Displaying publications 1 - 20 of 83 in total

Abstract:
Sort:
  1. Al Bakri Abdullah MM, Hussin K, Bnhussain M, Ismail KN, Yahya Z, Razak RA
    Int J Mol Sci, 2012;13(6):7186-98.
    PMID: 22837687 DOI: 10.3390/ijms13067186
    In this paper, we report the results of our investigation on the possibility of producing foam concrete by using a geopolymer system. Class C fly ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and foam was added to the geopolymeric mixture to produce lightweight concrete. The NaOH solution was prepared by dilute NaOH pellets with distilled water. The reactives were mixed to produce a homogeneous mixture, which was placed into a 50 mm mold and cured at two different curing temperatures (60 °C and room temperature), for 24 hours. After the curing process, the strengths of the samples were tested on days 1, 7, and 28. The water absorption, porosity, chemical composition, microstructure, XRD and FTIR analyses were studied. The results showed that the sample which was cured at 60 °C (LW2) produced the maximum compressive strength for all tests, (11.03 MPa, 17.59 MPa, and 18.19 MPa) for days 1, 7, and 28, respectively. Also, the water absorption and porosity of LW2 were reduced by 6.78% and 1.22% after 28 days, respectively. The SEM showed that the LW2 sample had a denser matrix than LW1. This was because LW2 was heat cured, which caused the geopolymerization rate to increase, producing a denser matrix. However for LW1, microcracks were present on the surface, which reduced the compressive strength and increased water absorption and porosity.
    Matched MeSH terms: Sodium Hydroxide/chemistry*
  2. N SS, M N EE, C K K, M J N
    F1000Res, 2024;13:40.
    PMID: 39246826 DOI: 10.12688/f1000research.138665.1
    BACKGROUND: Jute fiber is one of the most versatile natural fibers that is widely used as a raw material for packaging, textiles, and construction; and as a reinforcement in composite materials for heavy-duty applications. In the past, acid hydrolysis and mechanical treatment via the ball milling method were common in the extraction of cellulose nanofiber (CNFs) from natural plant fibers. However, there are some drawbacks of using those methods where there will be a huge quantity of acidic wastewater generated when the acid hydrolysis method is performed.

    METHOD: This study investigated the potential use of a combination of chemical and mechanical methods in the extraction of jute CNFs. Through this method, the jute fibers were first chemically treated using sodium hydroxide (NaOH), sodium chlorite (NaClO 2) and sulphuric acid (H 2SO 4) to remove the non-cellulosic elements followed by mechanical milling by using a planetary ball mill.

    RESULTS: The shape and size of the obtained CNFs were observed under a field emission scanning electron microscope (FESEM). This study revealed that jute CNFs were successfully extracted through the combination of chemical and mechanical treatment methods where the obtained CNFs reveal themselves in smooth fibrous morphology with a diameter of 23 nm and 150-200nm in length.

    CONCLUSIONS: Jute cellulose nanofibers were successfully drawn out from raw jute fibers by means of a combination of chemical and mechanical treatment. The results obtained confirmed that the chemomechanical method is an effective technique for isolating the CNFs and its potential use as reinforcement material was explained.

    Matched MeSH terms: Sodium Hydroxide/chemistry
  3. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA, Shameli K
    Int J Mol Sci, 2010;11(10):3898-905.
    PMID: 21152307 DOI: 10.3390/ijms11103898
    Silver nanoparticles (Ag-NPs) were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR) peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries.
    Matched MeSH terms: Sodium Hydroxide/chemistry
  4. Mazaheri H, Lee KT, Bhatia S, Mohamed AR
    Bioresour Technol, 2010 Jan;101(2):745-51.
    PMID: 19740652 DOI: 10.1016/j.biortech.2009.08.042
    Decomposition of oil palm fruit press fiber (FPF) to various liquid products in subcritical water was investigated using a high-pressure autoclave reactor with and without the presence of catalyst. When the reaction was carried in the absence of catalyst, the conversion of solid to liquid products increased from 54.9% at 483 K to 75.8% at 603 K. Simultaneously, the liquid yield increased from 28.8% to 39.1%. The liquid products were sub-categorized to bio-oil (benzene soluble, diethylether soluble, acetone soluble) and water soluble. When 10% ZnCl(2) was added, the conversion increased slightly but gaseous products increased significantly. However, when 10% Na(2)CO(3) and 10% NaOH were added independently, the solid conversion increased to almost 90%. In the presence of catalyst, the liquid products were mainly bio-oil compounds. Although solid conversion increased at higher reaction temperature, but the liquid yield did not increase at higher temperature.
    Matched MeSH terms: Sodium Hydroxide/chemistry
  5. Dahshaini Nadarajan, Sharifah Mastura Syed Mohd Daud, Nadiah Syariani Md Shariff
    MyJurnal
    Introduction: Broken glass exhibits unique fracture patterns depend upon the nature of the impact. The fracture patterns provide information like point and angle of impact, direction of force and sequence of firing. Recent studies have shown that the use of shotgun in Malaysia is increasing, yet, the relationship existing among the fracture pattern and the projectile impact factors are not well documented. The objective was to analyse the fracture characteristics on different glass types of variable thickness and distance made by shotgun ammunition. Methods: Soda lime and tempered glass panel with dimension of 12’x 12’ with 3 or 4 mm thickness were shot from various distances of 4, 6 and 8 m from the muzzle end of the shotgun. Samples were analysed under fixed parameters and observations were recorded. Results: It is found that the bullet hole diameter of 4 mm tempered glass were larger compared to 4 mm soda lime glass ranged from 14.33 to 24.17 cm as distance increased. Tempered glass surface also exhibited dicing fragments unlike soda lime glass where only radial fracture patterns are evident. This can be attributed to high inherent strength and ductility that makes the tempered glass remarkably resistant to external force. Conclusion: The findings from this study can lead to distinguish the type of glass through examination of fracture patterns, whether it is soda lime silica or tempered glass. The type of glass and the source of impact can be determined using the fragments, no reconstruction necessary.
    Matched MeSH terms: Sodium Hydroxide
  6. Mohamad, N.S., Sulaiman, R., Lai, O.M., Hussain, N.
    MyJurnal
    Fruit industries require convenient peeling method, especially during puree processing to prevent deterioration of fruit quality and product loss. Therefore, manual, chemical (sodium hydroxide/NaOH) and enzymatic (Pectinex Ultra SP-L) peeling methods were compared to determine the peeling efficiencies of ‘Chok Anan’ mangoes. The effect of different peeling parameters (concentrations [chemical peeling: 1.6-7.3% of 0.4M-1.83M; enzymatic peeling: 0.005-0.095%], temperatures [chemical peeling: 80-95oC; enzymatic peeling: 25-40°C], and duration of soaking [chemical peeling: 5-10 min; enzymatic peeling: 30-120 min]) were evaluated for peeling yield, peeling time, absorption of chemical and enzyme solution, the penetration depth of NaOH and enzyme activities (reducing sugar analysis). The enzymatic peeling had significantly (p0.05) in peeling yield (>86%), but there was significant (p
    Matched MeSH terms: Sodium Hydroxide
  7. Zaid MH, Matori KA, Aziz SH, Zakaria A, Ghazali MS
    Int J Mol Sci, 2012;13(6):7550-8.
    PMID: 22837711 DOI: 10.3390/ijms13067550
    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased.
    Matched MeSH terms: Sodium Hydroxide/chemistry*
  8. Wan Rosli WD, Law KN, Zainuddin Z, Asro R
    Bioresour Technol, 2004 Jul;93(3):233-40.
    PMID: 15062817
    Caustic pulping of oil-palm frond-fiber strands was conducted following a central composite design using a two-level factorial plan involving three pulping variables (temperature: 160-180 degrees C, time: 1-2 h, alkali charge: 20-30% NaOH). Responses of pulp properties to the process variables were analyzed using a statistical software (DESIGN-EXPERT). The results indicated that frond-fiber strands could be pulped with ease to about 35-45% yield. Statistically, the reaction time was not a significant factor while the influences of the treatment temperature and caustic charge were in general significantly relative to the properties of the resultant pulps.
    Matched MeSH terms: Sodium Hydroxide/chemistry
  9. Salleh KM, Zakaria S, Sajab MS, Gan S, Chia CH, Jaafar SNS, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1422-1430.
    PMID: 29964115 DOI: 10.1016/j.ijbiomac.2018.06.159
    Dissolved oil palm empty fruit bunch (EFB) cellulose in NaOH/urea solvent was mixed with sodium carboxymethylcellulose (NaCMC) to form a green regenerated superabsorbent hydrogel. The effect of concentration of epichlorohydrin (ECH) as the crosslinker on the formation, physical, and chemical properties of hydrogel was studied. Rapid formation and higher gel content of hydrogel were observed at 10% concentration of ECH. The superabsorbent hydrogel was successfully fabricated in this study with the swelling ability >100,000%. Hydrogel with higher concentration of ECH showed opposite trend by having higher superabsorbent property than that of lower concentration. The covalent bond of COC was observed with Attenuated total reflectance fourier transform infrared (ATR-FT-IR) spectroscopy to confirm the occurrence of crosslinking. The physical and chemical properties of hydrogel were affected by swelling phenomenon. Hydrogel with higher degree of swelling exhibited lower moisture retention and higher transparency. Moreover, the weight of the superabsorbent hydrogel increased with the decrement of pH value of external media (distilled water). This study provided substantial information on the effect of different percentage of ECH as crosslinker on hydrogel basic properties. Furthermore, this study affords correlation of many essential driving forces that affected hydrogel superabsorbent property.
    Matched MeSH terms: Sodium Hydroxide/chemistry
  10. Wong LC, Poh JH, Tan WT, Khor BK, Murugaiyah V, Leh CP, et al.
    Int J Biol Macromol, 2023 Jan 01;224:483-495.
    PMID: 36273545 DOI: 10.1016/j.ijbiomac.2022.10.138
    Hydrogels are an attractive platform for drug delivery to the skin. Current cellulose hydrogel developments commonly focus on readily available bleached woody cellulose. Considering the detrimental environmental impacts of bleaching reagents, unbleached non-woody biomass was proposed as an alternative. Herein, this study aims to develop hydrogel from native cellulose extracted from oil palm empty fruit bunches for dermal drug delivery with an emphasis on evaluating the effect of alkali solvent compositions on hydrogel formation. Unbleached dissolving pulps were solubilized in alkali solvents containing sodium hydroxide (NaOH) (6-8%w/v) and urea (4-6%w/v) before crosslinking. Hydrogels were loaded with ibuprofen for skin permeation studies. Light brownish hydrogels formed are aesthetically acceptable and biodegradable with low cytotoxicity. NaOH content has a dominant role over urea where thinner and deformable crosslinked network walls in a porous hydrogel structure are associated with high NaOH content. Synergistic effects (cellulose solubility: 94 %; swelling ratio: ~2800 %) were observed at 7%w/v NaOH and 4%w/v urea with low toxicity. Most hydrogels showed >80 % of ibuprofen permeated into the skin and this increased with the swelling ratio of hydrogels. Unbleached cellulose pulps have excellent potential for hydrogel fabrication with outstanding physicomechanical properties for dermal drug delivery.
    Matched MeSH terms: Sodium Hydroxide/chemistry
  11. Razak RA, Abdullah MM, Hussin K, Ismail KN, Hardjito D, Yahya Z
    Int J Mol Sci, 2015 May 21;16(5):11629-47.
    PMID: 26006238 DOI: 10.3390/ijms160511629
    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.
    Matched MeSH terms: Sodium Hydroxide/chemistry*
  12. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2008 May 16;73(10):3730-7.
    PMID: 18410141 DOI: 10.1021/jo702695k
    The apparent second-order rate constant (k OH) for hydroxide-ion-catalyzed conversion of 1 to N-(2'-methoxyphenyl)phthalamate (4) is approximately 10(3)-fold larger than k OH for alkaline hydrolysis of N-morpholinobenzamide (2). These results are explained in terms of the reaction scheme 1 --> k(1obs) 3 --> k(2obs) 4 where 3 represents N-(2'-methoxyphenyl)phthalimide and the values of k(2obs)/k(1obs) vary from 6.0 x 10(2) to 17 x 10(2) within [NaOH] range of 5.0 x 10(-3) to 2.0 M. Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1 decrease from 21.7 x 10(-3) to 15.6 x 10(-3) s(-1) with an increase in ionic strength (by NaCl) from 0.5 to 2.5 M at 0.5 M NaOH and 35 degrees C. The values of k obs, obtained for alkaline hydrolysis of 2 within [NaOH] range 1.0 x 10(-2) to 2.0 M at 35 degrees C, follow the relationship k(obs) = kOH[HO(-)] + kOH'[HO (-)] (2) with least-squares calculated values of kOH and kOH' as (6.38 +/- 0.15) x 10(-5) and (4.59 +/- 0.09) x 10(-5) M (-2) s(-1), respectively. A few kinetic runs for aqueous cleavage of 1, N'-morpholino-N-(2'-methoxyphenyl)-5-nitrophthalamide (5) and N'-morpholino-N-(2'-methoxyphenyl)-4-nitrophthalamide (6) at 35 degrees C and 0.05 M NaOH as well as 0.05 M NaOD reveal the solvent deuterium kinetic isotope effect (= k(obs) (H 2) (O)/ k(obs) (D 2 ) (O)) as 1.6 for 1, 1.9 for 5, and 1.8 for 6. Product characterization study on the cleavage of 5, 6, and N-(2'-methoxyphenyl)-4-nitrophthalimide (7) at 0.5 M NaOD in D2O solvent shows the imide-intermediate mechanism as the exclusive mechanism.
    Matched MeSH terms: Sodium Hydroxide/chemistry*
  13. Cheng-Yong H, Yun-Ming L, Abdullah MM, Hussin K
    Sci Rep, 2017 03 27;7:45355.
    PMID: 28345643 DOI: 10.1038/srep45355
    This paper presents a comparative study of the characteristic of unfoamed and foamed geopolymers after exposure to elevated temperatures (200-800 °C). Unfoamed geopolymers were produced with Class F fly ash and sodium hydroxide and liquid sodium silicate. Porous geopolymers were prepared by foaming with hydrogen peroxide. Unfoamed geopolymers possessed excellent strength of 44.2 MPa and degraded 34% to 15 MPa in foamed geopolymers. The strength of unfoamed geopolymers decreased to 5 MPa with increasing temperature up to 800 °C. Foamed geopolymers behaved differently whereby they deteriorated to 3 MPa at 400 °C and increased up to 11 MPa at 800 °C. Even so, the geopolymers could withstand high temperature without any disintegration and spalling up to 800 °C. The formation of crystalline phases at higher temperature was observed deteriorating the strength of unfoamed geopolymers but enhance the strength of foamed geopolymers. In comparison, foamed geopolymer had better thermal resistance than unfoamed geopolymers as pores provide rooms to counteract the internal damage.
    Matched MeSH terms: Sodium Hydroxide
  14. MohanRaj, T., Kumar, K. Murugu Mohan, Kumar, Perumal
    MyJurnal
    Vegetable oil has become more attractive recently because of its environmental benefits and better
    quality exhaust emission. A well-known transesterification process made biodiesel, pungam seed oil was selected for biodiesel production. Pungam seed oil is non-edible oil, thus, food versus fuel conflict will not arise if this is used for biodiesel production. A maximum of 75% biodiesel was produced with 20% methanol in the presence of 0.5% sodium hydroxide. The experimental investigations were carried out in an engine that is coupled with an eddy current dynamometer. The engine is a single cylinder water-cooled, direct injection diesel engine developing a power output of 3.7 kW at 1500 rev/min. The crank angle encoder measured the engine speed, whereas the piezo electric sensors measured the cylinder pressure and the fuel injection pressure. The experimental investigations were carried out for bio-diesel and diesel and the results were compared. From the experimental results, it is concluded that the use of bio-diesel as an alternative fuel leads to significant reduction in emissions and improved performance of diesel engines. This paper discusses the production process of biodiesel from Pungam seed oil and its performance in the compression ignition engine.
    Matched MeSH terms: Sodium Hydroxide
  15. Khaw MK, Mohd-Yasin F, Nguyen NT
    Sensors (Basel), 2018 Jun 01;18(6).
    PMID: 29857584 DOI: 10.3390/s18061767
    We present the mixing and merging of two reactive droplets on top of an open surface. A mobile droplet (1.0 M HCl solution + iron oxide particles) is magnetically-actuated to merge with a sessile droplet (1.0 M NaOH + phenolphthalein). The heat from the exothermic reaction is detected by a thermocouple. We vary the droplet volume (1, 5 and 10 μL), the magnet speed (1.86, 2.79, 3.72 and 4.65 mm/s) and the iron oxide concentration (0.010, 0.020 and 0.040 g/mL) to study their influences on the mixing time, peak temperature and cooling time. The sampled recording of these processes are provided as supplementary files. We observe the following trends. First, the lower volume of droplet and higher speed of magnet lead to shorter mixing time. Second, the peak temperature increases and cooling time decreases at the increasing speed of magnet. Third, the peak temperature is similar for bigger droplets, and they take longer to cool down. Finally, we also discuss the limitations of this preliminary study and propose improvements. These observations could be used to improve the sensitivity of the open chamber system in measuring the exothermic reaction of biological samples.
    Matched MeSH terms: Sodium Hydroxide
  16. Kalantari K, Bin Ahmad M, Shameli K, Khandanlou R
    Int J Nanomedicine, 2013;8:1817-23.
    PMID: 23696700 DOI: 10.2147/IJN.S43693
    The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe(3)O(4)) nanoparticles on talc layers using an environmentally friendly process. The Fe(3)O(4) magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe(3)O(4) precursor and reducing agent in talc. The talc was suspended in deionized water, and then ferrous and ferric ions were added to this solution and stirred. After the absorption of ions on the exterior surface of talc layers, the ions were reduced with sodium hydroxide. The reaction was carried out under a nonoxidizing oxygen-free environment. There were not many changes in the interlamellar space limits (d-spacing = 0.94-0.93 nm); therefore, Fe(3)O(4) nanoparticles formed on the exterior surface of talc, with an average size of 1.95-2.59 nm in diameter. Nanoparticles were characterized using different methods, including powder X-ray diffraction, transmission electron microscopy, emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. These talc/Fe(3)O(4) nanocomposites may have potential applications in the chemical and biological industries.
    Matched MeSH terms: Sodium Hydroxide
  17. Baharum MI, Kuppuswamy R, Rahman AA
    Forensic Sci Int, 2008 May 20;177(2-3):221-7.
    PMID: 18313246 DOI: 10.1016/j.forsciint.2008.01.004
    A study has been made of the characteristics of restoration of obliterated engraved marks on aluminium surfaces by etching technique. By etching different reagents on 0.61mm thick sheets of aluminium (99wt%) on which some engraved marks had been erased to different depths it was found that the reagent 60% hydrochloric acid and 40% sodium hydroxide on alternate swabbing on the surfaces was found to be the most sensitive one for these metal surfaces. This reagent was able to restore marks in the above plates erased down to 0.04mm below the bottom of the engraving. The marks also presented excellent contrast with the background. This reagent was further experimented with similar aluminium surfaces, but of relatively greater thickness of 1.5mm. It was noticed that the recovery depth increased slightly to 0.06mm; this suggested the dependence of recovery depth on the thickness of the sheet metal. Further, the depth of restoration decreased in cases where the original number was erased and over which a new number was engraved; the latter results are similar to those of steel surfaces reported earlier [M.A.M. Zaili, R. Kuppuswamy, H. Harun, Restoration of engraved marks on steel surfaces by etching technique, Forensic Sci. Int. 171 (2007) 27-32].
    Matched MeSH terms: Sodium Hydroxide
  18. Chin DWK, Lim S, Pang YL, Lim CH, Lee KM
    Bioresour Technol, 2019 Nov;292:121967.
    PMID: 31450064 DOI: 10.1016/j.biortech.2019.121967
    Ethylene glycol in the presence of sodium hydroxide was utilised as pretreatment for effective delignification and reduced the recalcitrance of lignocellulosic biomass which ramified the exposure of cellulose. Two-staged acid hydrolysis was also investigated which demonstrated its synergistic efficiency by minimising the deficiency of single stage acid hydrolysis. The operating parameters including acid concentration, temperature, residence time and cellulose loading for two-staged acid hydrolysis were studied by using ethylene glycol delignified degraded oil palm empty fruit bunch (DEFB) to recover the sugar based substrates for potential biofuels and other bio-chemicals production. In this study, stage I 45 wt% acid at 65 °C for 30 min coupled with high cellulose loading 21.25 w/v% and 12 wt% acid at 100 °C for 120 min was able to release a total of 89.8% optimum sugar yield with minimal formation of degradation products including 0.058 g/L furfural, 0.0251 g/L hydroxymethylfurfural and 0.200 g/L phenolic compounds.
    Matched MeSH terms: Sodium Hydroxide
  19. Abdullah A, Hussin K, Abdullah MMAB, Yahya Z, Sochacki W, Razak RA, et al.
    Materials (Basel), 2021 Feb 27;14(5).
    PMID: 33673522 DOI: 10.3390/ma14051111
    Aggregates can be categorized into natural and artificial aggregates. Preserving natural resources is crucial to ensuring the constant supply of natural aggregates. In order to preserve these natural resources, the production of artificial aggregates is beginning to gain the attention of researchers worldwide. One of the methods involves using geopolymer technology. On this basis, this current research focuses on the inter-particle effect on the properties of fly ash geopolymer aggregates with different molarities of sodium hydroxide (NaOH). The effects of synthesis parameters (6, 8, 10, 12, and 14 M) on the mechanical and microstructural properties of the fly ash geopolymer aggregate were studied. The fly ash geopolymer aggregate was palletized manually by using a hand to form a sphere-shaped aggregate where the ratio of NaOH/Na2SiO3 used was constant at 2.5. The results indicated that the NaOH molarity has a significant effect on the impact strength of a fly ash geopolymer aggregate. The highest aggregate impact value (AIV) was obtained for samples with 6 M NaOH molarity (26.95%), indicating the lowest strength among other molarities studied and the lowest density of 2150 kg/m3. The low concentration of sodium hydroxide in the alkali activator solution resulted in the dissolution of fly ash being limited; thus, the inter-particle volume cannot be fully filled by the precipitated gels.
    Matched MeSH terms: Sodium Hydroxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links