Displaying publications 1 - 20 of 176 in total

Abstract:
Sort:
  1. Razali NNM, Ng CT, Fong LY
    Planta Med, 2019 Nov;85(16):1203-1215.
    PMID: 31539918 DOI: 10.1055/a-1008-6138
    Centella asiatica, a triterpene-rich medicinal herb, is traditionally used to treat various types of diseases including neurological, dermatological, and metabolic diseases. A few articles have previously reviewed a broad range of pharmacological activities of C. asiatica, but none of these reviews focuses on the use of C. asiatica in cardiovascular diseases. This review aims to summarize recent findings on protective effects of C. asiatica and its active constituents (asiatic acid, asiaticoside, madecassic acid, and madecassoside) in cardiovascular diseases. In addition, their beneficial effects on conditions associated with cardiovascular diseases were also reviewed. Articles were retrieved from electronic databases such as PubMed and Google Scholar using keywords "Centella asiatica," "asiatic acid," "asiaticoside," "madecassic acid," and "madecassoside." The articles published between 2004 and 2018 that are related to the aforementioned topics were selected. A few clinical studies published beyond this period were also included. The results showed that C. asiatica and its active compounds possess potential therapeutic effects in cardiovascular diseases and cardiovascular disease-related conditions, as evidenced by numerous in silico, in vitro, in vivo, and clinical studies. C. asiatica and its triterpenes have been reported to exhibit cardioprotective, anti-atherosclerotic, antihypertensive, antihyperlipidemic, antidiabetic, antioxidant, and anti-inflammatory activities. In conclusion, more clinical and pharmacokinetic studies are needed to support the use of C. asiatica and its triterpenes as therapeutic agents for cardiovascular diseases. Besides, elucidation of the molecular pathways modulated by C. asiatica and its active constituents will help to understand the mechanisms underlying the cardioprotective action of C. asiatica.
    Matched MeSH terms: Triterpenes/pharmacology*; Triterpenes/chemistry; Pentacyclic Triterpenes/pharmacology; Pentacyclic Triterpenes/chemistry
  2. Nugroho AE, Inoue D, Wong CP, Hirasawa Y, Kaneda T, Shirota O, et al.
    J Nat Med, 2018 Mar;72(2):588-592.
    PMID: 29453649 DOI: 10.1007/s11418-018-1188-8
    Bioactivity guided separation of Reinwardtiodendron cinereum barks methanol extract led to the isolation of two new onocerane triterpenoids, reinereins A and B (1 and 2), together with three known onocerane triterpenoids. Their structures were elucidated on the basis of NMR spectroscopic data. In vitro cytotoxic activities of the isolated compounds against several type of cancer cells were evaluated.
    Matched MeSH terms: Triterpenes/chemistry*
  3. Amir Yusri MA, Sekar M, Wong LS, Gan SH, Ravi S, Subramaniyan V, et al.
    Drug Des Devel Ther, 2023;17:1079-1096.
    PMID: 37064431 DOI: 10.2147/DDDT.S389977
    Celastrol is a naturally occurring chemical isolated from Tripterygium wilfordii Hook. f., root extracts widely known for their neuroprotective properties. In this review, we focus on the efficacy of celastrol in mitigating memory impairment (MI) in both in vivo and in vitro models. Scopus, PubMed and Web of Science databases were utilised to locate pertinent literatures that explore the effects of celastrol in the brain, including its pharmacokinetics, bioavailability, behavioral effects and some of the putative mechanisms of action on memory in many MI models. To date, preclinical studies strongly suggest that celastrol is highly effective in enhancing the cognitive performance of MI animal models, particularly in the memory domain, including spatial, recognition, retention and reference memories, via reduction in oxidative stress and attenuation of neuro-inflammation, among others. This review also emphasised the challenges and potential associated enhancement of medication delivery for MI treatment. Additionally, the potential structural alterations and derivatives of celastrol in enhancing its physicochemical and drug-likeness qualities are examined. The current review demonstrated that celastrol can improve cognitive performance and mitigate MI in several preclinical investigations, highlighting its potential as a natural lead molecule for the design and development of a novel neuroprotective medication.
    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology
  4. Hashim, P
    MyJurnal
    Centella asiatica L. is traditionally used as a medicinal herbs and alternative medicine in treating numerous kinds of diseases. The use of Centella in food and beverages has increased over the years. Its potential antioxidant and neuroprotective activity has been widely claimed in many reports and basically is very much related to its properties and mechanism of action of the plant’s bioactive constituents namely the asiaticoside, asiatic acid, madecassoside and madecassic acid. As such, this review will cover the biological activity of the plant’s active constituents in relation to its food and beverage applications. The plant cultivation and biotechnological approaches to improve the production of desired bioactive constituents by cultured cells will also be reviewed. In addition, the range of chemical compositions found in Centella and safety aspects are also included.
    Matched MeSH terms: Triterpenes; Pentacyclic Triterpenes
  5. Saiful Yazan L, Armania N
    Pharm Biol, 2014 Jul;52(7):890-7.
    PMID: 24766363 DOI: 10.3109/13880209.2013.872672
    Dillenia (Dilleniaceae) is a genus of about 100 species of flowering plants in tropical and subtropical trees of Southern Asia, Australasia, and the Indian Ocean Islands. Until now, only eight Dillenia species have been reported to be used traditionally in different countries for various medical purposes. Out of eight species, D. pentagyna (Roxb), D. indica (Linn.) and D. suffruticosa (Griffith Ex. Hook. F. & Thomsom Martelli) have been reported to be used to treat cancerous growth.
    Matched MeSH terms: Triterpenes/isolation & purification; Triterpenes/pharmacology*; Pentacyclic Triterpenes/isolation & purification; Pentacyclic Triterpenes/pharmacology*
  6. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI
    Molecules, 2020 Jul 24;25(15).
    PMID: 32721993 DOI: 10.3390/molecules25153353
    Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
    Matched MeSH terms: Triterpenes/isolation & purification*; Triterpenes/pharmacology; Triterpenes/chemistry; Pentacyclic Triterpenes/isolation & purification; Pentacyclic Triterpenes/pharmacology*
  7. Ahmad FB, Ghaffari Moghaddam M, Basri M, Abdul Rahman MB
    Biosci Biotechnol Biochem, 2010;74(5):1025-9.
    PMID: 20460723
    An easy and efficient strategy to prepare betulinic acid esters with various anhydrides was used by the enzymatic synthesis method. It involves lipase-catalyzed acylation of betulinic acid with anhydrides as acylating agents in organic solvent. Lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435) was employed as a biocatalyst. Several 3-O-acyl-betulinic acid derivatives were successfully obtained by this procedure. The anticancer activity of betulinic acid and its 3-O-acylated derivatives were then evaluated in vitro against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. 3-O-glutaryl-betulinic acid, 3-O-acetyl-betulinic acid, and 3-O-succinyl-betulinic acid showed IC(50)<10 microg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In an ovarian cancer cell line, all betulinic acid derivatives prepared showed weaker cytotoxicity than betulinic acid.
    Matched MeSH terms: Triterpenes/chemical synthesis*; Triterpenes/metabolism; Triterpenes/pharmacology*; Triterpenes/chemistry
  8. Asmah Susidarti R, Rahmani M, Ismail HB, Sukari MA, Yun Hin TY, Ee Cheng Lian G, et al.
    Nat Prod Res, 2006 Feb;20(2):145-51.
    PMID: 16319008
    A new coumarin, 8,4''-dihydroxy-3'',4''-dihydrocapnolactone-2',3'-diol (1) and two known triterpenes, 5(6)-gluten-3-one (2) and 5(6)-gluten-3alpha-ol (3) were isolated from the leaves of Micromelum minutum (Rutaceae) collected from Sepilok, Sabah, Malaysia and their structures were characterized by spectroscopic methods.
    Matched MeSH terms: Triterpenes/isolation & purification*; Triterpenes/chemistry
  9. Sun YP, Zhu LL, Liu JS, Yu Y, Zhou ZY, Wang G, et al.
    Fitoterapia, 2018 Mar;125:141-146.
    PMID: 29325928 DOI: 10.1016/j.fitote.2018.01.004
    Five new limonoids, swieteliacates A-E (1-5) and a tirucallane-type triterpenoid, swietesenin (6), together with four known compounds (7-10) were isolated from fruit of Swietenia macrophylla. Their structures were determined by spectroscopic analyses. The new compounds were tested in vitro for their cytotoxic effects against five human cancer cell lines. Compound 2 exhibited moderate cytotoxic activities against SW480 and HL-60 cancer cell lines with IC50 values of 30.6 and 32.9μM, respectively.
    Matched MeSH terms: Triterpenes/isolation & purification; Triterpenes/chemistry*
  10. Matsumoto T, Kitagawa T, Ohta T, Yoshida T, Imahori D, Teo S, et al.
    J Nat Med, 2019 Sep;73(4):727-734.
    PMID: 31104253 DOI: 10.1007/s11418-019-01319-2
    From the methanolic extract of the leaves of Lansium domesticum, three new onoceranoid-type triterpenoids, lansium acids X-XII and a new cycloartane-type triterpene, lansium acid XIII, were isolated. The chemical structures of the isolated new compounds were elucidated on the basis of chemical/physicochemical evidence. For new onoceranoid-type triterpenoids, the absolute configurations were established by comparison of experimental and predicted electronic circular dichroism (ECD) data. The isolated onoceranoid-type triterpenoids showed antimutagenic effects in the Ames assay against 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1).
    Matched MeSH terms: Triterpenes/isolation & purification; Triterpenes/chemistry*
  11. Abdullah NH, Thomas NF, Sivasothy Y, Lee VS, Liew SY, Noorbatcha IA, et al.
    Int J Mol Sci, 2016 Feb 14;17(2):143.
    PMID: 26907251 DOI: 10.3390/ijms17020143
    The mammalian hyaluronidase degrades hyaluronic acid by the cleavage of the β-1,4-glycosidic bond furnishing a tetrasaccharide molecule as the main product which is a highly angiogenic and potent inducer of inflammatory cytokines. Ursolic acid 1, isolated from Prismatomeris tetrandra, was identified as having the potential to develop inhibitors of hyaluronidase. A series of ursolic acid analogues were either synthesized via structure modification of ursolic acid 1 or commercially obtained. The evaluation of the inhibitory activity of these compounds on the hyaluronidase enzyme was conducted. Several structural, topological and quantum chemical descriptors for these compounds were calculated using semi empirical quantum chemical methods. A quantitative structure activity relationship study (QSAR) was performed to correlate these descriptors with the hyaluronidase inhibitory activity. The statistical characteristics provided by the best multi linear model (BML) (R² = 0.9717, R²cv = 0.9506) indicated satisfactory stability and predictive ability of the developed model. The in silico molecular docking study which was used to determine the binding interactions revealed that the ursolic acid analog 22 had a strong affinity towards human hyaluronidase.
    Matched MeSH terms: Triterpenes/isolation & purification; Triterpenes/pharmacology; Triterpenes/chemistry; Pentacyclic Triterpenes/chemical synthesis*; Pentacyclic Triterpenes/pharmacology*; Pentacyclic Triterpenes/chemistry
  12. Ghim, Hock Ong, Chee, Kong Yap, Maziah Mahmood, Soon, Guan Tan, Suhaimi Hamzah
    Trop Life Sci Res, 2013;24(1):55-70.
    MyJurnal
    In this study, Centella asiatica and surface soils were collected from 12 sampling sites in Peninsular Malaysia, and the barium (Ba) concentrations were determined. The Ba concentration [µg/g dry weight (dw)] was 63.72 to 382.01 µg/g in soils while in C. asiatica, Ba concentrations ranged from 5.05 to 21.88 µg/g for roots, 3.31 to 11.22 µg/g for leaves and 2.37 to 6.14 µg/g for stems. In C. asiatica, Ba accumulation was found to be the highest in roots followed by leaves and stems. The correlation coefficients (r) of Ba between plants and soils were found to be significantly positively correlated, with the highest correlation being between roots-soils (r=0.922, p
    Matched MeSH terms: Triterpenes
  13. Zhang M, Yang Q, Zhang X, Wu H
    Nat Prod Res, 2021 Oct;35(20):3426-3431.
    PMID: 31821060 DOI: 10.1080/14786419.2019.1700509
    A new cycloartane triterpene bisdesmoside, soulieoside T (1), and one known compound, oleanolic acid (2), were isolated from the ethanolic extract of the rhizomes of Actaea vaginata. Their structures were elucidated by spectroscopic methods and by comparison with data reported in the literature. Compound 1 was evaluated for cytotoxic activities against three human cancer cell lines.
    Matched MeSH terms: Triterpenes/isolation & purification; Triterpenes/pharmacology*; Triterpenes/chemistry
  14. Coldren CD, Hashim P, Ali JM, Oh SK, Sinskey AJ, Rha C
    Planta Med, 2003 Aug;69(8):725-32.
    PMID: 14531023
    The molecular pathways underlying the diverse biological activity of the triterpeniod compounds isolated from the tropical medicinal plant Centella asiatica were studied with gene microarrays and real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to quantify the expression of 1053 human genes in human fibroblasts. Fibroblast cells grown in culture were used as a model system to evaluate the stimulation of wound healing by titrated extract from Centella asiatica (TECA) as well as by the four principal triterpenoid components of Centella. TECA treatment effects the expression of genes involved in angiogenesis and the remodeling of extracellular matrix, as well as diverse growth factor genes. The extent of expression change of TNFAIP6, an extracellular hyaluronan binding protein, was found to be largely dose-dependent, to respond most strongly to the free acids asiatic acid and madecassic acid, and to increase in expression over 48 hours of treatment. These results show that Centella triterpenes evoke a gene-expression response consistent with their prevailing medical uses in the treatment of connective tissue disorders such as wound healing and microangiopathy. The identification of genes modulated by these compounds provides the basis for a molecular understanding of Centella's bioactivity, and opportunities for the quantitative correlation of this activity with clinical effectiveness at a molecular level.
    Matched MeSH terms: Triterpenes/administration & dosage; Triterpenes/pharmacology*; Triterpenes/therapeutic use; Pentacyclic Triterpenes
  15. Al Muqarrabun LM, Ahmat N, Aris SR, Shamsulrijal N, Baharum SN, Ahmad R, et al.
    Nat Prod Res, 2014;28(9):597-605.
    PMID: 24568340 DOI: 10.1080/14786419.2014.886211
    A new sesquiterpenoid, malayscaphiol (1), and three known compounds, lupeol (2), lupenone (3) and stigmasterol (4), were isolated from the methanolic extract of the stem bark of Scaphium macropodum. The structures of the isolated compounds were determined using several spectroscopic methods, including UV-vis, FT-IR, 1D and 2D NMR, and mass spectrometer. Major isolated compounds were assayed for cytotoxicity and anti-acetylcholinesterase activities. The chemotaxonomy significance of this plant was also discussed.
    Matched MeSH terms: Triterpenes/isolation & purification; Triterpenes/chemistry; Pentacyclic Triterpenes/isolation & purification; Pentacyclic Triterpenes/chemistry
  16. Zulkipli NN, Zakaria R, Long I, Abdullah SF, Muhammad EF, Wahab HA, et al.
    Molecules, 2020 Sep 02;25(17).
    PMID: 32887218 DOI: 10.3390/molecules25173991
    Natural products remain a popular alternative treatment for many ailments in various countries. This study aimed to screen for potential mammalian target of rapamycin (mTOR) inhibitors from Malaysian natural substance, using the Natural Product Discovery database, and to determine the IC50 of the selected mTOR inhibitors against UMB1949 cell line. The crystallographic structure of the molecular target (mTOR) was obtained from Protein Data Bank, with Protein Data Bank (PDB) ID: 4DRI. Everolimus, an mTOR inhibitor, was used as a standard compound for the comparative analysis. Computational docking approach was performed, using AutoDock Vina (screening) and AutoDock 4.2.6 (analysis). Based on our analysis, asiaticoside and its derivative, asiatic acid, both from Centella asiatica, revealed optimum-binding affinities with mTOR that were comparable to our standard compound. The effect of asiaticoside and asiatic acid on mTOR inhibition was validated with UMB1949 cell line, and their IC50 values were 300 and 60 µM, respectively, compared to everolimus (29.5 µM). Interestingly, this is the first study of asiaticoside and asiatic acid against tuberous sclerosis complex (TSC) disease model by targeting mTOR. These results, coupled with our in silico findings, should prompt further studies, to clarify the mode of action, safety, and efficacy of these compounds as mTOR inhibitors.
    Matched MeSH terms: Triterpenes/pharmacology*; Triterpenes/chemistry; Pentacyclic Triterpenes/pharmacology*; Pentacyclic Triterpenes/chemistry
  17. Bachok MF, Yusof BN, Ismail A, Hamid AA
    Asia Pac J Clin Nutr, 2014;23(3):369-76.
    PMID: 25164446 DOI: 10.6133/apjcn.2014.23.3.01
    Ulam refers to a group of traditional Malaysian plants commonly consumed as a part of a meal, either in the raw form or after a short blanching process. Many types of ulam are thought to possess blood glucose-lowering properties, but relatively little is known on the effectiveness of ulam in modulating blood glucose levels in humans. This review aims to systematically evaluate the effectiveness of ulam in modulating blood glucose levels in humans. A literature review was conducted using multiple databases with no time restriction. Eleven studies were retrieved based on a priori inclusion and exclusion criteria. In these 11 studies, only Momordica charantia, locally known as "peria katak", was extensively studied, followed by Centella asiatica, locally known as "daun pegaga", and Alternanthera sessilis, locally known as "kermak putih". Of the 11 studies, 9 evaluated the effectiveness of M. charantia on blood glucose parameters, and 7 of which showed significant improvement in at least one parameter of blood glucose concentration. The remaining 2 studies reported nonsignificant improvements in blood glucose parameters, despite having high-quality study design according to Jadad scale. None of the studies related to C. asiatica and A. sessilis showed significant improvement in blood glucose-related parameters. Current clinical evidence does not support the popular claim that ulam has glucose-lowering effects, not even for M. charantia. Hence, further clinical investigation is needed to verify the glucose modulation effect of M. charantia, C. asiatica, and A. sessilis.
    Matched MeSH terms: Triterpenes/pharmacology*
  18. Shah SA, Tan HL, Sultan S, Faridz MA, Shah MA, Nurfazilah S, et al.
    Int J Mol Sci, 2014;15(7):12027-60.
    PMID: 25003642 DOI: 10.3390/ijms150712027
    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids.
    Matched MeSH terms: Triterpenes/metabolism*
  19. Chung PY, Chung LY, Navaratnam P
    Fitoterapia, 2014 Apr;94:48-54.
    PMID: 24508863 DOI: 10.1016/j.fitote.2014.01.026
    The evolution of antibiotic resistance in Staphylococcus aureus showed that there is no long-lasting remedy against this pathogen. The limited number of antibacterial classes and the common occurrence of cross-resistance within and between classes reinforce the urgent need to discover new compounds targeting novel cellular functions not yet targeted by currently used drugs. One of the experimental approaches used to discover novel antibacterials and their in vitro targets is natural product screening. Three known pentacyclic triterpenoids were isolated for the first time from the bark of Callicarpa farinosa Roxb. (Verbenaceae) and identified as α-amyrin [3β-hydroxy-urs-12-en-3-ol], betulinic acid [3β-hydroxy-20(29)-lupaene-28-oic acid], and betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al]. These compounds exhibited antimicrobial activities against reference and clinical strains of methicillin-resistant (MRSA) and methicillin-sensitive S. aureus (MSSA), with minimum inhibitory concentration (MIC) ranging from 2 to 512 μg/mL. From the genome-wide transcriptomic analysis to elucidate the antimicrobial effects of these compounds, multiple novel cellular targets in cell division, two-component system, ABC transporters, fatty acid biosynthesis, peptidoglycan biosynthesis, aminoacyl-tRNA synthetases, ribosomes and β-lactam resistance pathways are affected, resulting in destabilization of the bacterial cell membrane, halt in protein synthesis, and inhibition of cell growth that eventually lead to cell death. The novel targets in these essential pathways could be further explored in the development of therapeutic compounds for the treatment of S. aureus infections and help mitigate resistance development due to target alterations.
    Matched MeSH terms: Triterpenes/isolation & purification; Triterpenes/pharmacology; Triterpenes/chemistry; Pentacyclic Triterpenes/isolation & purification; Pentacyclic Triterpenes/pharmacology*; Pentacyclic Triterpenes/chemistry
  20. Hanapi NA, Mohamad Arshad AS, Abdullah JM, Tengku Muhammad TS, Yusof SR
    J Pharm Sci, 2021 02;110(2):698-706.
    PMID: 32949562 DOI: 10.1016/j.xphs.2020.09.015
    Neurotherapeutic potentials of Centella asiatica and its reputation to boost memory, prevent cognitive deficits and improve brain functions are widely acknowledged. The plant's bioactive compounds, i.e. asiaticoside, madecassoside and asiatic acid were reported to have central nervous system (CNS) actions, particularly in protecting the brain against neurodegenerative disorders. Hence, it is important for these compounds to cross the blood-brain barrier (BBB) to be clinically effective therapeutics. This study aimed to explore the capability of asiaticoside, madecassoside and asiatic acid to cross the BBB using in vitro BBB model from primary porcine brain endothelial cells (PBECs). Our findings showed that asiaticoside, madecassoside and asiatic acid are highly BBB permeable with apparent permeability (Papp) of 70.61 ± 6.60, 53.31 ± 12.55 and 50.94 ± 10.91 × 10-6 cm/s respectively. No evidence of cytotoxicity and tight junction disruption of the PBECs were observed in the presence of these compounds. Asiatic acid showed cytoprotective effect towards the PBECs against oxidative stress. This study reported for the first time that Centella asiatica compounds demonstrated high capability to cross the BBB, comparable to central nervous system drugs, and therefore warrant further development as therapeutics for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Triterpenes; Pentacyclic Triterpenes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links