Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Shafika Abdul Kadir N, Khor YP, Lee YJ, Lan D, Qi S, Wang Y, et al.
    Food Res Int, 2022 Dec;162(Pt B):112055.
    PMID: 36461315 DOI: 10.1016/j.foodres.2022.112055
    Diacylglycerol (DAG) is commonly known as one of the precursors for 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) formation. Besides, 3-MCPDE and GE are heat-induced contaminants which can be formed in fat-containing baked products during the baking process. This study attempted to replace the conventional palm-based shortening (SH) with a healthier fat, namely soybean oil-based diacylglycerol stearin (SDAG) in producing biscuits. The effects of different baking temperatures (200, 210 and 220 °C) and SDAG:SH fat blend ratios (0:100, 60:40 (D64S), 80:20 (D82S), 100:0, w/w) towards the biscuits' physical properties were evaluated. Moreover, the oxidative stability, 3-MCPDPE and GE formation in the fats extracted from the biscuits were also investigated. SDAG-produced biscuit showed slight reductions in the spread ratio compared to the SH-produced biscuit. The elevated baking temperatures resulted in biscuits with increased hardness and low moisture content. Pure SDAG and the other fat blends exhibited significant (p 
    Matched MeSH terms: Soybean Oil
  2. Mohammed IA, Abd Khadir NK, Jaffar Al-Mulla EA
    J Oleo Sci, 2014;63(2):193-200.
    PMID: 24420063
    New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.
    Matched MeSH terms: Soybean Oil*
  3. Von Lau E, Gan S, Ng HK
    J Environ Manage, 2012 Sep 30;107:124-30.
    PMID: 22595079 DOI: 10.1016/j.jenvman.2012.04.029
    Experimental extraction tests are conducted to investigate feasibility of saturated palm kernel oil (PKO) and unsaturated soybean oil (SO) to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sand. The extraction rates and efficiencies for lowly contaminated (LC) and highly contaminated (HC) sands at temperatures of 30 °C and 70 °C are evaluated using empirical first order kinetic dissolution models. In LC sand, the extraction is dominated by the diffusion of PAHs adsorbed onto particle surfaces and the direct dissolution of PAH phase. In HC sand, a rapid diffusion of PAHs adsorbed onto particle surfaces and a direct dissolution of PAH phase occur followed by a slower diffusion of PAHs entrapped within the pores and micropores. Larger diffusion resistance during HC sand extractions results in an average 10.8% reduction in extraction efficiencies compared to LC sand. Increased temperature generally increases the mass transfer rates and extraction efficiencies. Additionally, the physicochemical properties of both oils and PAHs also determine the extent of PAH extraction into oil.
    Matched MeSH terms: Soybean Oil/chemistry*
  4. Chang SH, Teng TT, Ismail N, Alkarkhi AF
    J Hazard Mater, 2011 Jun 15;190(1-3):197-204.
    PMID: 21493005 DOI: 10.1016/j.jhazmat.2011.03.025
    The objectives of this work were to select suitable design parameters and optimize the operating parameters of a soybean oil-based bulk liquid membrane (BLM) for Cu(II) removal and recovery from aqueous solutions. The soybean oil-based BLM consists of an aqueous feed phase (Cu(II) source), an organic membrane phase (soybean oil (diluent), di-2-ethylhexylphosphoric acid (D2EHPA) (carrier) and tributylphosphate (phase modifier)) and an aqueous stripping phase (sulfuric acid solution (H(2)SO(4))). Effects of design parameters (stirring condition and stripping/membrane to feed/membrane interface area ratio) of soybean oil-based BLM on the Cu(II) removal and recovery from aqueous solutions were investigated and the suitable parameters were selected for further studies. Optimization of the operating parameters (D2EHPA concentration, H(2)SO(4) concentration, stirring speed, temperature and operating time) of soybean oil-based BLM for maximum percentage (%) recovery of Cu(II) was then conducted using Response Surface Methodology and the optimum parameters were determined. A regression model for % recovery was developed and its adequacy was evaluated. The experimental % recovery obtained under the optimum operating conditions was compared with the predicted one and they were found to agree satisfactorily with each other.
    Matched MeSH terms: Soybean Oil/chemistry*
  5. Jaarin K, Hwa TC, Umar NA, Siti Aishah MA, Das S
    Clin Ter, 2010;161(5):429-33.
    PMID: 21057734
    Consumption of heated edible oils may be harmful. The present study aimed to observe the histological changes due to concurrent consumption of soy oil (either fresh or heated) and fatty diet and the changes in the level of alanine transaminase (ALT) and alkaline phosphatase (ALP).
    Matched MeSH terms: Soybean Oil/administration & dosage*
  6. Zulkurnain M, Balasubramaniam VM, Maleky F
    Molecules, 2019 Aug 06;24(15).
    PMID: 31390764 DOI: 10.3390/molecules24152853
    Different fractions of fully hydrogenated soybean oil (FHSBO) in soybean oil (10-30% w/w) and the addition of 1% salt (sodium chloride) were used to investigate the effect of high-pressure treatments (HP) on the crystallization behaviors and physical properties of the binary mixtures. Sample microstructure, solid fat content (SFC), thermal and rheological properties were analyzed and compared against a control sample (crystallized under atmospheric condition). The crystallization temperature (Ts) of all model fats under isobaric conditions increased quadratically with pressure until reaching a pressure threshold. As a result of this change, the sample induction time of crystallization (tc) shifted from a range of 2.74-0.82 min to 0.72-0.43 min when sample crystallized above the pressure threshold under adiabatic conditions. At the high solid mass fraction, the addition of salt reduced the pressure threshold to induce crystallization during adiabatic compression. An increase in pressure significantly reduced mean cluster diameter in relation to the reduction of tc regardless of the solid mass fraction. In contrast, the sample macrostructural properties (SFC, storage modulus) were influenced more significantly by solid mass fractions rather than pressure levels. The creation of lipid gel was observed in the HP samples at 10% FHSBO. The changes in crystallization behaviors indicated that high-pressure treatments were more likely to influence crystallization mechanisms at low solid mass fraction.
    Matched MeSH terms: Soybean Oil/chemistry
  7. Ismail M, Alsalahi A, Khaza'ai H, Imam MU, Ooi J, Samsudin MN, et al.
    PMID: 32731336 DOI: 10.3390/ijerph17155410
    BACKGROUND: Cerebrovascular diseases (CBVDs) and diabetes mellitus (DM) are interrelated and cumbersome global health burdens. However, the relationship between edible oils consumption and mortality burdens of CBVDs and DM has not yet been evaluated. This review aims to explore correlations between per capita mortality burdens of CBVDs and DM, as well as food consumption of palm or soya oils in 11 randomly selected countries in 2005, 2010, and 2016.

    METHODS: After obtaining data on food consumption of palm and soya oils and mortality burdens of CBVDs and DM, correlations between the consumption of oils and mortality burdens of diseases were explored.

    RESULTS: There was a positive correlation between the consumption of soya oil with the mortality burden of CBVDs in Australia, Switzerland, and Indonesia, as well as the mortality burden of DM in the USA. The consumption of palm oil had a positive correlation with the mortality burden of DM in Jordan only.

    CONCLUSIONS: Food consumption of soya oil in several countries possibly contributes to the mortality burden of CBVDs or DM more than food consumption of palm oil, which could be a possible risk factor in the mortality burdens of CBVDs and DM.

    Matched MeSH terms: Soybean Oil*
  8. Ali MA, Islam MA, Othman NH, Noor AM, Ibrahim M
    Acta Sci Pol Technol Aliment, 2020 1 14;18(4):427-438.
    PMID: 31930793 DOI: 10.17306/J.AFS.0694
    BACKGROUND: Rice bran oil (RBO) contains significant amounts of micronutrients (oryzanol, tocotrienol, tocopherol, phytosterols etc.) that impart a high resistance to thermal oxidation of the oil. The high oxidative stability of RBO can make it a preferred oil to improve the oxidative and flavor stabilities of other oils rich in PUFAs. In this study, the changes in the oxidative status and fatty acid composition in soybean oil (SO) blended with RBO under extreme thermal conditions were evaluated.

    METHODS: The blends were prepared in a volume ratio of 10:90, 20:80, 40:60, and 60:40 (RBO:SO). The changes in the oxidative parameters and fatty acid composition of the samples during heating at frying temperature (170°C) were determined using analytical and instrumental methods. Oxidative alteration was also monitored by recording FTIR spectra of oil samples.

    RESULTS: The increase in oxidative parameters (free fatty acid, color, specific extinctions, peroxide value, p-anisidine value, and thiobarbituric acid value) was greater in pure SO as compared to RBO or blend oils during heating. This indicates that the SO samples incorporated with RBO have the least degradation, while pure SO has the highest. Blending resulted in a lower level of polyunsaturated fatty acids (PUFA)  with       a higher level of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA). During heating, the relative content of PUFA decreased and that of SFA increased. However, the presence of RBO in SO slowed down the oxidative deterioration of PUFA. In FTIR, the peak intensities in SO were markedly changed in comparison with blend oils during heating. The reduction in the formation of oxidative products in SO during thermal treatment increased as the concentration of the RBO in SO increased; however, the levels of the protective effect of RBO did not increase steadily with an increase in its concentration.

    CONCLUSIONS: During thermal treatment, the generation of hydroperoxides, their degradation and formation of secondary oxidative products as evaluated by oxidative indices, fatty acids and IR absorbances were lower in blend oils compared to pure SO. In conclusion, RBO can significantly retard the process of lipid peroxidation in SO during heating at frying temperature.

    Matched MeSH terms: Soybean Oil/chemistry*
  9. Daniali G, Jinap S, Sanny M, Tan CP
    Food Chem, 2018 Apr 15;245:1-6.
    PMID: 29287315 DOI: 10.1016/j.foodchem.2017.10.070
    This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R2=0.884), temperature (R2=0.951) and amount of acrylamide formation, both at p<0.05.
    Matched MeSH terms: Soybean Oil/chemistry*
  10. Zaiton Z, Merican Z, Khalid BA, Mohamed JB, Baharom S
    Asia Pac J Clin Nutr, 1997 Jun;6(2):116-8.
    PMID: 24394713
    The soleus muscles of hyperthyroid rats were used to investigate the effect of palm olein oil and soya bean oil on the production of lipid peroxidation products. It was found that palm olein oil but not soya bean oil significantly decreased malonaldehyde and conjugated diene levels of the soleus muscles of hyperthyroid rats. These findings suggest that palm olein per se produces less lipid peroxidation products than soya bean oil. Such an assay method gives a composite net picture of the propensity of an oil to produce lipid peroxidation products.
    Matched MeSH terms: Soybean Oil
  11. Ng SP, Khor YP, Lim HK, Lai OM, Wang Y, Wang Y, et al.
    Foods, 2020 Jul 03;9(7).
    PMID: 32635372 DOI: 10.3390/foods9070877
    The present study focused on investigating the storage stability of oil-in-water (O/W) emulsions with high oil volume fractions prepared with palm olein-based diacylglycerol oil (POL-DAG)/soybean oil (SBO) blends at 25 °C. The incorporation of different ratios of oil blends significantly influenced (p < 0.05) the texture, color, droplet size distribution, and rheological parameters of the emulsions. Only emulsions incorporated with 10% to 20% POL-DAG in oil phase exhibited pseudoplastic behavior that fitted the Power Law model well. Furthermore, the O/W emulsions prepared with POL-DAG/SBO blends exhibited elastic properties, with G' higher than G". During storage, the emulsion was found to be less solid-like with the increase in tan δ values. All emulsions produced with POL-DAG/SBO blends also showed thixotropic behavior. Optical microscopy revealed that the POL-DAG incorporation above 40% caused aggregated droplets to coalesce and flocculate and, thus, larger droplet sizes were observed. The current results demonstrated that the 20% POL-DAG substituted emulsion was more stable than the control emulsion. The valuable insights gained from this study would be able to generate a lot more possible applications using POL-DAG, which could further sustain the competitiveness of the palm oil industry.
    Matched MeSH terms: Soybean Oil
  12. Rashid Jusoh A, Das S, Kamsiah J, Qodriyah HM, Faizah O
    Clin Ter, 2013;164(4):307-13.
    PMID: 24045513 DOI: 10.7417/CT.2013.1578
    Consumption of repeatedly heated soy oil has been linked with incidence of atherosclerosis particularly in oestrogen deficient states. In the present study, effect of curcumin extract on the prevention of atherosclerosis was evaluated.
    Matched MeSH terms: Soybean Oil/administration & dosage; Soybean Oil/adverse effects*
  13. Ng CY, Kamisah Y, Faizah O, Jaarin K
    Int J Exp Pathol, 2012 Oct;93(5):377-87.
    PMID: 22974219 DOI: 10.1111/j.1365-2613.2012.00839.x
    Thermally oxidized oil generates reactive oxygen species that have been implicated in several pathological processes including hypertension. This study was to ascertain the role of inflammation in the blood pressure raising effect of heated soybean oil in rats. Male Sprague-Dawley rats were divided into four groups and were fed with the following diets, respectively, for 6 months: basal diet (control); fresh soybean oil (FSO); five-time-heated soybean oil (5HSO); or 10-time-heated soybean oil (10HSO). Blood pressure was measured at baseline and monthly using tail-cuff method. Plasma prostacyclin (PGI(2) ) and thromboxane A(2) (TXA(2) ) were measured prior to treatment and at the end of the study. After six months, the rats were sacrificed, and the aortic arches were dissected for morphometric and immunohistochemical analyses. Blood pressure was increased significantly in the 5HSO and 10HSO groups. The blood pressure was maintained throughout the study in rats fed FSO. The aortae in the 5HSO and 10HSO groups showed significantly increased aortic wall thickness, area and circumferential wall tension. 5HSO and 10HSO diets significantly increased plasma TXA(2) /PGI(2) ratio. Endothelial VCAM-1 and ICAM-1 were significantly increased in 5HSO, as well as LOX-1 in 10HSO groups. In conclusion, prolonged consumption of repeatedly heated soybean oil causes blood pressure elevation, which may be attributed to inflammation.
    Matched MeSH terms: Soybean Oil/adverse effects*; Soybean Oil/chemistry
  14. Ima-Nirwana S, Ahmad SN, Yee LJ, Loh HC, Yew SF, Norazlina M, et al.
    Singapore Med J, 2007 Mar;48(3):200-6.
    PMID: 17342287
    The short-term and long- term effects of heated soy oil on bone metabolism in ovariectomised Sprague-Dawley rats were studied.
    Matched MeSH terms: Soybean Oil/pharmacology*; Soybean Oil/chemistry
  15. Yang J, Ching YC, Chuah CH, Liou NS
    Polymers (Basel), 2020 Dec 29;13(1).
    PMID: 33383626 DOI: 10.3390/polym13010094
    This study examined the development of starch/oil palm empty fruit bunch-based bioplastic composites reinforced with either epoxidized palm oil (EPO) or epoxidized soybean oil (ESO), at various concentrations, in order to improve the mechanical and water-resistance properties of the bio-composites. The SEM micrographs showed that low content (0.75 wt%) of epoxidized oils (EOs), especially ESO, improved the compatibility of the composites, while high content (3 wt%) of EO induced many voids. The melting temperature of the composites was increased by the incorporation of both EOs. Thermal stability of the bioplastics was increased by the introduction of ESO. Low contents of EO led to a huge enhancement of tensile strength, while higher contents of EO showed a negative effect, due to the phase separation. The tensile strength increased from 0.83 MPa of the control sample to 3.92 and 5.42 MPa for the composites with 1.5 wt% EPO and 0.75 wt% ESO, respectively. EOs reduced the composites' water uptake and solubility but increased the water vapor permeability. Overall, the reinforcing effect of ESO was better than EPO. These results suggested that both EOs can be utilized as modifiers to prepare starch/empty-fruit-bunch-based bioplastic composites with enhanced properties.
    Matched MeSH terms: Soybean Oil
  16. Muhamad II, Quin CH, Selvakumaran S
    J Food Sci Technol, 2016 Apr;53(4):1845-55.
    PMID: 27413211 DOI: 10.1007/s13197-015-2107-6
    The purpose of this study was to investigate the preparation of formulated water- in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using a cellulose acetate membrane. The effect of selective membrane emulsification process parameters (concentration of the emulsifiers, number of passes of the emulsions through the membrane and storage temperature) on the properties and stability of the developed emulsions were also investigated. 1, 3, 6, 8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) was used as a hydrophilic model ingredient for the encapsulation of bioactive substances. W/O emulsions with 7 wt% (weight percentage) PGPR displays homogeneous and very fine dispersions, with the median diameter at 0.640 μm. Meanwhile, emulsions prepared by membrane emulsification (fine W/O/W) showed the highest stability at Tween 80 concentrations of 0.5 wt.% (weight percentage). It concluded that at 7 wt.% (weight percentage) PGPR concentration and 0.5 wt.% (weight percentage) Tween 80 concentrations, the most uniform particles with minimum mean size of oil drops (9.926 μm) were obtained after four passes through the membrane. Thus, cellulose acetate membrane can be used for preparing a stable W/O/W emulsions by repeated premix ME due to low cost and relatively easy to handle.
    Matched MeSH terms: Soybean Oil
  17. Zamindar N, Bashash M, Khorshidi F, Serjouie A, Shirvani MA, Abbasi H, et al.
    J Food Sci Technol, 2017 Jun;54(7):2077-2084.
    PMID: 28720965 DOI: 10.1007/s13197-017-2646-0
    The aim of this study was to evaluate the presence and possibility of extracting compounds with antioxidant properties of soybean cake to extend the storage stability of soybean oil. Results showed that the highest DPPH radical scavenging activity was observed for sample to solvent ratio 1:25 while extracting by 70% ethanol for 3 h). The most phenolic compounds equivalents (Gallic acid) was observed for sample to solvent ratio 1:25 while extracting by 70% methanol for 14 h. In addition, the soybean cake extract at concentrations of 50, 100, 150 and 200 ppm in soybean oil could significantly lower the peroxide, diene and p-anisidine values of soy oil during storage at 65 °C.
    Matched MeSH terms: Soybean Oil
  18. Mokbli S, Sbihi HM, Nehdi IA, Romdhani-Younes M, Tan CP, Al-Resayes SI
    J Food Sci Technol, 2018 Jun;55(6):2170-2179.
    PMID: 29892118 DOI: 10.1007/s13197-018-3134-x
    Herein we examine the characteristics of date seed oil extracted from Chamaerops humilis L. var. humilis seeds (HSO) cultivated in a gardening zone in Tunisia. Its physicochemical properties, fatty acid composition, and thermal and antioxidant properties were evaluated and compared with those of seed oil from another variety of Chamaerops humilis. The results showed that HSO possessed higher contents of oleic (44%) and linoleic (20%) acids than the other seed oil. The total tocopherol and tocotrienol content was 88 mg/100 g oil, where α-tocotrienol (64%) was the major isomer. The total phenolic (91 μg/g oil) and flavonoid contents (18 μg/g oil) of the HSO were determined, and its antioxidant capacities, measured in terms of ABTS and DPPH radical-scavenging capacities, were 210 µM TEAC/g DW and 4.3 mM TEAC/g DW, respectively. The oxidative stability index (OSI) of the oil was 16 h at 110 °C. Furthermore, the OSI of soybean oil was significantly enhanced upon blending with HSO. HSO exhibited higher thermal stability than the other oils and significantly different thermal behavior. The determination of fatty acid composition, physicochemical properties, bioactive content, oxidative stability, and thermal behavior of HSO demonstrated that this renewable resource can be used for edible purposes.
    Matched MeSH terms: Soybean Oil
  19. Mohammed IA, Al-Mulla EA, Kadar NK, Ibrahim M
    J Oleo Sci, 2013;62(12):1059-72.
    PMID: 24292358
    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.
    Matched MeSH terms: Soybean Oil/chemistry*
  20. Chang SH, Teng TT, Ismail N
    J Environ Manage, 2011 Oct;92(10):2580-5.
    PMID: 21700383 DOI: 10.1016/j.jenvman.2011.05.025
    This study aimed to identify the significant factors that give large effects on the efficiency of Cu(II) extraction from aqueous solutions by soybean oil-based organic solvents using fractional factorial design. Six factors (mixing time (t), di-2-ethylhexylphosphoric acid concentration ([D2EHPA]), organic to aqueous phase ratio (O:A), sodium sulfate concentration ([Na(2)SO(4)]), equilibrium pH (pH(eq)) and tributylphosphate concentration ([TBP])) affecting the percentage extraction (%E) of Cu(II) were investigated. A 2(6-1) fractional factorial design was applied and the results were analyzed statistically. The results show that only [D2EHPA], pH(eq) and their second-order interaction ([D2EHPA] × pH(eq)) influenced the %E significantly. Regression models for %E were developed and the adequacy of the reduced model was examined. The results of this study indicate that fractional factorial design is a useful tool for screening a large number of variables and reducing the number of experiments.
    Matched MeSH terms: Soybean Oil*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links