Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Sivasothy Y, Loo KY, Leong KH, Litaudon M, Awang K
    Phytochemistry, 2016 Feb;122:265-269.
    PMID: 26712615 DOI: 10.1016/j.phytochem.2015.12.007
    A dimeric acylphenol and a potent α-glucosidase inhibitor, giganteone D (IC50 5.05μM), was isolated and characterized from the bark of Myristica cinnamomea King. The bark also yielded an acylphenol with an unprecedented skeleton for which the name cinnamomeone A (IC50 358.80μM) was proposed. Their structures were established by means of NMR and MS spectrometric analyses. The Lineweaver-Burk plot of giganteone D indicated that it was a mixed-type inhibitor. This is the first report on the α-glucosidase inhibiting potential of acylphenols.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification*
  2. Elendran S, Wang LW, Prankerd R, Palanisamy UD
    Pharm Biol, 2015;53(12):1719-26.
    PMID: 25853977 DOI: 10.3109/13880209.2014.1003356
    Natural products play a vital role in the discovery of leads for novel pharmacologically active drugs. Geraniin (GE) was identified as the major compound in the rind of Nephelium lappaceum L. (Sapindaceae), while ellagic and gallic acids have been shown to be its main metabolites. GE and its metabolites possess a range of bioactive properties including being an anti-infective, anticarcinogenic, antihyperglycemic, and antihypertensive.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  3. Subramaniam S, Raman J, Sabaratnam V, Heng CK, Kuppusamy UR
    Int J Med Mushrooms, 2017;19(10):849-859.
    PMID: 29256840 DOI: 10.1615/IntJMedMushrooms.2017024355
    This study was conducted to evaluate the mycochemical composition and antiglycemic and antioxidant activities of Ganoderma neo-japonicum hot aqueous extracts, prepared at different boiling durations, and polysaccharides isolated from them. Ground basidiocarps of G. neo-japonicum were double-boiled at 100°C for 0.5, 3, or 4 hours, and the antiglycemic activity was assessed by α-amylase and α-glucosidase enzyme inhibition assays. The antioxidant capacity of the crude hot aqueous extracts (AE-1, AE-2, AE-3) was assessed by DPPH and ABTS radical scavenging and ferric-reducing antioxidant power assays. The total phenolics, protein, and sugar in the crude extracts were also determined. The hot aqueous extract (AE-3) containing a significant amount of total sugar and having enhanced antiglycemic and antioxidant activities was selected for polysaccharide isolation. The isolated crude polysaccharide was separated and purified using diethylaminoethyl-cellulose-52 and Sepharose 6B column chromatography. Fourier transform infrared spectroscopy studies of the purified polysaccharide fraction (PF) showed the presence of typical bands corresponding to polysaccharides. The estimated β-glucan concentration in the PF was 39.26%. In general, the PF exhibited significantly lower antioxidant activity than AE-3. Nevertheless, its potency in inhibiting carbohydratehydrolyzing enzymes may have potential in the management of diabetes mellitus.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification*
  4. Siang LJ, Rajak H, Ravichandran V
    Curr Top Med Chem, 2024;24(15):1279-1290.
    PMID: 38639276 DOI: 10.2174/0115680266300963240408051156
    The multifaceted benefits of Lepisanthes fruticosa position it is not only as a promising agricultural commodity but also as a versatile resource with implications for health, biodiversity, and economic growth. Lepisanthes fruticosa has a rich history of traditional use for treating various ailments such as fever and diarrhea. Beyond its traditional uses, the plant's antioxidant properties suggest potential applications in combating oxidative stress-related conditions. Its antihyperglycemic properties indicate promise in managing elevated blood sugar levels, while its antibacterial and antiviral attributes hint at potential applications in infectious disease control. Furthermore, the plant's anticancer properties add to its appeal as a valuable resource in the realm of medical research. The plant also exhibits considerable potential in addressing a range of health concerns, including non-communicable diseases and infections, antidiarrheal, and antiviral properties. In essence, Lepisanthes fruticose emerges as more than just an agricultural asset. Its unique combination of nutritional richness, health benefits, and economic viability underscores its potential to become a valuable asset both locally and on the global stage. In this current review, we are discussed about the ethnopharmacology, nutritional value, therapeutic effects, phytochemistry, and toxicology of Lepisanthes fruticose.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  5. Mohamed EA, Siddiqui MJ, Ang LF, Sadikun A, Chan SH, Tan SC, et al.
    PMID: 23039079 DOI: 10.1186/1472-6882-12-176
    In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  6. Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, et al.
    Molecules, 2012 Aug 10;17(8):9631-40.
    PMID: 22885359 DOI: 10.3390/molecules17089631
    The amino acid and fatty acid composition of polypeptide k and oil isolated from the seeds of Momordica charantia was analysed. The analysis revealed polypeptide k contained 9 out of 11 essential amino acids, among a total of 18 types of amino acids. Glutamic acid, aspartic acid, arginine and glycine were the most abundant (17.08%, 9.71%, 9.50% and 8.90% of total amino acids, respectively). Fatty acid analysis showed unusually high amounts of C18-0 (stearic acid, 62.31% of total fatty acid). C18-1 (oleic acid) and C18-2 (linoleic acid) were the other major fatty acid detected (12.53% and 10.40%, respectively). The oil was devoid of the short fatty acids (C4-0 to C8-0). Polypeptide k and oil were also subjected to in vitro α-glucosidase and α-amylase inhibition assays. Both polypeptide k and seed oil showed potent inhibition of α-glucosidase enzyme (79.18% and 53.55% inhibition, respectively). α-Amylase was inhibited by 35.58% and 38.02%, respectively. Collectively, the in vitro assay strongly suggests that both polypeptide k and seed oil from Momordica charantia are potent potential hypoglycemic agents.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  7. Umar A, Ahmed QU, Muhammad BY, Dogarai BB, Soad SZ
    J Ethnopharmacol, 2010 Aug 19;131(1):140-5.
    PMID: 20600771 DOI: 10.1016/j.jep.2010.06.016
    The present study was aimed to investigate the anti-diabetic potential of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in vivo with regard to prove its efficacy by local herbalists in the treatment of diabetes frailties.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  8. Hasan MM, Ahmed QU, Soad SZM, Latip J, Taher M, Syafiq TMF, et al.
    BMC Complement Altern Med, 2017 Aug 30;17(1):431.
    PMID: 28854906 DOI: 10.1186/s12906-017-1929-3
    BACKGROUND: Tetracera indica Merr. (Family: Dilleniaceae), known to the Malay as 'Mempelas paya', is one of the medicinal plants used in the treatment of diabetes in Malaysia. However, no proper scientific study has been carried out to verify the traditional claim of T. indica as an antidiabetic agent. Hence, the aims of the present study were to determine the in vitro antidiabetic potential of the T. indica stems ethanol extract, subfractions and isolated compounds.

    METHODS: The ethanol extract and its subfractions, and isolated compounds from T. indica stems were subjected to cytotoxicity test using MTT viability assay on 3T3-L1 pre-adipocytes. Then, the test groups were subjected to the in vitro antidiabetic investigation using 3T3-L1 pre-adipocytes and differentiated adipocytes to determine the insulin-like and insulin sensitizing activities. Rosiglitazone was used as a standard antidiabetic agent. All compounds were also subjected to fluorescence glucose (2-NBDG) uptake test on differentiated adipocytes. Test solutions were introduced to the cells in different safe concentrations as well as in different adipogenic cocktails, which were modified by the addition of compounds to be investigated and in the presence or absence of insulin. Isolation of bioactive compounds from the most effective subfraction (ethyl acetate) was performed through repeated silica gel and sephadex LH-20 column chromatographies and their structures were elucidated through (1)H-and (13)C-NMR spectroscopy.

    RESULTS: Four monoflavonoids, namely, wogonin, norwogonin, quercetin and techtochrysin were isolated from the T. indica stems ethanol extract. Wogonin, norwogonin and techtochrysin induced significant (P 

    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  9. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, et al.
    Fitoterapia, 2015 Apr;102:182-8.
    PMID: 25665941 DOI: 10.1016/j.fitote.2015.01.019
    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  10. NoorShahida A, Wong TW, Choo CY
    J Ethnopharmacol, 2009 Jul 30;124(3):586-91.
    PMID: 19439174 DOI: 10.1016/j.jep.2009.04.058
    The seeds of Brucea javanica (L.) Merr (Simaroubaceae) are recommended by traditional practitioners for the treatment of diabetes mellitus.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  11. Azahar MA, Al-Naqeb G, Hasan M, Adam A
    Asian Pac J Trop Med, 2012 Nov;5(11):875-81.
    PMID: 23146801 DOI: 10.1016/S1995-7645(12)60163-1
    OBJECTIVE: To investigate the hypoglycemic effect of the aqueous extract of Octomeles sumatrana (O. sumatrana) (OS) in streptozotocin-induced diabetic rats (STZ) and its molecular mechanisms.

    METHODS: Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in to male Sprague-Dawley rats. Rats were divided into six different groups; normal control rats were not induced with STZ and served as reference, STZ diabetic control rats were given normal saline. Three groups were treated with OS aqueous extract at 0.2, 0.3 and 0.5 g/kg, orally twice daily continuously for 21 d. The fifth group was treated with glibenclamide (6 mg/kg) in aqueous solution orally continuously for 21 d. After completion of the treatment period, biochemical parameters and expression levels of glucose transporter 2 (Slc2a2), glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PCK1) were determined in liver by quantitative real time PCR.

    RESULTS: Administration of OS at different doses to STZ induced diabetic rats, resulted in significant decrease (P<0.05) in blood glucose level in a dose dependent manner by 36%, 48%, and 64% at doses of 0.2, 0.3 and 0.5 g/kg, respectively, in comparison to the STZ control values. Treatment with OS elicited an increase in the expression level of Slc2a2 gene but reduced the expression of G6Pase and PCK1 genes. Morefore, OS treated rats, showed significantly lower levels of serum alanine transaminase (ALT), aspartate aminotransferase (AST) and urea levels compared to STZ untreated rats. The extract at different doses elicited signs of recovery in body weight gain when compared to STZ diabetic controls although food and water consumption were significantly lower in treated groups compared to STZ diabetic control group.

    CONCLUSIONS: O. sumatrana aqueous extract is beneficial for improvement of hyperglycemia by increasing gene expression of liver Slc2a2 and reducing expression of G6Pase and PCK1 genes in streptozotocin-induced diabetic rats.

    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  12. Tan DC, Idris KI, Kassim NK, Lim PC, Safinar Ismail I, Hamid M, et al.
    Pharm Biol, 2019 Dec;57(1):345-354.
    PMID: 31185767 DOI: 10.1080/13880209.2019.1610462
    Context:Paederia foetida L. (Rubiaceae) is an edible plant distributed in Asian countries including Malaysia. Fresh leaves have been traditionally used as a remedy for indigestion and diarrhea. Several phytochemical studies of the leaves have been documented, but there are few reports on twigs. Objective: This study investigates the enzyme inhibition of P. foetida twig extracts and compound isolated from them. In addition, in silico molecular docking of scopoletin was investigated. Materials and methods: Plants were obtained from two locations in Malaysia, Johor (PFJ) and Pahang (PFP). Hexane, chloroform and methanol extracts along with isolated compound (scopoletin) were evaluated for their enzyme inhibition activities (10,000-0.000016 µg/mL). The separation and identification of bio-active compounds were carried out using column chromatography and spectroscopic techniques, respectively. In silico molecular docking of scopoletin with receptors (α-amylase and α-glucosidase) was carried out using AutoDock 4.2. Results: The IC50 values of α-amylase and α-glucosidase inhibition activity of PFJ chloroform extract were 9.60 and 245.6 µg/mL, respectively. PFP chloroform extract exhibited α-amylase and α-glucosidase inhibition activity (IC50 = 14.83 and 257.2 µg/mL, respectively). The α-amylase and α-glucosidase inhibitory activity of scopoletin from both locations had IC50 values of 0.052 and 0.057 µM, respectively. Discussion and conclusions: Separation of PFJ chloroform extract afforded scopoletin (1), stigmasterol (2) and γ-sitosterol (3) and the PFP chloroform extract yielded (1), (2), (3) and ergost-5-en-3-ol (4). Scopoletin was isolated from this species for the first time. In silico calculations gave a binding energy between scopoletin and α-amylase of -6.03 kcal/mol.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  13. Tan ST, Ismail A, Hamid M, Chong PP, Sun J
    J Food Biochem, 2019 05;43(5):e12843.
    PMID: 31353513 DOI: 10.1111/jfbc.12843
    Unhealthy eating habits and lack of physical activities are among the contributing factors for obesity and diabetes. It has been reported that consumption of naturally occurring phenolics could exert beneficial effects toward these diseases. Therefore, this study aims to evaluate the ability of phenolic-rich soy husk powder extract (SHPE) in modifying the physical and biochemical parameters for obesity and diabetes. Forty-nine Sprague Dawley rats were divided into seven groups, including three supplementary/treatment groups. Rats in supplementary/treatment groups were provided with either 4 mg/kg BW Rosiglitazone Maleate, 250 mg SHPE/kg BW, or 500 mg SHPE/kg BW. The effectiveness of SHPE in alleviating obesity-diabetes was evaluated by measuring body weight (physical parameter), blood glucose metabolisms (biochemical parameters), and PPARγ expression. Findings in the present study revealed that short-term SHPE and Rosiglitazone Maleate administration improved the physical and biochemical parameters of obese-diabetic rats. In addition, SHPE was also demonstrated to upregulate PPARγ expression in adipocytes. These findings suggest that soy husk could emerge as a potential hypoglycemic and anti-adipogenic nutraceutical in future. PRACTICAL APPLICATIONS: This was the first study to evaluate the potential effects of soy husk against the parameters of obese-diabetes in rats. In addition, promising effects derived from this study might explore the possibility of soy husk to be utilized as an antidiabetes nutraceutical.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  14. Ogar I, Egbung GE, Nna VU, Iwara IA, Itam E
    Biomed Pharmacother, 2018 Nov;107:1268-1276.
    PMID: 30257341 DOI: 10.1016/j.biopha.2018.08.115
    Uncontrolled hyperglycaemia and oxidative stress have been implicated in the pathophysiology of diabetes mellitus. Hyptis verticillata is reportedly explored traditionally for its therapeutic benefits. Resulting from the paucity of information on the anti-hyperglycaemic potential of this plant, the present study assessed the anti-hyperglycaemic activity of H. verticillata leaf extract. Fifty-four albino Wistar rats were divided into two main groups consisting of diabetic and non-diabetic rats. The diabetic and non-diabetic rats were either treated with oral doses of metformin (500 mg/kg b.w.), quercetin (10 mg/kg b.w.), ethanol extract of H. verticillata leaf (low dose: 250 mg/kg b.w.) or H. verticillata (high dose: 500 mg/kg b.w.) for 28 days. Results showed significantly decreased body weight, increased fasting blood glucose (FBG) and glycated haemoglobin (HbA1c) levels, decreased pancreatic islet area and β-cell number in the diabetic untreated group, relative to normal control. H. verticillata - treated diabetic rats showed decreased FBG and HbA1c, increased body weight, pancreatic islet area and β-cell number, comparable to the effects of metformin. GCMS analysis of H. verticillata showed the presence of ten bioactive volatile compounds, with squalene which possess strong antioxidant, hypoglycaemic and hypotriglyceridemic effects, as the most abundant. We therefore conclude that H. verticillata has anti-hyperglycaemic properties.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  15. Che Hassan NKN, Taher M, Susanti D
    Biomed Pharmacother, 2018 Oct;106:1378-1389.
    PMID: 30119210 DOI: 10.1016/j.biopha.2018.07.087
    The purpose of this study was to determine the phytochemical constituents and pharmacological properties of Garcinia xanthochymus which is commonly known as gamboge, yellow mangosteen and false mangosteen. The phytochemicals constituents, pharmacological benefits and their mechanisms were previously presented in a number of studies including in vitro and in vivo studies from published books, journals and articles. The literature used in this review were published between 1970 and 2017 and were available from databases such as Google Scholar, ScienceDirect, Scopus, PubMed, ProQuest and others. The chemical structures in this paper are drawn using ChemBio Ultra 14.0. G. xanthocymus contains many phytochemicals that can be extracted from its constituent parts; the bark, fruits, leaves, roots, twigs and seeds. The predominant extracted phytochemicals are xanthones, benzophenones, flavonoids, depsidones and isocoumarins. These phytochemicals contribute to the pharmacological activities of this plant as an antioxidant, antidiabetic, and for having Nerve Growth Factor-potentiating, antimicrobial and cytotoxic activities. This species contains a broad range of phytochemicals with curative properties that can be greatly beneficial to man. Notably, this review focused on those studies of the pharmacological effects of this plant that were concentrated on by previous researchers. Thus, further study needs to be done on G. xanthocymus in order to unlock additional potential activities and to pinpoint the exact mechanisms of how these activities can be induced, leading to new drug discoveries which have fewer side effects.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  16. Husen R, Pihie AH, Nallappan M
    J Ethnopharmacol, 2004 Dec;95(2-3):205-8.
    PMID: 15507337 DOI: 10.1016/j.jep.2004.07.004
    Screening of aqueous extract of Phyllantus niruri (PL), Zingiber zerumbet (ZG), Eurycoma longifolia (TA-a and TA-b) and Andrographis paniculata (AP) to determine their blood glucose lowering effect were conducted in normoglycaemic and Streptozotocin-induced hyperglycaemic rats. Significant reduction in blood glucose level at 52.90% was shown when hyperglycaemic rats were treated with 50 mg/kg body weight (BW) aqueous extract of AP. This effect is enhanced when freeze-dried material was used, where 6.25 mg/kg BW gave 61.81% reduction in blood glucose level. In the administration of TA-a and TA-b, positive results in hyperglyacaemic rats were only obtained when 150 mg/kg BW of the aqueous extract was used. No significant reduction in blood glucose level were shown in hyperglycaemic rats treated with PL and ZG at all concentrations used (50, 100 and 150 mg/kg BW). In normoglycaemic rats, no significant reduction was noted when all the same extracts were used.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  17. Adom MB, Taher M, Mutalabisin MF, Amri MS, Abdul Kudos MB, Wan Sulaiman MWA, et al.
    Biomed Pharmacother, 2017 Dec;96:348-360.
    PMID: 29028587 DOI: 10.1016/j.biopha.2017.09.152
    The medicinal benefits of Plantago major have been acknowledged around the world for hundreds of years. This plant contains a number of effective chemical constituents including flavonoids, alkaloids, terpenoids, phenolic acid derivatives, iridoid glycosides, fatty acids, polysaccharides and vitamins which contribute to its exerting specific therapeutic effects. Correspondingly, studies have found that Plantago major is effective as a wound healer, as well as an antiulcerative, antidiabetic, antidiarrhoeal, anti-inflammatory, antinociceptive, antibacterial, and antiviral agent. It also combats fatigue and cancer, is an antioxidant and a free radical scavenger. This paper provides a review of the medicinal benefits and chemical constituents of Plantago major published in journals from year 1937 to 2015 which are available from PubMed, ScienceDirect and Google Scholar.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  18. Tasnuva ST, Qamar UA, Ghafoor K, Sahena F, Jahurul MHA, Rukshana AH, et al.
    Nat Prod Res, 2019 May;33(10):1495-1499.
    PMID: 29281898 DOI: 10.1080/14786419.2017.1419224
    The aim of the study was to isolate digestive enzymes inhibitors from Mimosa pudica through a bioassay-guided fractionation approach. Repeated silica gel and sephadex LH 20 column chromatographies of bioactive fractions afforded stigmasterol, quercetin and avicularin as digestive enzymes inhibitors whose IC50 values as compared to acarbose (351.02 ± 1.46 μg mL-1) were found to be as 91.08 ± 1.54, 75.16 ± 0.92 and 481.7 ± 0.703 μg mL-1, respectively. In conclusion, M. pudica could be a good and safe source of digestive enzymes inhibitors for the management of diabetes in future.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  19. Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA
    Int J Mol Sci, 2015;16(7):15625-58.
    PMID: 26184167 DOI: 10.3390/ijms160715625
    Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
  20. George S, Ajikumaran Nair S, Johnson AJ, Venkataraman R, Baby S
    J Ethnopharmacol, 2015 Jun 20;168:158-63.
    PMID: 25858510 DOI: 10.1016/j.jep.2015.03.060
    Melicope lunu-ankenda leaves are used to treat diabetes in folklore medicinal practices in India and Malaysia. Here we report the isolation of an O-prenylated flavonoid (3,5,4'-trihydroxy-8,3'-dimethoxy-7-(3-methylbut-2-enoxy)flavone; OPF) from the leaves of M. lunu-ankenda and its antidiabetes activity against type-2 diabetes mellitus (T2DM).
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links