Displaying publications 1 - 20 of 123 in total

Abstract:
Sort:
  1. AGNES LEE CHIU NEE, MOHD NIZAM LANI, ROZILA ALIAS, ZAITON HASSAN
    MyJurnal
    Vinegars are most widely used as preservatives in food industry. Vinegars are known for their health benefits; however, the roles of vinegar-associated microflora in locally produced vinegars are not well established. The objectives of this study are to isolate and identify the lactic acid bacteria (LAB) from black rice vinegar and coconut vinegar, measure their pH and titratable acidity, and determine their antibacterial activity. LAB was isolated using cultural method. Phenotypic characterization of LAB was carried out using Gram-staining, oxidase test, catalase test and API 50 CHL Kit. Results from API 50 CHL Kit confirmed that BRV03M strain from black rice vinegar and CV03M strain from coconut vinegar were Lactobacillus paracaseissp. paracasei. The identified bacteria in both samples were consistent as L. paracaseiusing 16S rDNAgene sequences with 93% and 99% similarity, respectively. The pH and titratable acidity percentage of both vinegars were also determined. The stability of Cell Free Supernatant-Lactic Acid Bacteria (CFS-LAB) strains within 14 days on their inhibition against selected pathogenic bacteria was determined using agar well diffusion method. The CFS-LAB strain isolated from black rice vinegar (BRV03M) was more stable within 14 days than coconut vinegar in inhibiting tested bacteria, suggesting this strain has great potential as natural antibacterial agents.
    Matched MeSH terms: Acetic Acid
  2. Abd Rahman S, Ariffin N, Yusof NA, Abdullah J, Mohammad F, Ahmad Zubir Z, et al.
    Sensors (Basel), 2017 Jul 01;17(7).
    PMID: 28671559 DOI: 10.3390/s17071537
    A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (successive ionic layer adsorption and reaction). The distribution, morphology, and optical characteristics of the prepared core-shell QDs were assessed by transmission electron microscopy (TEM) and spectrofluorescence, respectively. From the analysis, the results show that the mean particle size of prepared QDs is in the range of 10-12 nm and that the optimum emission condition was displayed at 620 nm. Further, the prepared CdSe/ZnS core shell QDs were modified by means of a room temperature ligand-exchange method that involves six organic ligands, L-cysteine, L-histidine, thio-glycolic acid (TGA or mercapto-acetic acid, MAA), mercapto-propionic acid (MPA), mercapto-succinic acid (MSA), and mercapto-undecanoic acid (MUA). This process was chosen in order to maintain a very dense water solubilizing environment around the QDs surface. From the analysis, the results show that the CdSe/ZnS capped with TGA (CdSe/ZnS-TGA) exhibited the strongest fluorescence emission as compared to others; hence, it was tested further for the glucose detection after their treatment with glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes. Here in this study, the glucose detection is based on the fluorescence quenching effect of the QDs, which is correlated to the oxidative reactions occurred between the conjugated enzymes and glucose. From the analysis of results, it can be inferred that the resultant GOx:HRP/CdSe/ZnS-TGA QDs system can be a suitable platform for the fluorescence-based determination of glucose in the real samples.
    Matched MeSH terms: Acetic Acid
  3. Abdul Rahim MH, Zakaria ZA, Mohd Sani MH, Omar MH, Yakob Y, Cheema MS, et al.
    PMID: 27190528 DOI: 10.1155/2016/1494981
    The objectives of the present study were to determine the mechanisms of antinociceptive effect of methanol extract of Clinacanthus nutans (Acanthaceae) leaves (MECN) using various animal nociceptive models. The antinociceptive activity of orally administered 10% DMSO, 100 mg/kg acetylsalicylic acid (ASA), 5 mg/kg morphine, or MECN (100, 250, and 500 mg/kg) was determined using the acetic acid-induced abdominal constriction (ACT), formalin-induced paw licking (FT), and hot plate tests (HPT). The role of opioid and nitric oxide/cyclic guanosine monophosphate (NO/cGMP) systems was also investigated. The results showed that MECN produced a significant (p < 0.05) antinociceptive response in all nociceptive models with the recorded ED50 value of 279.3 mg/kg for the ACT, while, for the early and late phases of the FT, the value was >500 mg/kg or 227.7 mg/kg, respectively. This antinociceptive activity was fully antagonized by naloxone (a nonselective opioid antagonist) but was partially reversed by l-arginine (l-arg; a nitric oxide [NO] precursor), Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME; an NO synthase inhibitor), or their combinations thereof. In contrast, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ; a soluble guanylyl cyclase inhibitor) enhanced the extract's antinociception. UHPLC analysis revealed the presence of several flavonoid-based compounds with antinociceptive action. In conclusion, MECN exerted the peripherally and centrally mediated antinociceptive activity via the modulation of the opioid/NO-mediated, but cGMP-independent, systems.
    Matched MeSH terms: Acetic Acid
  4. Abdul-Wahab IR, Guilhon CC, Fernandes PD, Boylan F
    J Ethnopharmacol, 2012 Dec 18;144(3):741-6.
    PMID: 23099251 DOI: 10.1016/j.jep.2012.10.029
    Local communities in Malaysia consume Pereskia bleo Kunth. (Cactaceae) leaves as raw vegetables or as a concoction and drink as a tea to treat diabetes, hypertension, rheumatism, cancer-related diseases, inflammation, gastric pain, ulcers, and for revitalizing the body.
    Matched MeSH terms: Acetic Acid
  5. Abdullah AS, Rajion MA
    Vet Hum Toxicol, 1990 Oct;32(5):444-5.
    PMID: 2238442
    Brachiaria decumbens toxicity resulted in an altered reticulorumen environment in the sheep. This adversely affected the growth and activity of microorganisms in the rumen as reflected by greatly decreased concentrations of the volatile fatty acids (acetic, propionic and butyric) in B decumbens-intoxicated sheep.
    Matched MeSH terms: Acetic Acid
  6. Abu Bakar NA, Sulaiman MR, Lajis N, Akhtar MN, Mohamad AS
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S711-S717.
    PMID: 33828366 DOI: 10.4103/jpbs.JPBS_344_19
    Introduction: Pain is a major global health issue, where its pharmacotherapy prompts unwanted side effects; hence, the development of effective alternative compounds from natural derivatives with lesser side effects is clinically needed. Chalcone; the precursors of flavonoid, and its derivatives have been widely investigated due to its pharmacological properties.

    Objective: This study addressed the therapeutic effect of 3-(2,5-dimethoxyphenyl)-1-(5-methyl furan-2-yl) prop-2-en-1-one (DMPF-1); synthetic chalcone derivative, on antinociceptive activity in vivo.

    Materials and Methods: The antinociceptive profile was evaluated using acetic-acid-induced abdominal writhing, hot plate, and formalin-induced paw licking test. Capsaicin, phorbol 12-myristate 12 acetate (PMA), and glutamate-induced paw licking test were carried out to evaluate their potential effects toward different targets.

    Results: It was shown that the doses of 0.1, 0.5, 1, and 5 mg/kg of DMPF-1 given via intraperitoneal injection showed significant reduction in writhing responses and increased the latency time in hot-plate test where reduced time spent on licking the injected paw in formalin and dose contingency inhibition was observed. The similar results were observed in capsaicin, PMA, and glutamate-induced paw licking test. In addition, the challenge with nonselective opioid receptor antagonist (naloxone) aimed to evaluate the involvement of the opioidergic system, which showed no reversion in analgesic profile in formalin and hot-plate test.

    Conclusion: Collectively, this study showed that DMPF-1 markedly inhibits both peripheral and central nociception through the mechanism involving an interaction with vanilloid and glutamatergic system regardless of the activation of the opioidergic system.

    Matched MeSH terms: Acetic Acid
  7. Ahmad W, Husain I, Ahmad N, Amir M, Sarafroz M, Ansari MA, et al.
    3 Biotech, 2020 Apr;10(4):165.
    PMID: 32206499 DOI: 10.1007/s13205-020-2154-1
    Boerhavia diffusa (BD) Linn. (Nyctaginaceae) is one of the most commonly used herbs in the Indian traditional system of medicine for the urinary disorders. The aim of the current investigation was to carry out initiation, development, and maintenance of BD callus cultures and quantitative estimation of punarnavine in plant and callus extracts. Leaves and stem of BD were used as explant for the tissue culture studies using Murashige and Skoog (MS) basal medium. MS Media comprising 2,4-Dichlorophenoxy acetic acid (2,4-D) (1 ppm) and 2,4-D (1 ppm) + Indole-3-acetic acid (IAA) (1.0 ppm) were found to yield friable callus from leaf explant; similarly, 2,4-D (0.3 ppm) + IAA (0.75 ppm) + Kinetin (0.3 ppm) and 2,4-D (0.5 ppm) + Naphthalene acetic acid (NAA) (1.5 ppm) + Kinetin (0.3 ppm) were found to yield friable callus from the stem explant. High-performance thin-layer chromatography method was been developed for the quantitative estimation of punarnavine (Rf = 0.73) using mobile phase containing toluene: ethyl acetate: formic acid in the ratio (7.0:2.5:0.7, v/v/v) at 262 nm. The validated method was found linear (r2 = 0.9971) in a wide range (100-1000 ng spot-1), precise, accurate, and robust. The values of limit of detection, LOD = 30.3 ng spot-1, and limit of quantification, LOQ = 100.0 ng spot-1. The robustness of the method was proved by applying the Box-Behnken design (BBD). The developed method found appropriate for the quality control of medicinal plants containing punarnavine as a constituent.
    Matched MeSH terms: Indoleacetic Acids; Naphthaleneacetic Acids; Acetic Acid
  8. Al-Hardan N, Abdullah M, Abdul Aziz A, Ahmad H
    Sains Malaysiana, 2011;40:1123-1127.
    A ZnO gas sensor was successfully prepared by RF sputtering. The maximum sensitivity of the sensor for vinegar test application was at 400oC. The ZnO based sensor showed good sensitivity for vinegar test in the concentration range of 4% to 9%. The work reveals the ability of using ZnO gas sensor to determine the acid concentrations of the vinegars for food requirements.
    Matched MeSH terms: Acetic Acid
  9. Alalayah WM, Kalil MS, Kadhum AA, Jahim JM, Jaapar SZ, Alauj NM
    Pak J Biol Sci, 2009 Nov 15;12(22):1462-7.
    PMID: 20180320
    A two-stage fermentation process consisting of dark and photo-fermentation periods was carried out in a batch reactor. In the first stage, glucose was fermented in the dark stage using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564; CSN1-4) to produce acetate, CO2 and H2. The acetate produced in the first stage is fermented to H2 and CO2 by Rhodobacter sphaeroides NCIMB 8253 for further hydrogen production in the second, illuminated stage. The yield of hydrogen in the first stage was about 3.10 mol H2 (mol glucose)(-1) at a glucose concentration of 10 g L(-1), pH 6 +/- 0.2 and 37 degrees C and the second stage yield was about 1.10-1.25 mol H2 (mol acetic acid)(-1) at pH 6.8 +/- 0.2 and 32 degrees C, without removal of the Clostridium CSN1-4. The overall yield of hydrogen in the two-stage process, with glucose as the main substrate was higher than single-stage fermentation.
    Matched MeSH terms: Acetic Acid/metabolism
  10. Ali Khan MS, Misbah, Ahmed N, Arifuddin M, Rehman A, Ling MP
    Food Chem Toxicol, 2018 Jun 05.
    PMID: 29883785 DOI: 10.1016/j.fct.2018.06.007
    Flowers of Tabernaemontana divaricata (L.) R. Br., (Apocynaceae) are used in traditional medicine for analgesic property. The present study was performed to isolate the active principles and investigate the mechanisms involved in the anti-nociception caused by T. divaricata flower methanolic extract (TDFME). The extract in the doses of 125, 250 and 500 mg/kg, p.o was subjected to various assays in acetic acid induced abdominal writhing and formalin induced paw licking test models. Naloxone, L-Arginine, Glibenclamide and Glutamate were used as inducers while Morphine, L-NAME, Methylene blue and Aspirin served as standard drugs. The phytochemical analysis led to the isolation of three indole alkaloids namely Voacangine, Catharanthine and O-acetyl Vallesamine. The anti-nociception produced by TDFME was attenuated significantly (p< 0.001) by the intra-peritoneal pretreatment of naloxone, L-Arginine and glibenclamide. The nociception produced by glutamate was inhibited by TDFME. TDFME also enhanced the antinociceptive activity of L-NAME when given in combination. However TDFME co-administration did not produce significant results with methylene blue indicating lack of cGMP involvement. These results indicate that TDFME produces anti-nociception action mediated by opioid, nitric oxide, K+-ATP and glutamate mechanisms and the effect is largely related to the indole alkaloids.
    Matched MeSH terms: Acetic Acid
  11. Amin MM, Taheri E, Bina B, van Ginkel SW, Ghasemian M, Puad NIM, et al.
    J Environ Manage, 2019 Nov 15;250:109461.
    PMID: 31499462 DOI: 10.1016/j.jenvman.2019.109461
    Mixed culture sludge has been widely used as a microbial consortium for biohydrogen production. Simple thermal treatment of sludge is usually required in order to eliminate any H2-consuming bacteria that would reduce H2 production. In this study, thermal treatment of sludge was carried out at various temperatures. Electron flow model was then applied in order to assess community structure in the sludge upon thermal treatment for biohydrogen production. Results show that the dominant electron sink was acetate (150-217 e- meq/mol glucose). The electron equivalent (e- eq) balances were within 0.8-18% for all experiments. Treatment at 100 °C attained the highest H2 yield of 3.44 mol H2/mol glucose from the stoichiometric reaction. As the treatment temperature increased from 80 to 100 °C, the computed acetyl-CoA and reduced form of ferredoxin (Fdred) concentrations increased from 13.01 to 17.34 e- eq (1.63-2.17 mol) and 1.34 to 4.18 e- eq (0.67-2.09 mol), respectively. The NADH2 balance error varied from 3 to 10% and the term e-(Fd↔NADH2) (m) in the NADH2 balance was NADH2 consumption (m = -1). The H2 production was mainly via the Fd:hydrogenase system and this is supported with a good NADH2 balance. Using the modified Gompertz model, the highest maximum H2 production potential was 1194 mL whereas the maximum rate of H2 production was 357 mL/h recorded at 100 °C of treatment.
    Matched MeSH terms: Acetic Acid
  12. Anwer AH, Khan N, Umar MF, Rafatullah M, Khan MZ
    Membranes (Basel), 2021 Mar 22;11(3).
    PMID: 33810075 DOI: 10.3390/membranes11030223
    Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
    Matched MeSH terms: Acetic Acid
  13. Atif M, Khalid SH, Onn Kit GL, Sulaiman SA, Asif M, Chandersekaran A
    J Young Pharm, 2013 Mar;5(1):26-9.
    PMID: 24023449 DOI: 10.1016/j.jyp.2013.01.005
    A simple, sensitive and selective HPLC method with UV detection for determination of Glipizide in human plasma was developed. Liquid-liquid extraction method was used to extract the drug from the plasma samples. Chromatographic separation of Glipizide was achieved using C18 column (ZORBAX ODS 4.6 × 150 mm). The mobile phase was comprised of 0.01 M potassium dihydrogen phosphate and acetonitrile (65:35, v/v) adjusted to pH 4.25 with glacial acetic acid. The analysis was run at a flow rate of 1.5 mL/min with an injection volume was 20 μL. The detector was operated at 275 nm. The calibration curve was linear over a concentration range of 50-1600 ng/mL. Intra-day and inter-day precision and accuracy values were below 15%. The limit of quantification was 50 ng/mL and the mean recovery was above 98%. Freeze-thaw, short-term, long-term and post-preparative stability studies showed that Glipizide in plasma sample was stable. The method may be successfully applied to analyze the Glipizide concentration in plasma samples for bioavailability and bioequivalence studies.
    Matched MeSH terms: Acetic Acid
  14. Azman EM, Charalampopoulos D, Chatzifragkou A
    J Food Sci, 2020 Nov;85(11):3745-3755.
    PMID: 32990367 DOI: 10.1111/1750-3841.15466
    The aim of this study was to investigate the effects of different solvent and extraction temperatures on the free and bound phenolic compounds and antioxidant activity of dried blackcurrant skins (DBS). Apart from acetic acid buffer solution, different solvent systems, including water, methanol, and mixtures of methanol/water, were also employed and the effects of solvent and temperature (30 and 50 °C) on the free and bound forms of anthocyanins, hydroxycinnamic acids, and flavonols yield were assessed. The results showed that among all solvents, acetic acid buffer resulted in the highest free anthocyanin content (1,712.3 ± 56.1 mg/100 g) (P acid hydrolysis. Acetic acid buffer extracts exhibited the highest free hydroxycinnamic acid content (268.0 ± 4.5 mg/100 g), total phenolic content (3702.2 ± 259.3 mg GAE/100 g), and DPPH activity (60.7 ± 2.0% of inhibition). However, their free flavonol content was slightly lower (60.2 ± 0.8 mg/100 g) compared to 100% methanol at 30 and 50 °C (71.4 ± 1.5 mg/100 g and 71.5 ± 6.2 mg/100 g, respectively). Two-way ANOVA indicated interactions between solvent and temperature (P acid buffer is more environmental friendly, efficient, and cost effective than other solvents, thus, offering an improved extraction method for phytochemicals as valuable ingredients for nutraceutical applications, from underutilized dried blackcurrant skins (DBS).
    Matched MeSH terms: Acetic Acid
  15. Aznin Baharudin, Nor Akmalazura Jani, Azyati Azreen, A. A. Assyura, Hawa Pornomo, M. Hafiz Mehat
    Borneo Akademika, 2020;4(1):1-12.
    MyJurnal
    This study is focused on formulating a natural-based fabric softener using baking
    soda and vinegar with the addition of insect repellent finish of citronella oil and
    vanillin. The effectiveness of the fabric softener was evaluated by conducting a fabric
    stiffness test on both untreated and treated fabric samples with the softener
    formulated in this study. The assessment for the efficacy of insect repellence was
    carried out using 3 human participants of the same gender and build but different
    blood type, positioned at a mosquito infested area. Three tests; negative, positive, and
    normal tests were conducted to evaluate the effectiveness of the formulated mosquito
    repellent finishes in the fabric softener. The results show that the formulated fabric
    softener is good mosquito repellent and it is good at giving a soft effect on the treated
    fabric.
    Matched MeSH terms: Acetic Acid
  16. Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, et al.
    Mol Divers, 2021 Mar 01.
    PMID: 33650031 DOI: 10.1007/s11030-021-10196-5
    A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
    Matched MeSH terms: Acetic Acid
  17. Beh BK, Mohamad NE, Yeap SK, Ky H, Boo SY, Chua JYH, et al.
    Sci Rep, 2017 07 27;7(1):6664.
    PMID: 28751642 DOI: 10.1038/s41598-017-06235-7
    Recently, food-based bioactive ingredients, such as vinegar, have been proposed as a potential solution to overcome the global obesity epidemic. Although acetic acid has been identified as the main component in vinegar that contributes to its anti-obesity effect, reports have shown that vinegar produced from different starting materials possess different degrees of bioactivity. This study was performed to compare the anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar in mice fed a high-fat diet. In this work, mice were fed a high-fat diet for 33 weeks. At the start of week 24, obese mice were orally fed synthetic acetic acid vinegar or Nipa vinegar (0.08 and 2 ml/kg BW) until the end of week 33. Mice fed a standard pellet diet served as a control. Although both synthetic acetic acid vinegar and Nipa vinegar effectively reduced food intake and body weight, a high dose of Nipa vinegar more effectively reduced lipid deposition, improved the serum lipid profile, increased adipokine expression and suppressed inflammation in the obese mice. Thus, a high dose of Nipa vinegar may potentially alleviate obesity by altering the lipid metabolism, inflammation and gut microbe composition in high-fat-diet-induced obese mice.
    Matched MeSH terms: Acetic Acid/pharmacology*
  18. Candyrine SCL, Jahromi MF, Ebrahimi M, Chen WL, Rezaei S, Goh YM, et al.
    Asian-Australas J Anim Sci, 2019 Apr;32(4):533-540.
    PMID: 30056661 DOI: 10.5713/ajas.18.0059
    OBJECTIVE: This study evaluated the growth, digestibility and rumen fermentation between goats and sheep fed a fattening diet fortified with linseed oil.

    METHODS: Twelve 3 to 4 months old male goats and sheep were randomly allocated into two dietary treatment groups in a 2 (species)×2 (oil levels) factorial experiment. The treatments were: i) goats fed basal diet, ii) goats fed oil-supplemented diet, iii) sheep fed basal diet, and iv) sheep fed oil-supplemented diet. Each treatment group consisted of six animals. Animals in the basal diet group were fed with 30% alfalfa hay and 70% concentrates at a rate equivalent to 4% of their body weight. For the oil treatment group, linseed oil was added at 4% level (w:w) to the concentrate portion of the basal diet. Growth performance of the animals was determined fortnightly. Digestibility study was conducted during the final week of the feeding trial before the animals were slaughtered to obtain rumen fluid for rumen fermentation characteristics study.

    RESULTS: Sheep had higher (p<0.01) average daily weight gain (ADG) and better feed conversion ratio (FCR) than goats. Oil supplementation did not affect rumen fermentation in both species and improved ADG by about 29% and FCR by about 18% in both goats and sheep. The above enhancement is consistent with the higher dry matter and energy digestibility (p<0.05), as well as organic matter and neutral detergent fiber digestibility (p<0.01) in animals fed oil- supplemented diet. Sheep had higher total volatile fatty acid production and acetic acid proportion compared to goat.

    CONCLUSION: The findings of this study suggested that sheep performed better than goats when fed a fattening diet and oil supplementation at the inclusion rate of 4% provides a viable option to significantly enhance growth performance and FCR in fattening sheep and goats.

    Matched MeSH terms: Acetic Acid
  19. Chai, K. F., Adzahan, N. M., Karim, R., Rukayadi, Y., Ghazali, H. M.
    MyJurnal
    A novel way to reduce rambutan wastage is to ferment the fruit and valorise the seed post-fer- mentation into other food products and ingredients. Hence, the objective of this study was to investigate the physicochemical properties of rambutan seed during solid-state fermentation of the fruit. Peeled rambutan fruits were subjected to natural fermentation for ten days at 30°C. The environmental temperature, relative humidity, internal and external temperatures of the fermentation mass were measured daily. After ten days of fermentation, the seeds had higher cut test score (867.5), fermentation index (1.527), and a* value (8.20 for non-dried seeds and
    9.93 for dried seeds), and lower L* (51.90 for non-dried seeds and 49.22 for dried seeds) and b* (30.52 for non-dried seeds and 30.12 for dried seeds) values; as compared to the non-fer- mented seeds (cut test score, 0.0; fermentation index, 0.856; L*, a*, and b* values, 64.52, 2.25, and 42.07 for non-dried seeds, respectively, and 61.03, 3.23 and 36.70 for dried seeds, respectively). During this time, pH, total soluble solids, fructose, glucose, sucrose, citric acid, and tartaric acid contents of the seeds decreased by 46, 44, 59, 61, 100, 85, and 100%, respec- tively, while the titratable acidity, lactic acid, acetic acid, and ascorbic acid contents of the seeds increased by 5.5, 7.8, 6.0, and 2.2-fold, respectively. Results showed that eight days of fermentation are adequate to produce well-fermented rambutan seeds that could be further processed into a cocoa powder-like product by roasting the fermented fruits in a manner similar to that of cocoa bean roasting.
    Matched MeSH terms: Acetic Acid
  20. Chandraseharan P, Sockalingam SNM, Shafiei Z, Zakaria ASI, Mahyuddin A, Rahman MA
    J Contemp Dent Pract, 2023 Oct 01;24(10):779-786.
    PMID: 38152911 DOI: 10.5005/jp-journals-10024-3581
    AIMS AND BACKGROUND: This study evaluates the antimicrobial activities of commercially available 5% apple cider vinegar (ACV) against Enterococcus faecalis, Streptococcus mutans, and Lactobacillus casei. Materials and methods: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were conducted using the broth microdilution method. Sodium hypochlorite (NaOCl) of 5.25% was used as a positive control, and comparisons were also made with acetic acid (AA) as the main ingredient in ACV. The three test bacteria treated with the most effective ACV dilution were visualized under a transmission electron microscope (TEM) for structural changes.

    RESULTS: Minimal inhibitory concentration was determined at 0.625% of the concentration of ACV against S. mutans and E. faecalis and 1.25% of the concentration of ACV against L. casei with two-fold serial dilutions. A concentration of 5 × 10-1% with 10-fold serial dilutions was found to be the MIC value for all three bacteria. No significant differences were found when compared with the positive control (NaOCl) (p = 0.182, p = 0.171, and p = 0.234), respectively, for two-fold serial dilutions and (p = 1.000, p = 0.658, and p = 0.110), respectively for 10-fold serial dilutions. MBC was observed to be 5% ACV for both E. faecalis and S. mutans. However, positive microbial growth was observed on the agar plate when cultured with L. casei. An independent sample t-test showed no significant differences (p > 0.05) in the antimicrobial activities between 5% ACV and 5% pure AA. TEM revealed cell wall and cytoplasmic membrane disruptions on all three bacteria at MIC value.

    CONCLUSION: Apple cider vinegar has antimicrobial activities against Enterococcus faecalis, Streptococcus mutans, and Lactobacillus casei at their respective MIC values.

    CLINICAL SIGNIFICANCE: Apple cider vinegar can be an alternative antimicrobial dental pulp disinfectant to sodium hypochlorite. Apple cider vinegar can be used safely, especially in children's dental pulp therapy and deep caries management, when adequate tooth isolation is not readily achievable. Thus, adverse reactions commonly associated with other frequently used chemical disinfectants can be avoided.

    Matched MeSH terms: Acetic Acid/pharmacology; Acetic Acid/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links