Displaying publications 1 - 20 of 1682 in total

Abstract:
Sort:
  1. Norliza YH, Mohamed Z, Zaini A, Lang CC
    JUMMEC, 1997;2:23-25.
    Matched MeSH terms: Chromatography
  2. Tay BY, Yung SC, Teoh TY
    Int J Cosmet Sci, 2016 Dec;38(6):627-633.
    PMID: 27169828 DOI: 10.1111/ics.12342
    OBJECTIVE: Isopropyl p-toluenesulfonate (IPTS) is a potentially genotoxic by-product formed during the esterification of palm oil-based palmitic and palm kernel oil-based myristic acid with isopropanol to produce isopropyl palmitate or isopropyl myristate. There are no methods described for the analysis of IPTS in cosmetic products. In this work, we have established a simple, precise and accurate method to determine the presence and level of IPTS in various finished cosmetic products which contain palm-based esters in their formulations.

    METHODS: An Agilent 1200 series high-performance liquid chromatography (HPLC) unit using a diode-array detector (DAD) has been employed and optimized to detect IPTS in cosmetic products. For the separation, a reverse-phase Hypersil Gold C8 column (5 μm, 4.6 mm i.d. 250 mm) 5 mM tetrabutylammonium phosphate buffer 50 : 50, (v/v) solution in acetonitrile as mobile phase, in isocratic mode and a flow rate of 0.8 mL min(-1) were used. A second method using a gas chromatography/mass selective detector GC-MSD was also developed to confirm the IPTS identity in the cosmetic products.

    RESULTS: Recoveries of IPTS from cosmetic matrices such as a lotion, cleansing milk and a cream ranged from 94.0% to 101.1% with <5% relative standard deviation (%RSD) showing good accuracy and repeatability of the method. The six-point calibration curves (determined over the range 0.5-50 μg mL(-1) ) have a correlation coefficient of 0.9999 (based on HPLC peak area) and 0.9998 (based on HPLC peak height). The intra- and interday precisions (measured by the %RSD) of the method were <2% and <5%, respectively, indicating that the developed method is reliable, precise and reproducible. The detection and quantification limit of the method were found to be 0.5 μg mL(-1) and 1.6 μg mL(-1) , respectively. Analyses of 83 commercial cosmetics showed no presence of IPTS.

    CONCLUSIONS: The validation data indicated that this method was suitable for the quantitative analysis of IPTS in commercial cosmetics. This method is applicable for analyses of trace levels of IPTS in cosmetics and has the advantage of using only simple sample preparation steps.

    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*; Gas Chromatography-Mass Spectrometry/methods*
  3. Chong YH, Soh CC
    Med J Malaya, 1969 Jun;3(4):282-7.
    PMID: 4242593
    Matched MeSH terms: Chromatography
  4. Abubakar AR, Haque M
    J Pharm Bioallied Sci, 2020 01 29;12(1):1-10.
    PMID: 32801594 DOI: 10.4103/jpbs.JPBS_175_19
    Preparation of medicinal plants for experimental purposes is an initial step and key in achieving quality research outcome. It involves extraction and determination of quality and quantity of bioactive constituents before proceeding with the intended biological testing. The primary objective of this study was to evaluate various methods used in the preparation and screening of medicinal plants in our daily research. Although the extracts, bioactive fractions, or compounds obtained from medicinal plants are used for different purposes, the techniques involved in producing them are generally the same irrespective of the intended biological testing. The major stages included in acquiring quality bioactive molecule are the selection of an appropriate solvent, extraction methods, phytochemical screening procedures, fractionation methods, and identification techniques. The nitty-gritty of these methods and the exact road map followed solely depends on the research design. Solvents commonly used in extraction of medicinal plants are polar solvent (e.g., water, alcohols), intermediate polar (e.g., acetone, dichloromethane), and nonpolar (e.g., n-hexane, ether, chloroform). In general, extraction procedures include maceration, digestion, decoction, infusion, percolation, Soxhlet extraction, superficial extraction, ultrasound-assisted, and microwave-assisted extractions. Fractionation and purification of phytochemical substances are achieved through application of various chromatographic techniques such as paper chromatography, thin-layer chromatography, gas chromatography, and high-performance liquid chromatography. Finally, compounds obtained are characterized using diverse identification techniques such as mass spectroscopy, infrared spectroscopy, ultraviolet spectroscopy, and nuclear magnetic resonance spectroscopy. Subsequently, different methods described above can be grouped and discussed according to the intended biological testing to guide young researchers and make them more focused.
    Matched MeSH terms: Chromatography, Gas; Chromatography, High Pressure Liquid; Chromatography, Paper; Chromatography, Thin Layer
  5. Biomed Chromatogr, 2014 Jun;28(6):726-8.
    PMID: 24861736 DOI: 10.1002/bmc.3256
    Matched MeSH terms: Chromatography/history*
  6. Arumugham T, K R, Hasan SW, Show PL, Rinklebe J, Banat F
    Chemosphere, 2021 May;271:129525.
    PMID: 33445028 DOI: 10.1016/j.chemosphere.2020.129525
    Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.
    Matched MeSH terms: Chromatography, Supercritical Fluid*
  7. Norrabiátul Adawiyah, A., Teh, L.K., Fathimah, M., Nuraliza, A.S.
    Medicine & Health, 2020;15(1):54-69.
    MyJurnal
    Penuaan ovari telah dikaitkan dengan tekanan oksidatif dan kehilangan fungsi ovari. Tokotrienol telah dibuktikan dapat memberi kesan yang baik terhadap sistem pembiakan wanita. Walau bagaimanapun, peranan tokotrienol ke atas metabolisma ovari dan seterusnya peningkatan kualiti oosit dalam mencit tua masih tidak diketahui. Oleh itu, hubungan antara perubahan aktiviti metabolik dalam ovari dan kualiti oosit dalam mencit tua selepas suplementasi fraksi kaya tokotrienol (TRF) telah dikaji. Mencit betina berusia enam minggu digunakan sebagai kumpulan Muda. Mencit betina berusia enam bulan dibahagikan kepada empat kumpulan iaitu kumpulan pertama yang diberikan minyak jagung-bebas tokoferol (kawalan) manakala tiga kumpulan yang lain diberi suplimen TRF pada dos 90, 120, dan 150 mg/kg. Rawatan diberikan secara oral selama dua bulan. Pada akhir rawatan, mencit dari semua kumpulan disuperovulasi dan kemudian dikorbankan. Kualiti oosit dinilai dan analisis metabolomik secara tidak disasarkan, pada tisu ovari dijalankan dengan menggunakan 'liquid chromatography tandem mass spectrometry of quadrupole time-of-flight' (LC-MS Q-TOF). Peratusan oosit normal adalah lebih tinggi (p
    Matched MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Liquid
  8. Shehzadi N, Hussain K, Khan MT, Salman M, Islam M
    Pak J Pharm Sci, 2017 Sep;30(5):1767-1777.
    PMID: 29084700
    The absence of chromophore and/or conjugated system, prerequisite for UV and florescent light detection, or absorbance at very low wavelength necessitates the development of simple and reliable methods for the determination of amikacin sulphate. Therefore, the present study describes for the first time dynamics of the drug derivatization using ninhydrin reagent and development and validation of a simple RP-HPLC method, using diode array detector (DAD). The variables such as heating time, heating type, drug-reagent ratio, reagent composition and storage temperature of the derivative were optimized. The analyte and aqueous ninhydrin solution upon heating for 2.00-5.00 min produced the colored drug-derivative which was stable for one month at refrigeration. The derivatized drug (20.00μL) was eluted through a column - Eclipse DB-C18 (5.00 µm, 4.60×150.00 mm), maintained at 25°C- using isocratic mobile phase comprising water and acetonitrile (70:30, v/v) at a flow rate of 1.00 mL/min, and detected at 400 nm. The method was found to be reliable (98.08-100.72% recovery), repeatable (98.02-100.72% intraday accuracy) and reproducible (98.47-101.27% inter day accuracy) with relative standard deviation less than 5%. The results of the present study indicate that the method is easy to perform, specific and sensitive, and suitable to be used for the determination of amikacin sulphate in bulk and pharmaceutical preparations using less expensive/laborious derivatization.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*; Chromatography, High Pressure Liquid/standards; Chromatography, Reverse-Phase/methods*; Chromatography, Reverse-Phase/standards
  9. Agustian J, Kamaruddin AH, Aboul-Enein HY
    Chirality, 2012 May;24(5):356-67.
    PMID: 22517322 DOI: 10.1002/chir.22019
    Because chiral liquid chromatography (LC) could become a powerful tool to estimate racemic atenolol quantity, excellent enantiomeric separation should be produced during data acquisition for satisfactory observation of atenolol concentrations throughout the racemic resolution processes. Selection of chiral LC column and analytical protocol that fulfill demands of the ultra fast LC analysis is essential. This article describes the characteristics of atenolol chromatographic separation that resulted from different resolution media and analytical protocols with the use of a Chiralcel® OD column. The chromatograms showed quite different characteristics of the separation process. The single enantiomer and racemic atenolol could be recognized by the Chiralcel® OD column in less than 20 min. Symmetrical peaks were obtained; however, several protocols produced peaks with wide bases and slanted baselines. Observations showed that efficient enantioresolution of racemic atenolol was obtained at slow mobile phase flow rate, decreased concentration of amine-type modifier but increased alcohol content in mobile phase and highest ultraviolet detection wavelength were required. The optimal ultra fast LC protocol enables to reduce and eliminate the peaks of either the atenolol solvent or the buffers and provided the highest peak intensities of both atenolol enantiomers.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods; Chromatography, Liquid/instrumentation; Chromatography, Liquid/methods*
  10. Man CN, Noor NM, Harn GL, Lajis R, Mohamad S
    J Chromatogr A, 2010 Nov 19;1217(47):7455-9.
    PMID: 20950812 DOI: 10.1016/j.chroma.2010.09.064
    Tetrodotoxin (TTX), a toxic compound found in some puffers can cause death to humans through consumption. We have developed a simplified method for the screening of TTX in puffers using GC-MS. A puffer tissue of 0.5g was treated with 5mL of 0.1% acetic acid, followed by alkaline hydrolysis, LLE or liquid-liquid extraction and N-methyl-N-TMS-trifluoroacetamide derivatization. The developed method used only a small sample and solvent, simplified LLE and derivatization procedures and short chromatographic analysis (8.2min). All of these contribute to cost-saving, enhanced sample throughput and high sensitivity of the screening assay. The developed method was validated and proved to be within the acceptable range.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry/economics; Gas Chromatography-Mass Spectrometry/methods*
  11. Saaid M, Saad B, Ali AS, Saleh MI, Basheer C, Lee HK
    J Chromatogr A, 2009 Jul 3;1216(27):5165-70.
    PMID: 19481215 DOI: 10.1016/j.chroma.2009.04.091
    Hollow fibre liquid-phase microextraction with in situ derivatization using dansyl chloride has been successfully developed for the high-performance liquid chromatography-ultraviolet (HPLC-UV) determination of the biogenic amines (tryptamine, putrescine, cadaverine, histamine, tyramine, spermidine) in food samples. Parameters affecting the performance of the in situ derivatization process such as type of extraction solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; acceptor phase, 0.1M HCl; extraction time, 30 min; extraction temperature, 26 degrees C; without addition of salt), enrichment factors varying from 47 to 456 were achieved. Good linearity of the analytes was obtained over a concentration range of 0.1-5 microg mL(-1) (with correlation coefficients of 0.9901-0.9974). The limits of detection and quantification based on a signal-to-noise ratio of 3-10, ranged from 0.0075 to 0.030 microg mL(-1) and 0.03 to 0.10 microg mL(-1), respectively. The relative standard deviations based on the peak areas for six replicate analysis of water spiked with 0.5 microg mL(-1) of each biogenic amine were lower than 7.5%. The method was successfully applied to shrimp sauce and tomato ketchup samples, offering an interesting alternative to liquid-liquid extraction and solid phase extraction for the analysis of biogenic amines in food samples.
    Matched MeSH terms: Chromatography, High Pressure Liquid/instrumentation; Chromatography, High Pressure Liquid/methods*
  12. Lo SK, Baharin BS, Tan CP, Lai OM
    J Chromatogr Sci, 2004 Mar;42(3):145-54.
    PMID: 15023251
    Separation of 1,2(2,3)- and 1,3-positional isomers of diacylglycerols (DAG) from vegetable oils by reversed-phase high-performance liquid chromatography (RP-HPLC) is investigated. The method is based on isocratic elution using 100% acetonitrile and UV detection at 205 nm. The following elution order of DAG molecular species is identified: 1,3-dilinolein < 1,2-dilinolein < 1,3-dimyristin < 1-oleoyl-3-linoleoyl-glycerol < 1,2-dimyristoyl-rac-glycerol < 1(2)-oleoyl-2(3)-linoleoyl-glycerol < 1-linolenoyl-3-stearoyl-glycerol < 1(2)-linolenoyl-2(3)-stearoyl-glycerol < 1,3-diolein < 1-palmitoyl-3-oleoyl-glycerol < 1,2-dioleoyl-sn-glycerol < 1(2)-palmitoyl-2(3)-oleoyl-glycerol < 1-linoleoyl-3-stearoyl-glycerol < 1,3-dipalmitin < 1(2)-linoleoyl-2(3)-stearoyl-glycerol < 1-oleoyl-3-stearoyl-glycerol < 1,2-dipalmitoyl-rac-glycerol < 1-palmitoyl-3-stearoyl-sn-glycerol < 1,3-distearin < 1,2-distearoyl-rac-glycerol. Linearity is observed over three orders of magnitude. Limits of detection and quantitation range 0.2-0.7 microg/mL for 1,3-dilinolein to 0.6-1.9 microg/mL for 1,2-dioleoyl-sn-glycerol, respectively. Precision and accuracy of the method are also demonstrated. The method is developed to separate mixtures of DAG molecular species produced from edible oils.
    Matched MeSH terms: Chromatography, Gas; Chromatography, High Pressure Liquid/methods*
  13. Yanty, N.A.M., Marikkar, J.M.N., Abdulkarim, S.M.
    MyJurnal
    A study was carried out to compare the composition and thermal profiles of the fat component of six brands of commercial biscuits (BA, BB, BC, BD, BE & BF) with those of lard and palm oil. Extraction of fat from biscuit samples was done using petroleum ether according to the soxhlet extraction procedure. The isolated fat samples along with lard and palm oil were analyzed using gas liquid chromatography (GLC), reversed-phase high performance liquid chromatography (RP-HPLC), and differential scanning calorimetry (DSC). According to GLC analysis, palm oil, lard and all six biscuit brands had either palmitic or oleic acid as major fatty acids. Sn-2 positional analysis of fatty acids showed that oleic (> 60%) as the most dominant fatty acid of palm oil and biscuit brands BA, BB, BC, and BD while palmitic (> 60%) as the most dominant fatty acid of lard and biscuit brands BE and BF. RP-HPLC analysis showed that the triacylglycerol (TAG) profiles of lard and biscuit brands BE and BF were closely similar while those of brands BA, BB, BC, and BD and palm oil were similar. DSC analysis showed that the cooling and heating profiles of lard and brands BE and BF were similar, while those of palm oil and brands BA, BB, BC, and BD were similar. Hence, this study concluded that biscuit brands BE and BF are not suitable for consumers whose religious restriction prohibit the use of lard as food ingredient.
    Matched MeSH terms: Chromatography, Gas; Chromatography, High Pressure Liquid; Chromatography, Reverse-Phase
  14. Mohd Ali, A., Jahidin, A.H., Abdul Wahab, I., Mohsin, H.F., Mizaton, H.H.
    MyJurnal
    In this study, the unprecedented extraction of the Vitex pouch was performed. The compounds from
    methanolic and chloroform extracts were isolated by using thin layer chromatography (TLC). The
    compound of interest was investigated by using 1H-Nuclear Magnetic Resonance (NMR, 500 MHz)
    spectroscopy. From the NMR spectral examination, the compound from the methanolic extract was
    suggested as glucononitol. Indeed, there are some parameters that could enhance the attainment of this
    research, which include high performance liquid chromatographic supplies. Nevertheless, more
    information and understanding on the pharmaceutical and chemical analysis of the Vitex species were
    obtained. To sum up, it is anticipated that incoming research with advanced technology for this
    natural product could be explored in the future.
    Matched MeSH terms: Chromatography, Gas; Chromatography, High Pressure Liquid; Chromatography, Thin Layer
  15. Chew YL, Khor MA, Lim YY
    Heliyon, 2021 Mar;7(3):e06553.
    PMID: 33855234 DOI: 10.1016/j.heliyon.2021.e06553
    Stability indicating assay describes a technique which is used to analyse the stability of drug substance or active pharmaceutical ingredient (API) in bulk drug and pharmaceutical products. Stability indicating assay must be properly validated as per ICH guidelines. The important components in a stability indicating assay include sensitivity, specificity, accuracy, reliability, reproducibility and robustness. A validated assay is able to measure the concentration changes of drug substance/API with time and make reliable estimation of the quantity of the degradation impurities. The drug substance is separated and resolved from the impurities. Pros and cons of HPLC, GC, HPTLC, CE and SFC were discussed and reviewed. Stability indicating assay may consist of the combination of chromatographic separation and spectroscopic detection techniques. Hyphenated system could demonstrate parallel quantitative and qualitative analysis of drug substances and impurities. Examples are HPLC-DAD, HPLC-FL, GC-MS, LC-MS and LC-NMR. The analytes in the samples are separated in the chromatography while the impurities are chemically characterised by the spectroscopy in the system. In this review, various chromatographic methods which had been employed as stability indicating assays for drug substance and pharmaceutical formulation were systematically reviewed, and the application of hyphenated techniques in impurities characterisation and identification were also discussed with supporting literatures.
    Matched MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Liquid; Gas Chromatography-Mass Spectrometry
  16. Noor Wini Mazlan, Ikram M. Said
    Sains Malaysiana, 2011;40(9):1037-1041.
    The seeds of C. cleomifolia (locally known as kacang hantu) collected along Simpang Pulai - Berinchang Road, Cameron Highlands, was defatted with hexane and the resulting oil was analysed for their physico-chemical properties. The percentage yield of the oil was calculated as 5.3%. The acid value (1.2%), iodine value (85), peroxide value (0.6), saponification value (192.0) and unsaponifiable matter (2.3%) were determined to assess the quality of the oil. The physico-chemical characterisation showed that C. cleomifolia seeds oil is unsaturated semi-drying oil, with high saponifi cation and acidic values. The fatty acid composition of C. cleomifolia seed oil was determined by Gas Chromatography and Gas Chromatography-Mass Spectrometry (ToF). The seed oil of C. cleomifolia contained linoleic acid (57.59%) and palmitic acid (5.07%), the most abundant unsaturated and saturated fatty acids, respectively. The polyunsaturated triacylglycerol (TAG) in C. cleomifolia seed oil determined by reverse phase High performance Liquid Chromatography; contained as PLL (18.04%) followed by POL + SLL (11.92%), OOL (7.04%) and PLLn (6.31%). The melting and cooling point of the oil were 16.22°C and -33.54°C, respectively
    Matched MeSH terms: Chromatography, High Pressure Liquid; Gas Chromatography-Mass Spectrometry; Chromatography, Reverse-Phase
  17. Toh Choon RL, Sariah M, Siti Mariam MN
    J Basic Microbiol, 2012 Oct;52(5):608-12.
    PMID: 22143962 DOI: 10.1002/jobm.201100308
    Ergosterol is the main component of the fungal membrane and is not found in plants or other microbial cells. Therefore, it can be a useful biomarker for the quantification of fungal biomass. We are now reporting the first isolation and characterisation of ergosterol from the mycelium of G. boninense. The ergosterol structure was detected by Thin Liquid Chromatography (TLC) and Ultra Performance Liquid Chromatography (UPLC) and confirmed with Gas Chromatography coupled with Mass Spectrometry (GCMS) and Nuclear Magnetic Resonance (NMR) analysis.
    Matched MeSH terms: Chromatography, Liquid; Chromatography, Thin Layer; Gas Chromatography-Mass Spectrometry
  18. Lord G, Monaghan J
    Biomed Chromatogr, 2014 Jun;28(6):725.
    PMID: 24861735 DOI: 10.1002/bmc.3255
    Matched MeSH terms: Chromatography/history*
  19. Akanda MJ, Sarker MZ, Ferdosh S, Manap MY, Ab Rahman NN, Ab Kadir MO
    Molecules, 2012 Feb 10;17(2):1764-94.
    PMID: 22328076 DOI: 10.3390/molecules17021764
    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.
    Matched MeSH terms: Chromatography, Supercritical Fluid/methods*
  20. Sanagi MM, Nasir Z, Ling SL, Hermawan D, Ibrahim WA, Naim AA
    J AOAC Int, 2010 10 7;93(4):1322-30.
    PMID: 20922968
    Linearity assessment as required in method validation has always been subject to different interpretations and definitions by various guidelines and protocols. However, there are very limited applicable implementation procedures that can be followed by a laboratory chemist in assessing linearity. Thus, this work proposes a simple method for linearity assessment in method validation by a regression analysis that covers experimental design, estimation of the parameters, outlier treatment, and evaluation of the assumptions according to the International Union of Pure and Applied Chemistry guidelines. The suitability of this procedure was demonstrated by its application to an in-house validation for the determination of plasticizers in plastic food packaging by GC.
    Matched MeSH terms: Chromatography, Gas/methods*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links