Displaying publications 1 - 20 of 276 in total

Abstract:
Sort:
  1. Chin EZ, Chang WJ, Tan HY, Liew SY, Lau YL, Ng YL, et al.
    Bioorg Med Chem Lett, 2024 May 01;103:129701.
    PMID: 38484804 DOI: 10.1016/j.bmcl.2024.129701
    Malaria, a devastating disease, has claimed numerous lives and caused considerable suffering, with young children and pregnant women being the most severely affected group. However, the emergence of multidrug-resistant strains of Plasmodium and the adverse side effects associated with existing antimalarial drugs underscore the urgent need for the development of novel, well-tolerated, and more efficient drugs to combat this global health threat. To address these challenges, six new hydantoins derivatives were synthesized and evaluated for their in vitro antiplasmodial activity. Notably, compound 2c exhibited excellent inhibitory activity against the tested Pf3D7 strain, with an IC50 value of 3.97 ± 0.01 nM, three-fold better than chloroquine. Following closely, compound 3b demonstrated an IC50 value of 27.52 ± 3.37 µM against the Pf3D7 strain in vitro. Additionally, all the hydantoins derivatives tested showed inactive against human MCR-5 cells, with an IC50 value exceeding 100 μM. In summary, the hydantoin derivative 2c emerges as a promising candidate for further exploration as an antiplasmodial compound.
    Matched MeSH terms: Antimalarials*
  2. Naserrudin NA, Jiee SF, Habil B, Jantim A, Mohamed AFB, Dony JJF, et al.
    Malar J, 2023 Oct 03;22(1):292.
    PMID: 37789320 DOI: 10.1186/s12936-023-04693-1
    BACKGROUND: Since 2018, no indigenous human malaria cases has been reported in Malaysia. However, during the recent COVID-19 pandemic the World Health Organization is concerned that the pandemic might erode the success of malaria control as there are reports of increase malaria cases in resource limited countries. Little is known how the COVID-19 pandemic has impacted malaria in middle-income countries like Malaysia. Here the public health response to a Plasmodium malariae outbreak occurred in a village in Sabah state, Malaysia, during a COVID-19 movement control order is reported.

    METHODS: An outbreak was declared following the detection of P. malariae in July 2020 and active case detection for malaria was performed by collecting blood samples from residents residing within 2 km radius of Moyog village. Vector prevalence and the efficacy of residual insecticides were determined. Health awareness programmes were implemented to prevent future outbreaks. A survey was conducted among villagers to understand risk behaviour and beliefs concerning malaria.

    RESULTS: A total of 5254 blood samples collected from 19 villages. Among them, 19 P. malariae cases were identified, including the index case, which originated from a man who returned from Indonesia. His return from Indonesia and healthcare facilities visit coincided with the movement control order during COVID-19 pandemic when the healthcare facilities stretched its capacity and only serious cases were given priority. Despite the index case being a returnee from a malaria endemic area presenting with mild fever, no malaria test was performed at local healthcare facilities. All cases were symptomatic and uncomplicated except for a pregnant woman with severe malaria. There were no deaths; all patients recovered following treatment with artemether-lumefantrine combination therapy. Anopheles balabacensis and Anopheles barbirostris were detected in ponds, puddles and riverbeds. The survey revealed that fishing and hunting during night, and self-treatment for mild symptoms contributed to the outbreak. Despite the index case being a returnee from a malaria-endemic area presenting with mild fever, no malaria test was performed at local healthcare facilities.

    CONCLUSION: The outbreak occurred during a COVID-19 movement control order, which strained healthcare facilities, prioritizing only serious cases. Healthcare workers need to be more aware of the risk of malaria from individuals who return from malaria endemic areas. To achieve malaria elimination and prevention of disease reintroduction, new strategies that include multisectoral agencies and active community participation are essential for a more sustainable malaria control programme.

    Matched MeSH terms: Antimalarials*
  3. Anjani QK, Volpe-Zanutto F, Hamid KA, Sabri AHB, Moreno-Castellano N, Gaitán XA, et al.
    J Control Release, 2023 Sep;361:385-401.
    PMID: 37562555 DOI: 10.1016/j.jconrel.2023.08.009
    Malaria is a global parasitic infection that leads to substantial illness and death. The most commonly-used drugs for treatment of malaria vivax are primaquine and chloroquine, but they have limitations, such as poor adherence due to frequent oral administration and gastrointestinal side effects. To overcome these limitations, we have developed nano-sized solid dispersion-based dissolving microarray patches (MAPs) for the intradermal delivery of these drugs. In vitro testing showed that these systems can deliver to skin and receiver compartment up to ≈60% of the payload for CQ-based dissolving MAPs and a total of ≈42% of drug loading for PQ-based dissolving MAPs. MAPs also displayed acceptable biocompatibility in cell tests. Pharmacokinetic studies in rats showed that dissolving MAPs could deliver sustained plasma levels of both PQ and CQ for over 7 days. Efficacy studies in a murine model for malaria showed that mice treated with PQ-MAPs and CQ-MAPs had reduced parasitaemia by up to 99.2%. This pharmaceutical approach may revolutionise malaria vivax treatment, especially in developing countries where the disease is endemic. The development of these dissolving MAPs may overcome issues associated with current pharmacotherapy and improve patient outcomes.
    Matched MeSH terms: Antimalarials*
  4. Atroosh WM, Lau YL, Snounou G, Azzani M, Al-Mekhlafi HM
    Malar J, 2022 Jan 04;21(1):2.
    PMID: 34983529 DOI: 10.1186/s12936-021-04014-4
    BACKGROUND: Genotyping of the three Plasmodium falciparum polymorphic genes, msp1, msp2 and glurp, has been adopted as a standard strategy to distinguish recrudescence from new infection in drug efficacy clinical trials. However, the suitability of a particular gene is compromised in areas where its allelic variants distribution is significantly skewed, a phenomenon that might occur in isolated parasite populations or in areas of very low transmission. Moreover, observation of amplification bias has diminished the value of glurp as a marker.

    METHODS: The suitability of the polymorphic P. falciparum histidine-rich protein 2 (pfhrp2) gene was assessed to serve as an alternative marker using a PCR-sequencing or a PCR-RFLP protocol for genotyping of samples in drug efficacy clinical trials. The value of pfhrp2 was validated by side-by-side analyses of 5 admission-recrudescence sample pairs from Yemeni malaria patients.

    RESULTS: The outcome of the single pfhrp2 gene discrimination analysis has been found consistent with msp1, msp2 and glurp pool genotyping analysis for the differentiation of recrudescence from new infection.

    CONCLUSION: The findings suggest that under the appropriate circumstances, pfhrp2 can serve as an additional molecular marker for monitoring anti-malarials efficacy. However, its use is restricted to endemic areas where only a minority of P. falciparum parasites lack the pfhrp2 gene.

    Matched MeSH terms: Antimalarials/adverse effects*
  5. Ghazali SZ, Mohamed Noor NR, Mustaffa KMF
    Prep Biochem Biotechnol, 2022;52(1):99-107.
    PMID: 33890844 DOI: 10.1080/10826068.2021.1913602
    The objective of this study is to synthesize neem-silver nitrate nanoparticles (neem-AgNPs) using aqueous extracts of Azadirachta indica A. Juss for malaria therapy. Neem leaves collected from FRIM Malaysia were authenticated and extracted using Soxhlet extraction method. The extract was introduced to 1 mM of silver nitrate solution for neem-AgNPs synthesis. Synthesized AgNPs were further characterized by ultraviolet-visible spectroscopy and the electron-scanning microscopy. Meanwhile, for the anti-plasmodial activity of the neem-AgNPs, two lab-adapted Plasmodium falciparum strains, 3D7 (chloroquine-sensitive), and W2 (chloroquine-resistant) were tested. Red blood cells hemolysis was monitored to observe the effects of neem-AgNPs on normal and parasitized red blood cells. The synthesized neem-AgNPs were spherical in shape and showed a diameter range from 31-43 nm. When compared to aqueous neem leaves extract, the half inhibitory concentration (IC50) of the synthesized neem-AgNPs showed a four-fold IC50 decrease against both parasite strains with IC50 value of 40.920 µg/mL to 8.815 µg/mL for 3D7, and IC50 value of 98.770 µg/mL to 23.110 µg/mL on W2 strain. The hemolysis assay indicates that the synthesized neem-AgNPs and aqueous extract alone do not have hemolysis activity against normal and parasitized red blood cells. Therefore, this study shows the synthesized neem-AgNPs has a great potential to be used for malaria therapy.
    Matched MeSH terms: Antimalarials/chemical synthesis; Antimalarials/pharmacology; Antimalarials/chemistry*
  6. Das S, Tripathy S, Pramanik P, Saha B, Roy S
    Cytokine, 2021 08;144:155555.
    PMID: 33992538 DOI: 10.1016/j.cyto.2021.155555
    Emergence and spread of resistant parasites to the newest chemotherapeutic anti-malarial agents are the biggest challenges against malaria control programs. Therefore, developing a novel effective treatment to reduce the overgrowing burden of multidrug resistant malaria is a pressing need. Herein, we have developed a biocompatible and biodegradable, non-toxic chitosan-tripolyphosphate-chloroquine (CS-TPP CQ) nanoparticle. CS-TPP CQ nanoparticles effectively kill the parasite through redox generation and induction of the pro- and anti-inflammatory cytokines in both sensitive and resistant parasite in vitro. The in vitro observations showed a strong inhibitory effect (p 
    Matched MeSH terms: Antimalarials/pharmacology*
  7. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

    Matched MeSH terms: Antimalarials/metabolism; Antimalarials/pharmacology*; Antimalarials/toxicity; Antimalarials/chemistry
  8. Trop Biomed, 2021 Jun 01;38(2):40-47.
    PMID: 33973571 DOI: 10.47665/tb.38.2.035
    The reduced efficacy of the mainstay antimalarial drugs due to the widespread of drugresistant Plasmodium falciparum has necessitated efforts to discover new antimalarial drugs with new targets. Quercus infectoria (Olivier) has long been used to treat various ailments including fever. The acetone extract of the plant galls has recently been reported to have a promising antimalarial activity in vitro. This study was aimed to determine the effect of the Q. infectoria gall acetone crude extract on pH of the digestive vacuole of Plasmodium falciparum. A ratiometric fluorescent probe, fluorescein isothiocyanate-dextran (FITC-dextran) was used to facilitate a quantitative measurement of the digestive vacuole pH by flow cytometry. Mid trophozoite stage malaria parasites grown in resealed erythrocytes containing FITC-dextran were treated with different concentrations of the acetone extract based on the 50% inhibitory concentration (IC50). Saponin-permeabilized parasites were analyzed to obtain the ratio of green/yellow fluorescence intensity (Rgy) plotted as a function of pH in a pH calibration curve of FITC-dextran. Based on the pH calibration curve, the pH of the digestive vacuole of the acetone extract-treated parasites was significantly altered (pH values ranged from 6.35- 6.71) in a concentration-dependent manner compared to the untreated parasites (pH = 5.32) (p < 0.001). This study provides a valuable insight into the potential of the Q. infectoria galls as a promising antimalarial candidate with a novel mechanism of action.
    Matched MeSH terms: Antimalarials
  9. Das S, Kar A, Manna S, Mandal S, Mandal S, Das S, et al.
    Sci Rep, 2021 05 11;11(1):9946.
    PMID: 33976269 DOI: 10.1038/s41598-021-89295-0
    Artemisinin is the frontline fast-acting anti-malarial against P. falciparum. Emergence and spread of resistant parasite in eastern-India poses a threat to national malaria control programs. Therefore, the objective of our study is to evaluate the artesunate-sulfadoxine-pyrimethamine efficacy in Central India. 180 monoclonal P. falciparum-infected patients received standard ASSP therapy during August 2015-January 2017, soon after diagnosis and monitored over next 42-days. Artemisinin-resistance was assessed through in-vivo parasite clearance half-life (PC1/2), ex-vivo ring-stage survivability (RSA), and genome analysis of kelch13 and other candidate gene (pfcrt, pfmdr1, pfatpase 6, pfdhfr and pfdhps). Of 180 P. falciparum positive patients, 9.5% showed increased PC1/2 (> 5.5 h), among them eleven isolates (6.1%) showed reduced sensitivity to RSA. In 4.4% of cases, parasites were not cleared by 72 h and showed prolonged PC1/2(5.6 h) (P 
    Matched MeSH terms: Antimalarials/pharmacology
  10. Murtihapsari M, Salam S, Kurnia D, Darwati D, Kadarusman K, Abdullah FF, et al.
    Nat Prod Res, 2021 Mar;35(6):937-944.
    PMID: 31210054 DOI: 10.1080/14786419.2019.1611815
    A new antimalarial sterol, kaimanol (1), along with a known sterol, saringosterol (2) was isolated from the Indonesian Marine sponge, Xestospongia sp. The chemical structure of the new compound was determined on the basis of spectroscopic evidences and by comparison to those related compounds previously reported. Isolated compounds, 1 and 2 were evaluated for their antiplasmodial effect against Plasmodium falciparum 3D7 strains. Compounds 1 and 2 exhibited antiplasmodial activity with IC50 values of 359 and 0.250 nM, respectively.
    Matched MeSH terms: Antimalarials/pharmacology*
  11. Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2021 Feb;39(2):691-702.
    PMID: 31913089 DOI: 10.1080/07391102.2020.1713215
    Binding of lumefantrine (LUM), an antimalarial drug to human serum albumin (HSA), the main carrier protein in human blood circulation was investigated using fluorescence quenching titration, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking. LUM-induced quenching of the protein (HSA) fluorescence was characterized as static quenching, as revealed by the decrease in the value of the Stern-Volmer quenching constant, K
    sv
    with increasing temperature, thus suggesting LUM-HSA complex formation. This was also confirmed from the UV-vis absorption spectral results. Values of the association constant, Ka for LUM-HSA interaction were found to be within the range, 7.27-5.01 × 104 M-1 at three different temperatures, i.e. 288 K, 298 K and 308 K, which indicated moderate binding affinity between LUM and HSA. The LUM-HSA complex was stabilized by hydrophobic interactions, H-bonds, as well as van der Waals forces, as predicted from the thermodynamic data (ΔS = +50.34 J mol-1 K-1 and ΔH = -12.3 kJ mol-1) of the binding reaction. Far-UV and near-UV CD spectral results demonstrated smaller changes in both secondary and tertiary structures of HSA upon LUM binding, while three-dimensional fluorescence spectra suggested alterations in the microenvironment around protein fluorophores (Trp and Tyr). LUM binding to HSA offered stability to the protein against thermal stress. Competitive drug displacement results designated Sudlow's Site I, located in subdomain IIA of HSA as the preferred binding site of LUM on HSA, which was well supported by molecular docking analysis.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Antimalarials
  12. Sato S
    J Physiol Anthropol, 2021 Jan 07;40(1):1.
    PMID: 33413683 DOI: 10.1186/s40101-020-00251-9
    Malaria is one of the most devastating infectious diseases of humans. It is problematic clinically and economically as it prevails in poorer countries and regions, strongly hindering socioeconomic development. The causative agents of malaria are unicellular protozoan parasites belonging to the genus Plasmodium. These parasites infect not only humans but also other vertebrates, from reptiles and birds to mammals. To date, over 200 species of Plasmodium have been formally described, and each species infects a certain range of hosts. Plasmodium species that naturally infect humans and cause malaria in large areas of the world are limited to five-P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi. The first four are specific for humans, while P. knowlesi is naturally maintained in macaque monkeys and causes zoonotic malaria widely in South East Asia. Transmission of Plasmodium species between vertebrate hosts depends on an insect vector, which is usually the mosquito. The vector is not just a carrier but the definitive host, where sexual reproduction of Plasmodium species occurs, and the parasite's development in the insect is essential for transmission to the next vertebrate host. The range of insect species that can support the critical development of Plasmodium depends on the individual parasite species, but all five Plasmodium species causing malaria in humans are transmitted exclusively by anopheline mosquitoes. Plasmodium species have remarkable genetic flexibility which lets them adapt to alterations in the environment, giving them the potential to quickly develop resistance to therapeutics such as antimalarials and to change host specificity. In this article, selected topics involving the Plasmodium species that cause malaria in humans are reviewed.
    Matched MeSH terms: Antimalarials
  13. Alvarez-Fernandez A, Bernal MJ, Fradejas I, Martin Ramírez A, Md Yusuf NA, Lanza M, et al.
    Malar J, 2021 Jan 06;20(1):16.
    PMID: 33407529 DOI: 10.1186/s12936-020-03544-7
    BACKGROUND: The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum.

    METHODS: Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method.

    RESULTS: The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed.

    CONCLUSIONS: The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.

    Matched MeSH terms: Antimalarials/pharmacology*
  14. Krishna S, Augustin Y, Wang J, Xu C, Staines HM, Platteeuw H, et al.
    Trends Parasitol, 2021 01;37(1):8-11.
    PMID: 33153922 DOI: 10.1016/j.pt.2020.10.003
    Artemisinin-based combination therapies (ACTs) have demonstrated in vitro inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Artemisinins have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe coronavirus disease 2019 (COVID-19). There is now sufficient evidence for the effectiveness of ACTs, and in particular artesunate/pyronaridine, to support clinical studies for COVID-19 infections.
    Matched MeSH terms: Antimalarials/therapeutic use*
  15. Ahmad SJ, Mohamad Zin N, Mazlan NW, Baharum SN, Baba MS, Lau YL
    PeerJ, 2021;9:e10816.
    PMID: 33777509 DOI: 10.7717/peerj.10816
    Background: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach.

    Methods: Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts.

    Results: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.

    Matched MeSH terms: Antimalarials
  16. Adryana Izzati Adnan, noorhidayah977@uitm.edu.my, Nur Ain Nabilah Ash’ari
    MyJurnal
    A series of ten 5-arylidene Meldrum’s acid derivatives had been synthesised in excellent yield via Knoevenagel condensation. This method does not require catalyst, or any further purification. Isopropylidene malonate (2,2-dimethyl-1,3-dioxane-4,6-dione), also known as Meldrum’s acid, is utilised as a core skeleton for various kind of reactions. Meldrum’s acid has features of a peculiar ring- opening sequences based on nucleophile-sensitive carbonyl functional groups at C-4 and C-6, which has made it possible for useful synthetic transformations, as well as its high acidity of methylene hydrogen at carbon position C-5. Hence, it allows the compound to be a flexible reagent for further reaction to prepare other derivatives. Therefore, Meldrum’s acid derivatives showed high potential of biological functions, such as antibacterial, antimalarial and antioxidant activities due to the olefinic linkage which played an important role in the enhancement of antimalarial activity. Furthermore, when arylidene Meldrum’s acid transformed to epoxide, the compound showed losses of antimalarial behaviour. Additionally, this compound has unique molecules due to the high acidity of methylene hydrogen at the carbon-5 position to initiate various reactions with different functional groups. In this research, Meldrum’s acid, 3 and ten its 5-arylidene derivatives (4a-e) and (5a-e) were synthesised by using two short and efficient reaction steps. The first step involved the condensation of malonic acid, 1 with acetone, 2 in acetic anhydride and acid via one-pot reaction to give Meldrum’s acid, 3 in 50% overall yield. Having Meldrum’s acid in hand, the reaction was proceeded with the Knoevenagel condensation reaction by using various functional groups, such as aryl aldehydes and aryl amines. All the synthesised compounds were characterised by using 1H and 13C spectroscopy.
    Matched MeSH terms: Antimalarials
  17. Abdullah MA, Mohd Faudzi SM, Nasir NM
    Mini Rev Med Chem, 2021;21(9):1058-1070.
    PMID: 33272171 DOI: 10.2174/1389557520999201203213957
    Medicinal chemists have continuously shown interest in new curcuminoid derivatives, diarylpentadienones, owing to their enhanced stability feature and easy preparation using a one-pot synthesis. Thus far, methods such as Claisen-Schmidt condensation and Julia- Kocienski olefination have been utilised for the synthesis of these compounds. Diarylpentadienones possess a high potential as a chemical source for designing and developing new and effective drugs for the treatment of diseases, including inflammation, cancer, and malaria. In brief, this review article focuses on the broad pharmacological applications and the summary of the structure-activity relationship of molecules, which can be employed to further explore the structure of diarylpentadienone. The current methodological developments towards the synthesis of diarylpentadienones are also discussed.
    Matched MeSH terms: Antimalarials/chemical synthesis; Antimalarials/therapeutic use*; Antimalarials/chemistry
  18. Madkhali AM, Al-Mekhlafi HM, Atroosh WM, Ghzwani AH, Zain KA, Abdulhaq AA, et al.
    Malar J, 2020 Dec 02;19(1):446.
    PMID: 33267841 DOI: 10.1186/s12936-020-03524-x
    BACKGROUND: Despite significant progress in eliminating malaria from the Kingdom of Saudi Arabia, the disease is still endemic in the southwestern region of the country. Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been used in Saudi Arabia since 2007 as a first-line treatment for uncomplicated Plasmodium falciparum malaria. This study aimed to investigate the prevalence of mutations associated with resistance to artemisinin and sulfadoxine-pyrimethamine (SP) resistance in P. falciparum parasites circulating in Jazan region, southwestern Saudi Arabia.

    METHODS: A total of 151 P. falciparum isolates were collected between April 2018 and March 2019 from 12 of the governorates in Jazan region. Genomic DNA was extracted from dried blood spots and amplified using nested PCR. Polymorphisms in the propeller domain of the P. falciparum k13 (pfkelch13) gene and point mutations in the P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes were identified by sequencing.

    RESULTS: No mutations in the pfkelch13 propeller domain were found in any of the 151 isolates. However, point mutations in the pfdhfr and pfdhps genes were detected in 90.7% (137/151) of the isolates. The pfdhfr double mutations N51I + S108N (i.e. ACICNI haplotype) and triple mutations N51I + C59R + S108N (i.e. ACIRNI haplotype) were detected in 47% and 37.8% of the isolates, respectively. Moreover, the pfdhps single mutation at codon A437G and double mutations A437G + K540E (i.e. SGEAAI haplotype) were observed in 4.6% and 51.7% of the isolates, respectively. Interestingly, 23.8%, 25.1 and 12.6% of the isolates had quintuple, quadruple and triple mutated combined pfdhfr-pfdhps genotypes, respectively. Furthermore, significant associations were found between the prevalence of mutant haplotypes and the age, gender and nationality of the patients (P 

    Matched MeSH terms: Antimalarials/pharmacology
  19. Ali AH, Agustar HK, Hassan NI, Latip J, Embi N, Sidek HM
    Data Brief, 2020 Dec;33:106592.
    PMID: 33318979 DOI: 10.1016/j.dib.2020.106592
    Aromatic (ar)-turmerone is one of the aromatic constituents abundant in turmeric essential oil from Curcuma longa. Ar-turmerone exhibited anti-inflammatory properties. So far, antiplasmodial data for ar-turmerone is still not reported. The data showed the in vitro antiplasmodial effect of ar-turmerone against Plasmodium falciparum 3D7 (chloroquine-sensitive) via Plasmodium lactate dehydrogenase assay (pLDH) and cytotoxic effect against Vero mammalian kidney cells using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colourimetric assay. Selectivity indexes of ar-turmerone were calculated based on inhibition concentration at 50% of parasite growth (IC50) from MTT and pLDH assays and the effects of ar-turmerone were compared to the antimalarial reference drug chloroquine diphosphate. The inhibitory effect of ar-turmerone at the intraerythrocytic stages of plasmodial lifecycles was evaluated via a stage-dependant susceptibility test. The antiplasmodial and cytotoxic activities of ar-turmerone revealed IC50 values of 46.8 ± 2.4 μM and 820.4 ± 1.5 μM respectively. The selectivity index of ar-turmerone was 17.5. Ar-turmerone suppressed the ring-trophozoite transition stage of the intraerythrocytic life cycle of P. falciparum 3D7.
    Matched MeSH terms: Antimalarials
  20. Habas K, Nganwuchu C, Shahzad F, Gopalan R, Haque M, Rahman S, et al.
    Expert Rev Anti Infect Ther, 2020 12;18(12):1201-1211.
    PMID: 32749914 DOI: 10.1080/14787210.2020.1797487
    INTRODUCTION: Coronavirus disease 2019 (COVID-19) was first detected in China in December, 2019, and declared as a pandemic by the World Health Organization (WHO) on March 11, 2020. The current management of COVID-19 is based generally on supportive therapy and treatment to prevent respiratory failure. The effective option of antiviral therapy and vaccination are currently under evaluation and development.

    AREAS COVERED: A literature search was performed using PubMed between December 1, 2019-June 23, 2020. This review highlights the current state of knowledge on the viral replication and pathogenicity, diagnostic and therapeutic strategies, and management of COVID-19. This review will be of interest to scientists and clinicians and make a significant contribution toward development of vaccines and targeted therapies to contain the pandemic.

    EXPERT OPINION: The exit strategy for a path back to normal life is required, which should involve a multi-prong effort toward development of new treatment and a successful vaccine to protect public health worldwide and prevent future COVID-19 outbreaks. Therefore, the bench to bedside translational research as well as reverse translational works focusing bedside to bench is very important and would provide the foundation for the development of targeted drugs and vaccines for COVID-19 infections.

    Matched MeSH terms: Antimalarials/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links