Displaying publications 1821 - 1840 of 10379 in total

Abstract:
Sort:
  1. Masud MAA, Shin WS, Septian A, Samaraweera H, Khan IJ, Mohamed MM, et al.
    Sci Total Environ, 2024 May 20;926:171944.
    PMID: 38527542 DOI: 10.1016/j.scitotenv.2024.171944
    Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.
    Matched MeSH terms: Soil/chemistry
  2. Aziz SB, Murad AR, Abdulwahid RT, Aziz DM, Abdalrahman AA, Abdullah RM, et al.
    Int J Biol Macromol, 2024 Jul;273(Pt 2):133203.
    PMID: 38885860 DOI: 10.1016/j.ijbiomac.2024.133203
    This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO2 as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO2. DC conductivity estimates from AC spectra plateau regions reach up to 5.6 × 10-4 S/cm. The electric bulk resistance Rb obtained from the Nyquist plots exhibits a substantial decrease with increasing plasticizer concentration, further enhanced by the addition of the nanoparticles. Specifically, Rb decreases from ∼20 kΩ to 287 Ω when glycerol concentration increases from 10 % to 40 % and further drops to 30 Ω with the introduction of TiO2. Specific capacitance obtained from cyclic voltammetry shows a notable increase as the scan rate decreases, indicating improved efficiency and stability of ion transport. The TiO2-enriched EDCL achieves 12.3 F/g specific capacitance at 20 mV/s scan rate, with high ion conductivity and extended electrochemical stability. These results suggest the great potential of plasticizer and TiO2 with biopolymers in improving the performance of energy storage systems.
    Matched MeSH terms: Plasticizers/chemistry
  3. Abdul Hadi N, Marefati A, Purhagen J, Rayner M
    Int J Biol Macromol, 2024 May;267(Pt 1):131523.
    PMID: 38608987 DOI: 10.1016/j.ijbiomac.2024.131523
    Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 μm and quinoa starches from 5.18 to 5.72 μm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.
    Matched MeSH terms: Chenopodium quinoa/chemistry
  4. Zhong H, Tang W, Li Z, Sonne C, Lam SS, Zhang X, et al.
    Nat Food, 2024 Apr;5(4):301-311.
    PMID: 38605129 DOI: 10.1038/s43016-024-00954-7
    Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.
    Matched MeSH terms: Soil/chemistry
  5. Hassan A, Hamid FS, Pariatamby A, Ossai IC, Ahmed A, Barasarathi J, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(19):28671-28694.
    PMID: 38561536 DOI: 10.1007/s11356-024-33018-1
    The research aimed to determine the influence of endophytic fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora in heavy metal-polluted landfill soil. A consortium of 13 fungal isolates as well as Prosopis juliflora Sw. DC was used to decontaminate heavy metal-polluted landfill soil. Enhanced plant growth (biomass and root and shoot lengths) and production of carotenoids, chlorophyll and amino acids L-phenylalanine and L-leucine that are known to enhance growth were found in the treated P. juliflora. Better accumulations of heavy metals were observed in fungi-treated P. juliflora over the untreated one. An upregulated activity of peroxidase, catalase and ascorbate peroxidase was recorded in fungi-treated P. juliflora. Additionally, other metabolites, such as glutathione, 3,5,7,2',5'-pentahydroxyflavone, 5,2'-dihydroxyflavone and 5,7,2',3'-tetrahydroxyflavone, and small peptides, which include Lys Gln Ile, Ser Arg Ala, Asp Arg Gly, Arg Ser Ser, His His Arg, Arg Thr Glu, Thr Arg Asp and Ser Pro Arg, were also detected. These provide defence supports to P. juliflora against toxic metals. Inoculating the plant with the fungi improved its growth, metal accumulation as well as tolerance against heavy metal toxicity. Such a combination can be used as an effective strategy for the bioremediation of metal-polluted soil.
    Matched MeSH terms: Soil/chemistry
  6. Cai ZZ, Xu CX, Song ZL, Li JL, Zhang N, Zhao JH, et al.
    Food Chem, 2024 Aug 15;449:139243.
    PMID: 38608605 DOI: 10.1016/j.foodchem.2024.139243
    Linusorbs (LO), cyclolinopeptides, are a group of cyclic hydrophobic peptides and considered a valuable by-product of flaxseed oil due to numerous health benefits. Currently applied acetone or methanol extraction could contaminate the feedstocks for further food-grade application. Using flaxseed cake as feedstock, this study established a practical method for preparing LO from pressed cake. Firstly, LO composition of 15 flaxseed cultivars was analyzed. Next, cold-pressed cake was milled and screened mechanically. The kernel and hull fractions were separated based on the disparity of their mechanical strength. Monitored by hyperspectral fluorescence, the LO-enriched kernel fraction separated from cold-pressed flaxseed cake was further used as feedstock for LO production. After ethanol extraction, partition, and precipitation, LOs were extracted from cold-pressed flaxseed cake with a purity of 91.4%. The proposed method could serve as feasible flaxseed cake valorization strategy and enable the preparation of other polar compounds such as flax lignan and mucilage.
    Matched MeSH terms: Plant Extracts/chemistry
  7. Meraj A, Jawaid M, Singh SP, Nasef MM, Ariffin H, Fouad H, et al.
    Sci Rep, 2024 Apr 15;14(1):8672.
    PMID: 38622317 DOI: 10.1038/s41598-024-59200-6
    Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.
    Matched MeSH terms: Solvents/chemistry
  8. Sulong MR, Abdul Rahman RN, Salleh AB, Basri M
    Protein Expr Purif, 2006 Oct;49(2):190-5.
    PMID: 16769222
    An organic solvent tolerant (OST) lipase gene from Bacillus sphaericus 205y was successfully expressed extracellularly. The expressed lipase was purified using two steps purification; ultrafiltration and hydrophobic interaction chromatography (HIC) to 8-fold purity and 32% recovery. The purified 205y lipase revealed homogeneity on denaturing gel electrophoresis and the molecular mass was at approximately 30 kDa. The optimum pH for the purified 205y lipase was 7.0-8.0 and its stability showed a broad range of pH value between pH 5.0 to 13.0 at 37 degrees C. The purified 205y lipase exhibited an optimum temperature of 55 degrees C. The activity of the purified lipase was stimulated in the presence of Ca2+ and Mg2+. Ethylenediaminetetraacetic acid (EDTA) has no effect on its activity; however inhibition was observed with phenylmethane sulfonoyl fluoride (PMSF) a serine hydrolase inhibitor. Organic solvents such as dimethylsulfoxide (DMSO), methanol, p-xylene and n-decane enhanced the activity. Studies on the effect of oil showed that the lipase was most active in the presence of tricaprin (C10). The lipase exhibited 1,3 positional specificity.
    Matched MeSH terms: Bacillus/chemistry; Bacterial Proteins/chemistry; Calcium/chemistry; Lipase/chemistry; Magnesium/chemistry; Recombinant Proteins/chemistry; Solvents/chemistry
  9. Aroyehun AQ, Palaniveloo K, Ghazali F, Rizman-Idid M, Abdul Razak S
    Molecules, 2019 Sep 10;24(18).
    PMID: 31510066 DOI: 10.3390/molecules24183298
    This study evaluated the effect of seasonal variation on the physicochemical, biochemical, and nutritional composition of Gracilaria manilaensis. Sampling was designed during the main monsoon seasons in Malaysia-the Southwest monsoon (SWM) and Northeast monsoon (NEM)-to understand the intraspecific variation (p < 0.05). Carbohydrates, protein, and dietary fiber were found to be higher in NEM-G. manilaensis, whereas a higher ash content was quantified in SWM-G. manilaensis. No significant differences were found in crude lipid and moisture content (p > 0.05). Vitamin B2 was calculated as (0.29 ± 0.06 mg 100 g-1) and (0.38 ± 0.06 mg 100 g-1) for the NEM and SWM samples, respectively (p < 0.05). The fatty acid profile showed the dominance of saturated fatty acids (SFAs)-palmitic acids, stearic acid, and myristic acid-while the mineral contents were found to be good sources of calcium (1750.97-4047.74 mg 100 g-1) and iron (1512.55-1346.05 mg 100 g-1). Tryptophan and lysine were recorded as the limiting essential amino acids (EAAs) in NEM G. manilaensis, while leucine and phenylalanine were found to be the limiting EAAs in the SWM samples. None of the extracts exhibited antibacterial properties against the screened strains. The study concluded that seasonal changes have a great effect on the biochemical composition of G. manilaensis.
    Matched MeSH terms: Carbohydrates/chemistry*; Fatty Acids/chemistry*; Lipids/chemistry; Minerals/chemistry; Plant Extracts/chemistry; Proteins/chemistry; Gracilaria/chemistry*
  10. Vellasamy S, Murugan D, Abas R, Alias A, Seng WY, Woon CK
    Molecules, 2021 Aug 17;26(16).
    PMID: 34443563 DOI: 10.3390/molecules26164976
    Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.
    Matched MeSH terms: Paeonia/chemistry
  11. Xu X, Deng S, Essawy H, Lee SH, Lum WC, Zhou X, et al.
    Int J Biol Macromol, 2024 Oct;277(Pt 1):133784.
    PMID: 39084972 DOI: 10.1016/j.ijbiomac.2024.133784
    In this study, various chitosan-based films such as chitosan (C), chitosan-condensed tannin (CT), chitosan-casein (CC), and chitosan-casein-condensed tannin (CCT) films were prepared for the purpose of food packaging. In order to improve the hydrophobicity of these films, carnauba wax was blended into CCT to produce CCTW film. Properties such as morphology, UV resistance, water solubility, barrier performance, tensile strength, antioxidant, antibacterial and its performance as food packaging were evaluated. Compared with other chitosan-based films, CCTW films exhibited higher UV resistance, tensile strength, thermal stability and hydrophobicity. The addition of both condensed tannin and carnauba wax has significantly decreased the water vapor and oxygen permeability of the CCTW films. The CCTW films were proved capable of repelling most daily consuming liquids. Besides, CCTW films displayed outstanding free radical scavenging rate and antibacterial properties. Meanwhile, bananas wrapped with CCTW films remained fresh for seven days without any mold growth and outperformed other types of films. Apart from that, the CCTW films also showed biodegradable characteristics after exposure to Penicillium sp. These distinguished characteristics made the CCTW films a promising packaging material for long-term food storage.
    Matched MeSH terms: Tannins/chemistry
  12. Hameed T, Ahmad I, Ullah S, Subramaniyan V, Ali I, Hussain H, et al.
    Braz J Biol, 2024;84:e282479.
    PMID: 39230079 DOI: 10.1590/1519-6984.282479
    The phytosociological survey was conducted during 2018-2020. The research area was classified into five ecological zones based on habitat, physiognomy and species composition. Pc-Ord software was used for cluster analysis and four vegetation communities were established. The Quercus baloot-Quercus incana community is situated in Sair at an altitude of 1196 (mean ± SE) m altitude with a 14.1 ± 0 slope angle and contains eleven tree species. The Pinus wallichiana- Ailanthus altissima community had a relatively small number of tree species reported in Shakawlie at 1556 (mean ± SE) with a 17.5 ± 0 slope angle. The Pinus wallichiana- Quercus incana community is distributed in Wali Kandao and Mangi Kandao at altitudes of 2030.5 (mean ± SE) m and the slope angle was 19.2 ± 1.4. This community possesses a total of twenty-one tree species and is highly diverse. Similarly, the Populus alba - Platanus orientalis group was present in Banr Pate, with an altitude of 1613 (mean ± SE) m and a 16.3 slope angle. The principal component analysis (PCA) and non-metric multidimensional scaling (NMS) ordination methods were applied to study the relationships between ecological and soil variables with trees species. The NMS ordination of axis 1 was significantly correlated with Sand% (p<0.2), Nitrogen% (p<0.1) and Pb (mg/kg) (r= 0.876751, p<0.05), while the ordination of axis 2 was significantly correlated with Silt% (p<0.2), Sand% (p<0.2), Organic matter% (p<0.2), K (mg/kg) (r=0.882433, p<0.02), Fe (mg/kg)(r=0.614833, p<0.2), Ca (mg/kg) (r=0.721712, p< 0.2) and Zn (mg/kg) (r=0.609545, p<0.2). Similarly, the PCA ordination of axis 1 revealed that it was significantly correlated with phosphorus, calcium and slope angle, while that of axis 2 was significantly correlated with altitude, zinc and manganese.
    Matched MeSH terms: Soil/chemistry
  13. Bosu S, Rajamohan N, Sagadevan S, Raut N
    Chemosphere, 2023 Dec;345:140471.
    PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471
    The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
    Matched MeSH terms: Carbon/chemistry
  14. Isah AA, Mahat NA, Jamalis J, Attan N, Zakaria II, Huyop F, et al.
    Prep Biochem Biotechnol, 2017 Feb 07;47(2):199-210.
    PMID: 27341522 DOI: 10.1080/10826068.2016.1201681
    The chemical route of producing geranyl propionate involves the use of toxic chemicals, liberation of unwanted by-products as well as problematic separation process. In view of such problems, the use of Rhizomucor miehei lipase (RML) covalently bound onto activated chitosan-graphene oxide (RML-CS/GO) support is suggested. Following analyses using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetry, properties of the RML-CS/GO were characterized. A response surface methodological approach using a 3-level-four-factor (incubation time, temperature, substrate molar ratio, and stirring rate) Box-Behnken design was used to optimize the experimental conditions to maximize the yield of geranyl propionate. Results revealed that 76 ± 0.02% of recovered protein had yielded 7.2 ± 0.04 mg g(-1) and 211 ± 0.3% U g(-1) of the maximum protein loading and esterification activity, respectively. The actual yield of geranyl propionate (49.46%) closely agreed with the predicted value (49.97%) under optimum reaction conditions (temperature: 37.67°C, incubation time: 10.20 hr, molar ratio (propionic acid:geraniol): 1:3.28, and stirring rate: 100.70 rpm) and hence, verifying the suitability of this approach. Since the method is performed under mild conditions, the RML-CS/GO biocatalyst may prove to be an environmentally benign alternative for producing satisfactory yield of geranyl propionate.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*; Graphite/chemistry*; Lipase/chemistry*; Oxides/chemistry; Chitosan/chemistry*
  15. Karunakaran T, Ee GC, Teh SS, Daud S, Mah SH, Lim CK, et al.
    Nat Prod Res, 2016 Jul;30(14):1591-7.
    PMID: 26710827 DOI: 10.1080/14786419.2015.1120727
    A new alkylated coumarin derivative, hexapetarin (1) along with three other xanthones, trapezifolixanthone (2), cudraxanthone G (3) and 1,3,7-trihydroxy-2,4-di (3-methyl-2-butenyl)xanthone (4), and four common triterpenoids, friedelin (5), stigmasterol (6), beta-sitosterol (7) and gamma-sitosterol (8) were isolated from the stem bark of Mesua hexapetala (Clusiaceae), a plant, native to Malaysia. The structures of these compounds were elucidated and determined using spectroscopic techniques such as NMR and MS. Anti-inflammatory activity assay indicated hexapetarin (1) to possess moderate anti-inflammatory activity, while 1,3,7-trihydroxy-2,4-di (3-methyl-2-butenyl)xanthone (4) gave very good activity.
    Matched MeSH terms: Coumarins/chemistry*; Plant Extracts/chemistry; Plant Stems/chemistry*; Plant Bark/chemistry*; Clusiaceae/chemistry*
  16. Rezvanian M, Amin MCIM, Ng SF
    Carbohydr Polym, 2016 Feb 10;137:295-304.
    PMID: 26686133 DOI: 10.1016/j.carbpol.2015.10.091
    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.
    Matched MeSH terms: Alginates/chemistry*; Hexuronic Acids/chemistry; Pectins/chemistry; Simvastatin/chemistry*; Glucuronic Acid/chemistry
  17. Zawawi NK, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, et al.
    Bioorg Chem, 2016 Feb;64:29-36.
    PMID: 26637946 DOI: 10.1016/j.bioorg.2015.11.006
    Newly synthesized benzimidazole hydrazone derivatives 1-26 were evaluated for their α-glucosidase inhibitory activity. Compounds 1-26 exhibited varying degrees of yeast α-glucosidase inhibitory activity with IC50 values between 8.40 ± 0.76 and 179.71 ± 1.11 μM when compared with standard acarbose. In this assay, seven compounds that showed highest inhibitory effects than the rest of benzimidazole series were identified. All the synthesized compounds were characterized by different spectroscopic methods adequately. We further evaluated the interaction of the active compounds with enzyme with the help of docking studies.
    Matched MeSH terms: alpha-Glucosidases/chemistry*; Benzimidazoles/chemistry*; Hydrazones/chemistry*; Acarbose/chemistry; Glycoside Hydrolase Inhibitors/chemistry*
  18. Lin YK, Show PL, Yap YJ, Ariff AB, Mohammad Annuar MS, Lai OM, et al.
    J Biosci Bioeng, 2016 Jun;121(6):692-696.
    PMID: 26702953 DOI: 10.1016/j.jbiosc.2015.11.001
    Aqueous two-phase system (ATPS) extractive bioconversion provides a technique which integrates bioconversion and purification into a single step process. Extractive bioconversion of gamma-cyclodextrin (γ-CD) from soluble starch with cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) enzyme derived from Bacillus cereus was evaluated using polyethylene glycol (PEG)/potassium phosphate based on ATPS. The optimum condition was attained in the ATPS constituted of 30.0% (w/w) PEG 3000 g/mol and 7.0% (w/w) potassium phosphate. A γ-CD concentration of 1.60 mg/mL with a 19% concentration ratio was recovered after 1 h bioconversion process. The γ-CD was mainly partitioned to the top phase (YT=81.88%), with CGTase partitioning in the salt-rich bottom phase (KCGTase=0.51). Repetitive batch processes of extractive bioconversion were successfully recycled three times, indicating that this is an environmental friendly and a cost saving technique for γ-CD production and purification.
    Matched MeSH terms: Phosphates/chemistry*; Polyethylene Glycols/chemistry*; Starch/chemistry; Water/chemistry*; Potassium Compounds/chemistry*
  19. Masood N, Zakaria MP, Halimoon N, Aris AZ, Magam SM, Kannan N, et al.
    Mar Pollut Bull, 2016 Jan 15;102(1):160-75.
    PMID: 26616745 DOI: 10.1016/j.marpolbul.2015.11.032
    Polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs) were used as anthropogenic markers of organic chemical pollution of sediments in the Selangor River, Peninsular Malaysia. This study was conducted on sediment samples from the beginning of the estuary to the upstream river during dry and rainy seasons. The concentrations of ƩPAHs and ƩLABs ranged from 203 to 964 and from 23 to 113 ng g(-1) dry weight (dw), respectively. In particular, the Selangor River was found to have higher sedimentary levels of PAHs and LABs during the wet season than in the dry season, which was primarily associated with the intensity of domestic wastewater discharge and high amounts of urban runoff washing the pollutants from the surrounding area. The concentrations of the toxic contaminants were determined according to the Sediment Quality Guidelines (SQGs). The PAH levels in the Selangor River did not exceed the SQGs, for example, the effects range low (ERL) value, indicating that they cannot exert adverse biological effects.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/chemistry; Water Pollutants, Chemical/chemistry; Geologic Sediments/chemistry*; Rivers/chemistry*; Waste Water/chemistry
  20. Lim CK, Subramaniam H, Say YH, Jong VY, Khaledi H, Chee CF
    Nat Prod Res, 2015;29(21):1970-7.
    PMID: 25716662 DOI: 10.1080/14786419.2015.1015020
    A new chromanone acid, namely caloteysmannic acid (1), along with three known compounds, calolongic acid (2), isocalolongic acid (3) and stigmasterol (4) were isolated from the stem bark of Calophyllum teysmannii. All these compounds were evaluated for their cytotoxic and antioxidant activities in the MTT and DPPH assays, respectively. The structure of compound 1 was determined by means of spectroscopic methods including 1D and 2D NMR experiments as well as HR-EIMS spectrometry. The stereochemical assignment of compound 1 was done based on the NMR results and X-ray crystallographic analysis. The preliminary assay results revealed that all the test compounds displayed potent inhibitory activity against HeLa cancer cell line, in particular with compound 1 which exhibited the highest cytotoxic activity comparable to the positive control used, cisplatin. However, no significant antioxidant activity was observed for all the test compounds in the DPPH radical scavenging capacity assay.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*; Chromones/chemistry*; Free Radical Scavengers/chemistry; Plant Bark/chemistry*; Calophyllum/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links