Displaying publications 161 - 180 of 508 in total

Abstract:
Sort:
  1. Chear NJ, León F, Sharma A, Kanumuri SRR, Zwolinski G, Abboud KA, et al.
    J Nat Prod, 2021 04 23;84(4):1034-1043.
    PMID: 33635670 DOI: 10.1021/acs.jnatprod.0c01055
    Ten indole and oxindole alkaloids (1-10) were isolated from the freshly collected leaves of Malaysian Mitragyna speciosa (Kratom). The chemical structures of these compounds were established on the basis of extensive 1D and 2D NMR and HRMS data analysis. The spectroscopic data of mitragynine oxindole B (4) are reported herein for the first time. The spatial configuration of mitragynine oxindole B (4) was confirmed by single-crystal X-ray diffraction. Simultaneous quantification of the isolated alkaloids in the M. speciosa leaf specimens collected from different locations in the northern region of Peninsular Malaysia was also performed using UPLC-MS/MS. The oxindole alkaloids (1-4) and the indole alkaloid (10) were assessed for binding affinity at opioid receptors. Corynoxine (1) showed high binding affinity to μ-opioid receptors with a Ki value of 16.4 nM. Further, corynoxine (1) was 1.8-fold more potent than morphine in rats subjected to a nociceptive hot plate assay. These findings have important implications for evaluating the combined effects of the minor oxindole alkaloids in the overall therapeutic activity of M. speciosa.
    Matched MeSH terms: Plant Leaves/chemistry
  2. Hazni H, Ahmad N, Hitotsuyanagi Y, Takeya K, Choo CY
    Planta Med, 2008 Dec;74(15):1802-5.
    PMID: 18991205 DOI: 10.1055/s-0028-1088340
    The methanolic extract of the leaves of CASSIA ALATA was sequentially partitioned in increasing polarity to afford the hexane, chloroform, butanol and residual extract. Crude extracts were evaluated against MRSA using the agar well diffusion assay. The butanol and chloroform extracts both exhibited inhibition against MRSA with inhibition indexes of 1.03 +/- 0.16 and 0.78 +/- 0.07 at the concentration of 50 mg/mL. The butanol extracts were further purified using silica gel and reverse phase chromatography to afford kaempferol ( 1), kaempferol 3- O-beta-glucopyranoside ( 2), kaempferol 3- O-gentiobioside ( 3) and aloe emodin ( 4). The four constituents showed varying degrees of inhibition against MRSA. Both 1 and 4 exhibited MIC (50) values of 13.0 +/- 1.5 microg/mL and 12.0 +/- 1.5 microg/mL, respectively. The kaempferol glycosides 2 and 3 were less active with MIC (50) values of 83.0 +/- 0.9 microg/mL and 560.0 +/- 1.2 microg/mL, respectively. A free hydroxyl group at C-3 of the flavonol structure is a structural requirement for the inhibition of MRSA.
    Matched MeSH terms: Plant Leaves/chemistry
  3. Zèches M, Mesbah K, Loukaci A, Richard B, Schaller H, Sévenet T, et al.
    Planta Med, 1995 Feb;61(1):97.
    PMID: 7701009
    Matched MeSH terms: Plant Leaves/chemistry
  4. Rashid N, Khan S, Wahid A, Ibrar D, Irshad S, Bakhsh A, et al.
    PLoS One, 2021;16(11):e0259214.
    PMID: 34748570 DOI: 10.1371/journal.pone.0259214
    Quinoa (Chenopodium quinoa Willd.) has gained significant popularity among agricultural scientists and farmers throughout the world due to its high nutritive value. It is cultivated under a range of soil and climatic conditions; however, late sowing adversely affects its productivity and yield due to shorter growth period. Inorganic and organic phyto-stimulants are promising for improving growth, development, and yield of field crops under stressful environments. Field experiments were conducted during crop cultivation seasons of 2016-17 and 2017-18, to explore the role of inorganic (hydrogen peroxide and ascorbic acid) and organic [moringa leaf extract (MLE) and sorghum water extract (sorgaab)] phyto-stimulants in improving growth and productivity of quinoa (cultivar UAF-Q7). Hydrogen peroxide at 100 μM, ascorbic acid at 500 μM, MLE at 3% and sorgaab at 3% were exogenously applied at anthesis stage of quinoa cultivated under normal (November 21st and 19th during 2016 and 2017) and late-sown (December 26th and 25th during 2016 and 2017) conditions. Application of inorganic and organic phyto-stimulants significantly improved biochemical, physiological, growth and yield attributes of quinoa under late sown conditions. The highest improvement in these traits was recorded for MLE. Application of MLE resulted in higher chlorophyll a and b contents, stomatal conductance, and sub-stomatal concentration of CO2 under normal and late-sowing. The highest improvement in soluble phenolics, anthocyanins, free amino acids and proline, and mineral elements in roots, shoot and grains were observed for MLE application. Growth attributes, including plant height, plant fresh weight and panicle length were significantly improved with MLE application as compared to the rest of the treatments. The highest 1000-grain weight and grain yield per plant were noted for MLE application under normal and late-sowing. These findings depict that MLE has extensive crop growth promoting potential through improving physiological and biochemical activities. Hence, MLE can be applied to improve growth and productivity of quinoa under normal and late-sown conditions.
    Matched MeSH terms: Plant Leaves/chemistry
  5. Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R
    Sci Rep, 2021 10 21;11(1):20851.
    PMID: 34675286 DOI: 10.1038/s41598-021-00409-0
    Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
    Matched MeSH terms: Plant Leaves/chemistry*
  6. van der Ent A, Nkrumah PN, Aarts MGM, Baker AJM, Degryse F, Wawryk C, et al.
    BMC Plant Biol, 2021 Sep 27;21(1):437.
    PMID: 34579652 DOI: 10.1186/s12870-021-03190-4
    BACKGROUND: Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo).

    RESULTS: We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies.

    CONCLUSIONS: The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.

    Matched MeSH terms: Plant Leaves/chemistry
  7. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(14):1657-1671.
    PMID: 29468964 DOI: 10.2174/1389450119666180219123815
    BACKGROUND: Eurycoma longifolia (E. longifolia) has gained widespread recognition due to its versatile pharmacological activities including aphrodisiac, anticancer, antimicrobial, antioxidant, anti-inflammatory, anxiolytic, anti-diabetic, ergogenic, insecticidal, anti-rheumatism, bone protection, and anti-ulcer effects.

    OBJECTIVE: This review was aimed to critically overview the literature and summarizes the antibacterial, antiprotozoal, and antifungal trends of E. longifolia and its medicinally active components.

    RESULTS: Besides its well-documented safety, efficacy, and tolerability, a plethora of in vitro, in vivo, and human clinical studies has evidenced the antimicrobial efficacy of E. longifolia and its bioactive constituents. Phytochemical screening of various types of extracts (methanolic, ethyl acetate, and nbutanolic) from different parts (roots, stem, and leaves) of E. longifolia displayed a dose-dependent antibacterial, antiprotozoal, and antifungal responses. Comparative analysis revealed that the root extract of E. longifolia exhibited the highest antimicrobial efficacy compared to other parts of the plant. Bioactivity-guided fractionation identified that among all of the medicinal compounds isolated/ extracted from different parts of E. longifolia, eurycomanone displayed the strongest antibacterial, antiprotozoal and antifungal activities.

    CONCLUSION: Based on the critical analysis of the literature, we identified that E. longifolia exhibits promising antibacterial, antiprotozoal, and antifungal efficacies against various pathogenic microbes and thus can be considered as a potential complementary and alternative antimicrobial therapy.

    Matched MeSH terms: Plant Leaves/chemistry
  8. Shamsudin KJ, Phan CS, Kulip J, Hatai K, Vairappan CS, Kamada T
    J Asian Nat Prod Res, 2019 May;21(5):435-441.
    PMID: 29502443 DOI: 10.1080/10286020.2018.1440391
    The medicinal plant, Syzygium leucoxylon or commonly known as Obah found in North Borneo was considered as traditional medicine by local committee. Two new phenolics, leucoxenols A (1) and B (2) were isolated and identified as major secondary metabolites from the leaves of S. leucoxylon. Their chemical structures were elucidated based on spectroscopic data such as NMR and HRESIMS. Furthermore, these compounds were active against selected strains of fungi.
    Matched MeSH terms: Plant Leaves/chemistry*
  9. Alhassan AM, Ahmed QU, Latip J, Shah SAA
    Nat Prod Res, 2019 Jan;33(1):1-8.
    PMID: 29417849 DOI: 10.1080/14786419.2018.1437427
    The bioactivity guided fractionation of Tetracera indica leaves crude ethanolic extract has afforded the isolation and characterization of six compounds including a new natural product viz., 5,7-dihydroxyflavone-O-8-sulphate (1) and five known flavonoids (2-6). The structures of the compounds were elucidated using 1D and 2D NMR and HRESIMS spectroscopic analyses. All the isolated compounds were evaluated for their in vitro inhibitory activity against alpha-glucosidase. Compound 1, 5 and 6 showed strong alpha-glucosidase inhibitory activity, 3 and 4 displayed weak activity while compound 2 was inactive. The interactions of the active compounds with alpha-glucosidase were further investigated using molecular docking to confirm their antidiabetic potential.
    Matched MeSH terms: Plant Leaves/chemistry
  10. Ismail Suhaimy NW, Noor Azmi AK, Mohtarrudin N, Omar MH, Tohid SF, Cheema MS, et al.
    Oxid Med Cell Longev, 2017;2017:6542631.
    PMID: 28168011 DOI: 10.1155/2017/6542631
    Recent study has demonstrated the gastroprotective activity of crude methanolic extract of M. malabathricum leaves. The present study evaluated the gastroprotective potential of semipurified extracts (partitions): petroleum ether, ethyl acetate (EAMM), and aqueous obtained from the methanolic extract followed by the elucidation of the gastroprotective mechanisms of the most effective partition. Using the ethanol-induced gastric ulcer assay, all partitions exerted significant gastroprotection, with EAMM being the most effective partition. EAMM significantly (i) reduced the volume and acidity (free and total) while increasing the pH of gastric juice and enhanced the gastric wall mucus secretion when assessed using the pylorus ligation assay, (ii) increased the enzymatic and nonenzymatic antioxidant activity of the stomach tissue, (iii) lost its gastroprotective activity following pretreatment with N-omega-nitro-L-arginine methyl ester (L-NAME; NO blocker) or carbenoxolone (CBXN; NP-SH blocker), (iv) exerted antioxidant activity against various in vitro oxidation assays, and (v) showed moderate in vitro anti-inflammatory activity via the LOX-modulated pathway. In conclusion, EAMM exerts a remarkable NO/NP-SH-dependent gastroprotective effect that is attributed to its antisecretory and antioxidant activities, ability to stimulate the gastric mucus production and endogenous antioxidant system, and synergistic action of several gastroprotective-induced flavonoids.
    Matched MeSH terms: Plant Leaves/chemistry
  11. Maznah Z, Halimah M, Ismail BS
    Bull Environ Contam Toxicol, 2018 May;100(5):677-682.
    PMID: 29516138 DOI: 10.1007/s00128-018-2312-x
    The residual levels and persistence of thiram in the soil, water and oil palm seedling leaves were investigated under field conditions. The experimental plots were carried out on a clay loam soil and applied with three treatments namely; manufacturer's recommended dosage (25.6 g a.i. plot-1), manufacturer's double recommended dosage (51.2 g a.i. plot-1), and control (water) were applied. Thiram residues were detected in the soil from day 0 to day 3 in the range of 0.22-27.04 mg kg-1. Low concentrations of thiram were observed in the water and leave samples in the range of 0.27-2.52 mg L-1 and 1.34-12.28 mg kg-1, respectively. Results have shown that thiram has a rapid degradation and has less persistence due to climatic factors. These findings suggest that thiram is safe when applied at manufacturer's recommended dosage on oil palm seedlings due to low residual levels observed in soil and water bodies.
    Matched MeSH terms: Plant Leaves/chemistry
  12. Sathasivam K, Ramanathan S, Mansor SM, Haris MR, Wernsdorfer WH
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:19-22.
    PMID: 19915811 DOI: 10.1007/s00508-009-1229-0
    Following up a popular use of crude leaf preparations from Carica papaya for the treatment of dengue infections, a suspension of powdered Carica papaya leaves in palm oil has been investigated for its effect on thrombocyte counts in mice, administering by gavage 15 mg of powdered leaves per kg body weight to 5 mice. Equal numbers of animals received corresponding volumes of either palm oil alone or physiological saline solution. Thrombocyte counts before and at 1, 2, 4, 8, 10, 12, 24, 48 and 72 hours after dosing revealed significantly higher mean counts at 1, 2, 4, 8, 10 and 12 after dosing with the C. papaya leaf formulation as compared to the mean count at hour 0. There was only a non-significant rise of thrombocyte counts in the group having received saline solution, possibly the expression of a normal circadian rhythm in mice. The group having received palm oil only showed a protracted increase of platelet counts that was significant at hours 8 and 48 and obviously the result of a hitherto unknown stimulation of thrombocyte release. The results call for a dose-response investigation and for extending the studies to the isolation and identification of the C. papaya substances responsible for the release and/or production of thrombocytes.
    Matched MeSH terms: Plant Leaves/chemistry*
  13. Toh SC, Lihan S, Bunya SR, Leong SS
    BMC Complement Med Ther, 2023 Mar 18;23(1):85.
    PMID: 36934252 DOI: 10.1186/s12906-023-03914-z
    BACKGROUND: Cellulitis is a common skin disease encountered in medical emergencies in hospitals. It can be treated using a combination of antibiotics therapy; however, the causative agent Staphylococcus aureus has been reported to develop resistance towards the currently used antibiotics. Therefore, the search for more alternative herbal origin antimicrobial agents is critical.

    AIM: In this study, maceration and Soxhlet extraction of the whole plant of Cassia alata Linn. (leaves, roots, and stem) were performed using four solvents with different polarities, namely n-hexane, ethyl acetate, ethanol and distilled water. The crude extracts were screened using agar well diffusion, colorimetric broth microdilution, grid culture and bacterial growth curve analysis against Staphylococcus aureus. The phytochemicals in the crude extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS).

    RESULTS: Agar-well diffusion analysis revealed that extraction using ethyl acetate showed the largest inhibition zone with an average diameter of 15.30 mm (root Soxhlet extract) followed by 14.70 mm (leaf Soxhlet extract) and 13.70 mm (root maceration extract). The lowest minimum inhibitory and minimum bactericidal concentration in root Soxhlet extract using ethyl acetate was 0.313 and 0.625 µg µL-1, respectively. Our study proved that crude extract of the plant suppressed the growth of S. aureus as evidenced from a significant regression extension (p plant should be intensively studied for more medicinal uses.

    Matched MeSH terms: Plant Leaves/chemistry
  14. Baharum Z, Akim AM, Taufiq-Yap YH, Hamid RA, Kasran R
    Molecules, 2014 Nov 10;19(11):18317-31.
    PMID: 25389662 DOI: 10.3390/molecules191118317
    The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.
    Matched MeSH terms: Plant Leaves/chemistry
  15. Karimi E, Jaafar HZ, Ahmad S
    Molecules, 2011 May 27;16(6):4438-50.
    PMID: 21623314 DOI: 10.3390/molecules16064438
    A local herb, Kacip Fatimah, is famous amongst Malay women for its uses in parturition; however, its phytochemical contents have not been fully documented. Therefore, a study was performed to evaluate the phenolics, flavonoids, and total saponin contents, and antibacterial and antifungal properties of the leaf, stem and root of three varieties of Labisia pumila Benth. Total saponins were found to be higher in the leaves of all three varieties, compared to the roots and stems. Leaves of var. pumila exhibited significantly higher total saponin content than var. alata and lanceolata, with values of 56.4, 43.6 and 42.3 mg diosgenin equivalent/g dry weight, respectively. HPLC analyses of phenolics and flavonoids in all three varieties revealed the presence of gallic acid, caffeic acid, rutin, and myricetin in all plant parts. Higher levels of flavonoids (rutin, quercitin, kaempferol) were observed in var. pumila compared with alata and lanceolata, whereas higher accumulation of phenolics (gallic acid, pyrogallol) was recorded in var. alata, followed by pumila and lanceolata. Antibacterial activities of leaf, stem and root extracts of all varieties determined against both Gram positive (Micrococcus luteus, Bacillus subtilis B145, Bacillus cereus B43, Staphylococcus aureus S1431) and Gram negative (Enterobacter aerogenes, Klebsiella pneumonia K36, Escherichia coli E256, Pseudomonas aeruginosa PI96) pathogens showed that crude methanolic extracts are active against these bacteria at low concentrations, albeit with lower antibacterial activity compared to kanamycin used as the control. Antifungal activity of methanolic extracts of all plant parts against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc exhibited moderate to appreciable antifungal activities compared to streptomycin used as positive control.
    Matched MeSH terms: Plant Leaves/chemistry
  16. Wan-Nadilah WA, Akhtar MT, Shaari K, Khatib A, Hamid AA, Hamid M
    BMC Complement Altern Med, 2019 Sep 05;19(1):245.
    PMID: 31488132 DOI: 10.1186/s12906-019-2655-9
    BACKGROUND: Cosmos caudatus is an annual plant known for its medicinal value in treating several health conditions, such as high blood pressure, arthritis, and diabetes mellitus. The α-glucosidase inhibitory activity and total phenolic content of the leaf aqueous ethanolic extracts of the plant at different growth stages (6, 8. 10, 12 and 14 weeks) were determined in an effort to ascertain the best time to harvest the plant for maximum medicinal quality with respect to its glucose-lowering effects.

    METHODS: The aqueous ethanolic leaf extracts of C. caudatus were characterized by NMR and LC-MS/MS. The total phenolic content and α-glucosidase inhibitory activity were evaluated by the Folin-Ciocalteu method and α-glucosidase inhibitory assay, respectively. The statistical significance of the results was evaluated using one-way ANOVA with Duncan's post hoc test, and correlation among the different activities was performed by Pearson's correlation test. NMR spectroscopy along with multivariate data analysis was used to identify the metabolites correlated with total phenolic content and α-glucosidase inhibitory activity of the C. caudatus leaf extracts.

    RESULTS: It was found that the α-glucosidase inhibitory activity and total phenolic content of the optimized ethanol:water (80:20) leaf extract of the plant increased significantly as the plant matured, reaching a maximum at the 10th week. The IC50 value for α-glucosidase inhibitory activity (39.18 μg mL- 1) at the 10th week showed greater potency than the positive standard, quercetin (110.50 μg mL- 1). Through an 1H NMR-based metabolomics approach, the 10-week-old samples were shown to be correlated with a high total phenolic content and α-glucosidase inhibitory activity. From the partial least squares biplot, rutin and flavonoid glycosides, consisting of quercetin 3-O-arabinofuranoside, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, and quercetin 3-O-xyloside, were identified as the major bioactive metabolites. The metabolites were identified by NMR spectroscopy (J-resolve, HSQC and HMBC experiments) and further supported by dereplication via LC-MS/MS.

    CONCLUSION: For high phytomedicinal quality, the 10th week is recommended as the best time to harvest C. caudatus leaves with respect to its glucose lowering potential.

    Matched MeSH terms: Plant Leaves/chemistry
  17. Albaayit SFA, Maharjan R, Abdullah R, Noor MHM
    Biomed Res Int, 2021;2021:3123476.
    PMID: 33748267 DOI: 10.1155/2021/3123476
    BACKGROUND: Clausena excavata Burum. f. has long been applied in ethnomedicine for the treatment of various disorders like rhinitis, headache, cough, wound healing, fever, and detoxification. This study is aimed at investigating the antibacterial activity against Enterococcus faecalis ATCC 49532 using AlamarBlue assay and atomic force microscopy (AFM) as well as the cytotoxicity, anticancer, and phytotoxicity of C. excavata.

    METHOD: Bacterial cell viability was performed by using microplate AlamarBlue assay. Atomic force microscopy was used to determine morphological changes in the surface of bacterial cells. Cytotoxicity and phytotoxicity were determined by brine shrimp lethality and Lemna minor bioassay. Caco-2 (colorectal adenocarcinoma) cell line was used for the evaluation of the anticancer effects.

    RESULT: Among the fractions tested, ethyl acetate (EA) fraction was found to be active with minimum inhibitory concentration (MIC) of 750 μg/mL against E. faecalis, but other fractions were found to be insensitive to bacterial growth. Microscopically, the EA fraction-treated bacteria showed highly damaged cells with their cytoplasmic content scattered all over. The LC50 value of the EA fraction against brine shrimp was more than 1000 μg/mL showing the nontoxic nature of this fraction. Chloroform (CH), EA, and methanol (MOH) fractions of C. excavata were highly herbicidal at the concentration of 1000 μg/mL. EA inhibited Caco-2 cell line with an IC50 of 20 μg/mL.

    CONCLUSIONS: This study is the first to reveal anti-E. faecalis property of EA fraction of C. excavata leaves, natural herbicidal, and anticancer agents thus highlight the potential compound present in its leaf which needs to be isolated and tested against multidrug-resistant E. faecalis.

    Matched MeSH terms: Plant Leaves/chemistry*
  18. Zakaria ZA, Sahmat A, Hizami Azmi A, Zainol ASN, Omar MH, Balan T, et al.
    Pharm Biol, 2023 Dec;61(1):1152-1161.
    PMID: 37559390 DOI: 10.1080/13880209.2023.2241510
    CONTEXT: Bauhinia purpurea L. (Fabaceae) is used in the Ayurvedic system to treat various oxidative-related ailments (e.g., wounds, ulcers etc.). Therefore, it is believed that the plant also has the potential to alleviate oxidative-related liver damage.

    OBJECTIVE: This study elucidates the hepatoprotective activity of chloroform extract of B. purpurea leaves (CEBP) in paracetamol (PCM)-induced liver injury (PILI) rats.

    MATERIALS AND METHODS: Male Sprague-Dawley rats (n = 6) were pre-treated once daily (p.o.) with CEBP (50-500 mg/kg) for seven consecutive days before being administered (p.o.) a hepatotoxic agent, 3 g/kg PCM. Liver enzyme levels were determined from the collected blood, while the collected liver was used to determine the activity of endogenous antioxidant enzymes and for histopathological examination. CEBP was also subjected to radical scavenging assays and phytochemical analysis.

    RESULTS: CEBP significantly (p plant can be developed as a future alternative hepatoprotective medicament for clinical use.

    Matched MeSH terms: Plant Leaves/chemistry
  19. Che Zain MS, Lee SY, Nasir NM, Fakurazi S, Shaari K
    Molecules, 2020 Nov 30;25(23).
    PMID: 33265992 DOI: 10.3390/molecules25235636
    Oil palm (Elaeis guineensis Jacq.) leaflets (OPLs) are one of the major agricultural by-products generated from the massive cultivation of Malaysian palm oil. This biomass is also reported to be of potential value based on its health-improving effects. By employing proton nuclear magnetic resonance (1H-NMR) spectroscopy combined with multivariate data analysis (MVDA), the metabolite profile of OPLs was characterized and correlated with their antioxidant and wound healing properties. Principal component analysis (PCA) classified four varieties of extracts, prepared using solvents ranging from polar to medium polarity, into three distinct clusters. Cumulatively, six flavonoids, eight organic acids, four carbohydrates, and an amine were identified from the solvent extracts. The more polar extracts, such as, the ethyl acetate-methanol, absolute methanol, and methanol-water, were richer in phytochemicals. Based on partial least square (PLS) analysis, the constituents in these extracts, such as (+)-catechin, (-)-epicatechin, orientin, isoorientin, vitexin, and isovitexin, were strongly correlated with the measured antioxidant activities, comprising ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and nitric oxide (NO) free radical scavenging activities, as well as with cell proliferation and migration activities. This study has provided crucial evidence on the importance of these natural antioxidant compounds on the wound healing properties of OPL.
    Matched MeSH terms: Plant Leaves/chemistry*
  20. Ghasemzadeh A, Jaafar HZ, Karimi E, Ashkani S
    Molecules, 2014 Oct 16;19(10):16693-706.
    PMID: 25325154 DOI: 10.3390/molecules191016693
    The increase of atmospheric CO2 due to global climate change or horticultural practices has direct and indirect effects on food crop quality. One question that needs to be asked, is whether CO2 enrichment affects the nutritional quality of Malaysian young ginger plants. Responses of total carbohydrate, fructose, glucose, sucrose, protein, soluble amino acids and antinutrients to either ambient (400 μmol/mol) and elevated (800 μmol/mol) CO2 treatments were determined in the leaf and rhizome of two ginger varieties namely Halia Bentong and Halia Bara. Increasing of CO2 level from ambient to elevated resulted in increased content of total carbohydrate, sucrose, glucose, and fructose in the leaf and rhizome of ginger varieties. Sucrose was the major sugar followed by glucose and fructose in the leaf and rhizome extract of both varieties. Elevated CO2 resulted in a reduction of total protein content in the leaf (H. Bentong: 38.0%; H. Bara: 35.4%) and rhizome (H. Bentong: 29.0%; H. Bara: 46.2%). In addition, under CO2 enrichment, the concentration of amino acids increased by approximately 14.5% and 98.9% in H. Bentong and 12.0% and 110.3% in H. Bara leaf and rhizome, respectively. The antinutrient contents (cyanide and tannin) except phytic acid were influenced significantly (P ≤ 0.05) by CO2 concentration. Leaf extract of H. Bara exposed to elevated CO2 exhibited highest content of cyanide (336.1 mg HCN/kg DW), while, highest content of tannin (27.5 g/kg DW) and phytic acid (54.1 g/kg DW) were recorded from H.Bara rhizome grown under elevated CO2. These results demonstrate that the CO2 enrichment technique could improve content of some amino acids and antinutrients of ginger as a food crop by enhancing its nutritional and health-promoting properties.
    Matched MeSH terms: Plant Leaves/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links