAMMS extracts. Treatment with EAMMS also exhibited the highest inhibition activity of enzyme HMGCR and ACAT2 as compared to the control group. From the histopathological examination, liver tissues in the PC group showed severe steatosis than those fed with EAMMS and normal diet. Treatment with EAMMS extract ameliorated and reduced the pathological changes in the liver. No morphological changes showed in the kidney structure of both control and treated groups. In conclusion, these findings demonstrated that EAMMS extract has anti-hypercholesterolemia properties and could be used as an alternative treatment for this disorder.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  5. Seow LJ, Beh HK, Umar MI, Sadikun A, Asmawi MZ
    Int Immunopharmacol, 2014 Nov;23(1):186-91.
    PMID: 25194675 DOI: 10.1016/j.intimp.2014.08.020
    Gynura segetum, family Compositae, is a cultivated species and can be found growing in the tropical regions of Indonesia and Malaysia. The plant is known for its use for the treatment of cancer, inflammation, diabetes, hypertension and skin afflictions. In the current study, in vivo anti-inflammatory effect of the methanol extract G. segetum leaf and its antioxidant effect in vitro have been investigated for the first time. The in vitro antioxidant activities of the methanol extract were measured using common methods including total phenolic content; total flavonoid content; scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and β-carotene bleaching assays. The in vivo anti-inflammatory activities were tested using the cotton pellet implanted animal model. The measurement of pro-inflammatory cytokine (TNF-α and IL-1) levels in the blood samples of the rats was carried out by using ELISA kits. The inhibitory activity on cyclooxygenase (COX) enzyme of methanol extract was also evaluated. The methanol extract exhibited good antioxidant activity which is associated with their total phenolic and flavonoid contents. Methanol extract strongly inhibited the granuloma tissue formation in rats and the anti-inflammatory potential was mediated through the inhibition of pro-inflammatory cytokines and COX-2 enzyme activities. Taken together, the present study suggests that G. segetum's leaf is a natural source of antioxidants and has potential therapeutic benefits against chronic inflammation.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  6. Mohamad NV, Ima-Nirwana S, Chin KY
    Biomed Pharmacother, 2021 May;137:111368.
    PMID: 33582449 DOI: 10.1016/j.biopha.2021.111368
    Tocotrienol has been shown to prevent bone loss in animal models of postmenopausal osteoporosis, but the low oral bioavailability might limit its use. A self-emulsifying drug delivery system (SEDDS) could increase the bioavailability of tocotrienol. However, evidence of this system in improving the skeletal effects of tocotrienol is scanty. This study aims to evaluate the therapeutic efficacy of annatto tocotrienol with SEDDS in a rat model of postmenopausal bone loss. Ten-month-old female Sprague Dawley rats were randomized into six groups. The baseline group was euthanatized at the onset of the study. Four other groups underwent ovariectomy to induce estrogen deficiency. The sham underwent similar surgery procedure, but their ovaries were retained. Eight weeks after surgery, the ovariectomized rats received one of the four different regimens orally daily: (a) SEDDS, (b) annatto tocotrienol [60 mg/kg body weight (b.w.)] without SEDDS, (c) annatto-tocotrienol (60 mg/kg b.w.) with SEDDS, (d) raloxifene (1 mg/kg b.w.). After eight weeks of treatment, blood was collected for the measurement of delta-tocotrienol level and oxidative stress markers. The rats were euthanized and their bones were harvested for the evaluation of the bone microstructure, calcium content and strength. Circulating delta-tocotrienol level was significantly higher in rats receiving annatto tocotrienol with SEDDS compared to the group receiving unformulated annatto-tocotrienol (p 
    Matched MeSH terms: Plant Extracts/administration & dosage
  7. Che Ahmad Tantowi NA, Hussin P, Lau SF, Mohamed S
    Menopause, 2017 Sep;24(9):1071-1080.
    PMID: 28640163 DOI: 10.1097/GME.0000000000000882
    OBJECTIVE: Ficus deltoidea Jack (mistletoe fig) is an ornamental plant found in various parts of the world and used as traditional herbal medicine in some countries. This study investigated the potential use of F deltoidea leaf extract to mitigate osteoarthritis (OA) in ovariectomized (estrogen-deficient postmenopausal model) rats and the mechanisms involved. Diclofenac was used for comparison.

    METHODS: Sprague-Dawley female rats (12 weeks old) were divided randomly into five groups (n = 6): healthy; nontreated OA; OA + diclofenac (5 mg/kg); OA + extract (200 mg/kg); and OA + extract (400 mg/kg). Two weeks after bilaterally ovariectomy, OA was induced by intra-articular injection of monosodium iodoacetate into the right knee joints. After 28 days of treatment, the rats were evaluated for knee OA via physical (radiological and histological observations), biochemical, enzyme-linked immunosorbent assay, and gene expression analysis, for inflammation and cartilage degradation biomarkers.

    RESULTS: The osteoarthritic rats treated with the extract, and diclofenac showed significant reduction of cartilage erosion (via radiological, macroscopic, and histological images) compared with untreated osteoarthritic rats. The elevated serum interleukin-1β, prostaglandin E2, and C-telopeptide type II collagen levels in osteoarthritic rats were significantly reduced by F deltoidea leaf extract comparable to diclofenac. The extract significantly down-regulated the interleukin-1β, prostaglandin E2 receptor, and matrix metalloproteinase-1 mRNA expressions in the osteoarthritic cartilages, similar to diclofenac.

    CONCLUSIONS: F deltoidea leaf extract mitigated postmenopausal osteoarthritic joint destruction by inhibiting inflammation and cartilage degradation enzymes, at an effective extract dose equivalent to about 60 mg/kg for humans. The main bioactive compounds are probably the antioxidative flavonoids vitexin and isovitexin.

    Matched MeSH terms: Plant Extracts/administration & dosage*
  8. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Plant Extracts/administration & dosage
  9. Nazratun Nafizah AH, Budin SB, Zaryantey AH, Mariati AR, Santhana RL, Osman M, et al.
    Arab J Gastroenterol, 2017 Mar;18(1):13-20.
    PMID: 28336227 DOI: 10.1016/j.ajg.2017.02.001
    BACKGROUND AND STUDY AIMS: The complex series of deleterious events among diabetes patients leads to multiple organ failure. Therefore, a holistic approach of treatment is urgently required to prevent worsening of complications. The present investigation was carried out to study the possible protective effects of Roselle or Hibiscus sabdariffa Linn (HSL) calyxes aqueous extract, as an antidiabetic and antioxidant agent against oxidative liver injury in streptozotocin-induced diabetic rats.

    MATERIAL AND METHODS: A single dose of streptozotocin (45mg/kg body weight, iv) was used to induced diabetes in male Sprague Dawley rats which were then divided into two groups: Diabetic control (DC) and HSL-treated diabetic (DR) group. Normal rats were divided into normal control (NC), HSL-treated control (NR). Aqueous calyxes extract of HSL (100mg/kg/day, orally) was given for 28 consecutive days in the treated group. Weight, biochemical and histopathological (light and electron microscopic) parameters were compared in all groups.

    RESULTS: Supplementation of HSL significantly lowered the level of fasting blood glucose and increased plasma insulin level in DR group compared to DC group (p<0.05). Alanine aminotransaminases and aspartate aminotransferase enzymes level were found to be significantly reduced in DR compared to DC. Microscopic examination demonstrated destruction of the liver architecture, cytoplasmic vacuolation of the hepatocytes and signs of necrosis in diabetic rats. Moreover, dilatation and congestion of blood vessels with leucocytes adherence were detected. Ultrastructural study using electron microscope showed homogeneous substance accumulation in nuclear chromatin, a decrease of organelles and mitochondrial degeneration in the diabetic rats.

    CONCLUSION: Administration of HSL in diabetic rats causes significant decrease in hepatocyte destruction and prevented the changes associated with the diabetic condition. Thus, our findings provide a scientific rationale for the use of HSL as promising agent in preventing liver injury in diabetes.

    Matched MeSH terms: Plant Extracts/administration & dosage*
  10. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Plant Extracts/administration & dosage
  11. Ng SF, Tan LS, Buang F
    Drug Dev Ind Pharm, 2017 Jan;43(1):108-119.
    PMID: 27588411 DOI: 10.1080/03639045.2016.1224893
    Previous studies have shown that hydroxytyrosol (HT) can be a potential alternative therapeutic agent for the treatment of rheumatoid arthritis (RA). However, HT is extensively metabolized following oral administration, which leads to formulating HT in a topical vehicle to prolong drug action as well as to provide a localized effect. Hidrox-6 is a freeze-dried powder derived from fresh olives and contains a high amount of HT (∼3%) and other polyphenols. Alginate bilayer films containing 5% and 10% Hidrox-6 were formulated. The films were characterized with respect to their physical, morphology, rheological properties; drug content uniformity; and in vitro drug release. Acute dermal irritancy tests and a skin sensitization study were carried out in rats. An efficacy study of the bilayer films for RA was conducted using Freund's adjuvant-induced polyarthritis rats. Animal data showed that the bilayer film formulations did not cause skin irritancy. The efficacy in vivo results showed that the Hidrox-6 bilayer films lowered the arthritic scores, paw and ankle circumference, serum IL-6 level and cumulative histological scores compared with those measured for controls. The topical Hidrox-6 bilayer films improve synovitis and inflammatory symptoms in RA and can be a potential alternative to oral RA therapy.
    Matched MeSH terms: Plant Extracts/administration & dosage
  12. Zolkiffly SZI, Stanslas J, Abdul Hamid H, Mehat MZ
    J Ethnopharmacol, 2021 Oct 28;279:114309.
    PMID: 34119609 DOI: 10.1016/j.jep.2021.114309
    ETHNOPHARMACOLOGICAL RELEVANCE: Ficus deltoidea Jack (FD) is widely consumed in traditional medicine as a treatment for various diseases in Malaysia. Each part of the plant such as its leave, stem, fruit and root are used traditionally to treat different types of diseases. Vitexin and isovitexin are bioactive compounds abundantly found in the leaves of FD that possessed many pharmacological properties including neuroprotection. Nonetheless, its effects on key events in neuroinflammation are unknown.

    AIM OF THE STUDY: To determine the inhibitory properties of FD aqueous extract on pro-inflammatory mediators involved in lipopolysaccharide (LPS)-induced microglial cells.

    METHODS: Vitexin and isovitexin in the extract were quantified via high performance liquid chromatography (HPLC). The extract was evaluated for its cytotoxicity activity via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pre-treatment with the extract on LPS-induced microglial cells was done to determine its antioxidant and anti-neuroinflammatory properties by measuring the level of reactive oxygen species (ROS), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via 2'-7'-dichlorofluorescin diacetate (DCFDA) assay, Griess assay and Western blot respectively.

    RESULTS: The extract at all tested concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL) were not cytotoxic as the percentage viability of microglial cells were all above ~80%. At the highest concentration (100 μg/mL), the extract significantly reduced the formation of ROS, NO, TNF-α, IL-1β and IL-6 in microglial cells induced by LPS.

    CONCLUSION: The extract showed neuroprotective effects by attenuating the levels of pro-inflammatory and cytotoxic factors in LPS-induced microglial cells, possibly by mediating the nuclear factor-kappa B (NF-κB) signalling pathway.

    Matched MeSH terms: Plant Extracts/administration & dosage
  13. Sulaiman MR, Tengku Mohamad TA, Shaik Mossadeq WM, Moin S, Yusof M, Mokhtar AF, et al.
    Planta Med, 2010 Feb;76(2):107-12.
    PMID: 19637111 DOI: 10.1055/s-0029-1185950
    In the present study, the rhizome essential oil from Zingiber zerumbet (Zingiberaceae) was evaluated for antinociceptive activity using chemical and thermal models of nociception, namely, the acetic acid-induced abdominal writhing test, the hot-plate test and the formalin-induced paw licking test. It was demonstrated that intraperitoneal administration of the essential oil of Z. zerumbet (EOZZ) at the doses of 30, 100 and 300 mg/kg produced significant dose-dependent inhibition of acetic acid-induced abdominal writhing, comparable to that of obtained with acetylsalicylic acid (100 mg/kg). At the same doses, the EOZZ produced significant dose-dependent increases in the latency time in the hot-plate test with respect to controls, and in the formalin-induced paw licking test, the EOZZ also significantly reduced the painful stimulus in both neurogenic and inflammatory phase of the test. In addition, the antinociceptive effect of the EOZZ in the formalin-induced paw licking test as well as hot-plate test was reversed by the nonselective opioid receptor antagonist, naloxone suggesting that the opioid system was involved in its analgesic mechanism of action. On the basis of these data, we concluded that the EOZZ possessed both central and peripheral antinociceptive activities which justifying its popular folkloric use to relieve some pain conditions.
    Matched MeSH terms: Plant Extracts/administration & dosage
  14. Ahmad Nazri KA, Haji Mohd Saad Q, Mohd Fauzi N, Buang F, Jantan I, Jubri Z
    Pharm Biol, 2021 Dec;59(1):1203-1215.
    PMID: 34493166 DOI: 10.1080/13880209.2021.1970199
    CONTEXT: Gynura procumbens (Lour.) Merr. (Asteraceae) has been reported to have various pharmacological activities including anti-inflammatory effects.

    OBJECTIVE: This study sought to determine whether Gynura procumbens (GP) could improve vascular reactivity by suppressing inflammation in postmenopausal rats fed with five-times heated palm oil (5HPO) diet.

    MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were randomly divided into sham [non-ovariectomized; grouped as control, GP extracts (250 and 500 mg/kg), atorvastatin (ATV, 10 mg/kg)] and postmenopausal (PM) groups [ovariectomized rats fed with 5HPO; grouped as PM, GP extracts (250 and 500 mg/kg) and ATV (10 mg/kg)]. Each group (n = 6) was either supplemented with GP extract or ATV orally once daily for 6 months.

    RESULTS: In comparison with the untreated PM group, 250 and 500 mg/kg GP supplementation to PM groups reduced the systolic blood pressure (103 ± 2.7, 86 ± 2.4 vs. 156 ± 7.83 mmHg, p 

    Matched MeSH terms: Plant Extracts/administration & dosage
  15. Ameer OZ, Salman IM, Siddiqui MJ, Yam MF, Sriramaneni RN, Sadikun A, et al.
    Am J Chin Med, 2009;37(5):991-1008.
    PMID: 19885958
    In the present study, L. ferrugineus methanol extract (LFME) was evaluated for its blood pressure lowering effect in anesthetized normotensive Sprague Dawley (SD) rats and its spasmogenic effect in isolated guinea pig ileum. The possible mechanism(s) of action were also investigated. LFME was obtained by Soxhlet extraction. The rats were fasted overnight and anesthetized with sodium pentobarbitone (60 mg/kg i.p.). LFME was administered in i.v. boluses in the concentrations of 25, 50, 100 and 200 mg/kg respectively, with concomitant monitoring of mean arterial pressure (MAP). It was found that LFME dose-dependently reduced MAP. An i.v. bolus injection of atropine significantly decreased the blood pressure lowering effect of LFME. Similarly, L-NAME (Nomega-nitro-L-arginine methyl ester) significantly lowered both the MAP and the action duration. Conversely, no significant change in MAP was seen following i.v. injections of neostigmine, hexamethonium, prazosin and propranolol. LFME also produced a dose-dependent contractile effect in guinea pig ileum. This contraction was significantly reduced in atropine pre-incubated tissue segments, yet it was significantly enhanced in the presence of neostigmine. No appreciable change in the ability of LFME to contract guinea pig ileum was seen in the presence of hexamethonium. Accordingly, it can be postulated that LFME possesses a marked hypotensive effect that can be attributed to stimulation of muscarinic receptors and/or stimulation of nitric oxide (NO) release. Moreover, LFME retains a considerable spasmogenic action due to its cholinergic properties. The hypotensive and spasmogenic effects of LFME justify its traditional uses.
    Matched MeSH terms: Plant Extracts/administration & dosage
  16. Singh D, Müller CP, Murugaiyah V, Hamid SBS, Vicknasingam BK, Avery B, et al.
    J Ethnopharmacol, 2018 Mar 25;214:197-206.
    PMID: 29248450 DOI: 10.1016/j.jep.2017.12.017
    ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa Korth.) from the Rubiaceae family is an indigenous tropical medicinal tree of Southeast Asia. Kratom leaves have been used for decades in Malaysia and Thailand in traditional context for its perceived vast medicinal value, and as a mild stimulant among manual labourers. Kratom consumption has been reported to cause side-effects in kratom users.

    AIM OF THE STUDY: To evaluate kratom's effects towards hematological and clinical-chemistry parameters among regular kratom users in Malaysia.

    METHODS: A total of 77 subjects (n=58 regular kratom users, and n=19 healthy controls) participated in this cross-sectional study. All the surveys were conducted through face-to-face interview to elicit subject's socio-demographic characteristics and kratom use history. A full-blood test was also administered. Laboratory analysis was conducted using GC-MS to determine mitragynine content in the acquired kratom samples in order to relate mitragynine consumption with possible alterations in the blood parameters of kratom users.

    RESULTS: Findings showed that there were no significant differences in the hematological and clinical-chemistry parameters of traditional kratom users and healthy controls, except for HDL and LDL cholesterol values; these were found to be above the normal reference range for the former. Similarly, long-term kratom consumption (>5 years), and quantity of daily kratom use (≥3 ½ glasses; mitragynine content 76.3-114.8mg) did not appear to alter the hematological and biochemical parameters of kratom users.

    CONCLUSION: These data suggest that even long-term and heavy kratom consumption did not significantly alter the hematological and clinical-chemistry parameters of kratom users in a traditional setting.

    Matched MeSH terms: Plant Extracts/administration & dosage*
  17. Chay SY, Salleh A, Sulaiman NF, Zainal Abidin N, Hanafi MA, Zarei M, et al.
    Food Funct, 2018 Mar 01;9(3):1657-1671.
    PMID: 29469915 DOI: 10.1039/c7fo01769c
    Winged bean seed (WBS) is an underutilized tropical crop. The current study evaluates its potential to reduce blood pressure (BP) in spontaneously hypertensive rats and finds that it reduces BP significantly, in a dose-dependent manner. Five peptides with the sequences, RGVFPCLK, TQLDLPTQ, EPALVP, MRSVVT and DMKP, have been characterized in terms of their stability against ACE via in vitro and in silico modelling. All peptides exhibited IC50 values between 0.019 and 6.885 mM and various inhibitory modes, including substrate, prodrug and true inhibitor modes. The toxicity status of non-Current Good Manufacturing Practice (non-CGMP) peptides is evaluated and the results show that such peptides are toxic, and thus are not suitable to be tested in animals, particularly in repeated-dose studies. In short, WBS hydrolysate demonstrated in vitro ACE inhibitory properties and in vivo blood pressure lowering efficacy in rat models, fostering its potential as a functional food ingredient. Non-CGMP grade peptides are toxic and unfit for testing in animal models.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  18. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SRM
    J Ethnopharmacol, 2017 Feb 23;198:302-312.
    PMID: 28108382 DOI: 10.1016/j.jep.2017.01.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Cancer has proceeded to surpass one of the most chronic illnesses to be the major cause of mortality in both the developing and developed world. Garcinia mangostana L. (mangosteen, family Guttiferae) known as the queen of fruits, is one of the most popular tropical fruits. It is cultivated in Southeast Asian countries: Malaysia, Indonesia, Sri Lanka, Burma, Thailand, and Philippines. Traditionally, numerous parts of G. mangostana have been utilized to treat various ailments such as abdominal pain, haemorrhoids, food allergies, arthritis, leucorrhoea, gonorrhea, diarrhea, dysentery, wound infection, suppuration, and chronic ulcer.

    AIM OF STUDY: Although anticancer activity has been reported for the plant, the goal of the study was designed to isolate and characterize the active metabolites from G. mangostana and measure their cytotoxic properties. In this research, the mechanism of antiproliferative/cytotoxic effects of the tested compounds was investigated.

    MATERIALS AND METHODS: The CHCl3 fraction of the air-dried fruit hulls was repeatedly chromatographed on SiO2, RP18, Diaion HP-20, and polyamide columns to furnish fourteen compounds. The structures of these metabolites were proven by UV, IR, 1D, and 2D NMR measurements and HRESIMS. Additionally, the cytotoxic potential of all compounds was assessed against MCF-7, HCT-116, and HepG2 cell lines using SRB-U assay. Antiproliferative and cell cycle interference effects of potentially potent compounds were tested using DNA content flow cytometry. The mechanism of cell death induction was also studied using annexin-V/PI differential staining coupled with flow cytometry.

    RESULTS: The CHCl3 soluble fraction afforded two new xanthones: mangostanaxanthones V (1) and VI (2), along with twelve known compounds: mangostanaxanthone IV (3), β-mangostin (4), garcinone E (5), α-mangostin (6), nor-mangostin (7), garcimangosone D (8), aromadendrin-8-C-β-D-glucopyranoside (9), 1,2,4,5-tetrahydroxybenzene (10), 2,4,3`-trihydroxybenzophenone-6-O-β-glucopyranoside (11), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (12), epicatechin (13), and 2,4,6,3`,5`-pentahydroxybenzophenone (14). Only compound 5 showed considerable antiproliferative/cytotoxic effects with IC50's ranging from 15.8 to 16.7µM. Compounds 3, 4, and 6 showed moderate to weak cytotoxic effects (IC50's ranged from 45.7 to 116.4µM). Using DNA content flow cytometry, it was found that only 5 induced significant cell cycle arrest at G0/G1-phase which is indicative of its antiproliferative properties. Additionally, by using annexin V-FITC/PI differential staining, 5 induced cells killing effect via the induction of apoptosis and necrosis in both HepG2 and HCT116 cells. Compound 3 produce necrosis and apoptosis only in HCT116 cells. On contrary, 6 induced apoptosis and necrosis in HepG2 cells and moderate necrosis in HCT116 cells.

    CONCLUSION: Fourteen compounds were isolated from chloroform fraction of G. mangostana fruit hulls. Cytotoxic properties exhibited by the isolated xanthones from G. mangostana reinforce the avail of it as a natural cytotoxic agent against various cancers. These evidences could provide relevant bases for the scientific rationale of using G. mangostana in anti-cancer treatment.

    Matched MeSH terms: Plant Extracts/administration & dosage
  19. Ali AH, Sudi S, Basir R, Embi N, Sidek HM
    J Med Food, 2017 Feb;20(2):152-161.
    PMID: 28146408 DOI: 10.1089/jmf.2016.3813
    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.
    Matched MeSH terms: Plant Extracts/administration & dosage*
  20. Chin CY, Ng PY, Ng SF
    Drug Deliv Transl Res, 2019 04;9(2):453-468.
    PMID: 29560587 DOI: 10.1007/s13346-018-0510-z
    Previously, Moringa oleifera leaf (MOL) standardised aqueous extract-loaded films were successfully developed and they showed potential wound healing activity in vitro. The objective of this study was to evaluate in vivo dermal safety as well as wound healing efficacy of these MOL film dressings (containing 0.1, 0.5 and 1% MOL) on diabetic rat model. The acute dermal toxicity was carried out on healthy rats, and signs of toxicity over 14 days were observed. For wound healing studies, excision and abrasion wounds were created out on the STZ/HFD-induced diabetic rat model and the wound healing was studied over 21 days. The wound healing evaluation determined by histology staining, hydroxyproline assay and ELISA assays on wound healing related-growth factors, cytokines and chemokines. MOL film formulations exhibited no signs of dermal toxicities. In excision wound model, 0.5% film significantly enhanced the wound closure by 77.67 ± 7.28% at day 7 compared to control group. While in abrasion wounds, 0.5% MOL films accelerated wound closure significantly at 81 ± 4.5% as compared to the control. The histology findings and hydroxyproline assay revealed that high collagen deposition and complete re-epithelialisation were observed for the wounds treated with 0.5 and 1% MOL films. All MOL film dressings had successfully tested non-toxic via in vivo safety dermal toxicity. It was concluded that the 0.5% MOL extract-loaded film had proven to be the most promising approach to accelerate diabetic wound healing process in both full-thickness excision and partial thickness abrasion wounds on the HFD/STZ-induced diabetic type II model.
    Matched MeSH terms: Plant Extracts/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links