Displaying publications 1 - 20 of 316 in total

Abstract:
Sort:
  1. Abdelwahab SI, Mohan S, Abdulla MA, Sukari MA, Abdul AB, Taha MM, et al.
    J Ethnopharmacol, 2011 Sep 2;137(2):963-70.
    PMID: 21771650 DOI: 10.1016/j.jep.2011.07.010
    Boesenbergia rotunda (L) Mansf. has been used for the treatment of gastrointestinal disorders including peptic ulcer. In the current study we aimed to investiagte the anti-ulcer activities of methanolic extract of B. rotunda (MEBR) and its main active compound, pinostrobin on ethanol-induced ulcer in rats. The possible involevement of lipid peroxidation, nitric oxide, cyclooxygenases and free radical scavenging mechanisms also has been investigated.
    Matched MeSH terms: Plant Extracts/isolation & purification
  2. Abdul Hamid Z, Lin Lin WH, Abdalla BJ, Bee Yuen O, Latif ES, Mohamed J, et al.
    ScientificWorldJournal, 2014;2014:258192.
    PMID: 25405216 DOI: 10.1155/2014/258192
    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.
    Matched MeSH terms: Plant Extracts/isolation & purification
  3. Abdulhafiz F, Mohammed A, Kayat F, Bhaskar M, Hamzah Z, Podapati SK, et al.
    Molecules, 2020 Jun 08;25(11).
    PMID: 32521624 DOI: 10.3390/molecules25112658
    Alocasia longiloba, locally known as 'Keladi Candik', has been used traditionally to treat wounds, furuncle and joint inflammations. A. longiloba can be a new source of herbal medicine against hyperuricemia by inhibiting the activity of xanthine oxidase enzyme, the enzyme which is responsible for the development of hyperuricemia in human. Existing xanthine oxidase inhibitors (XOI drugs) show several side effects on gout patients. Therefore, an alternative herbal medicine from plants, with high therapeutic property and free of side effects, are greatly needed. This study was conducted to evaluate XO inhibitory activity, chemical composition, antioxidant activity and GC-MS profile of A. longiloba. Our results showed that ethanolic petiole extract exhibited the highest XO inhibitory activity (70.40 ± 0.05%) with IC50 value of 42.71 μg/mL, followed by ethanolic fruit extracts (61.44 ± 1.24%) with the IC50 value of 51.32 μg/mL. In a parallel study, the phytochemical analysis showed the presence of alkaloid, flavonoid, terpenoids, glycoside and saponin in petiole and fruit extracts, as well as higher total phenolic and flavonoid contents and strong scavenging activity on DPPH and ABTS antioxidant assay. The GC-MS analysis of fruit and petiole extracts revealed the presence of various compounds belonging to different chemical nature, among them are limonen-6-ol, α-DGlucopyranoside, paromomycin, aziridine, phenol, Heptatriacotanol, Phen-1,2,3-dimethyl and Betulin found in ethanolic fruit extract, and Phen-1,4-diol,2,3-dimethyl-, 1-Ethynyl-3,trans(1,1-dimethylethyl), Phenol,2,6-dimethoxy-4-(2-propenyl)- and 7-Methyl-Z-tetradecen-1-olacetate found in ethanolic petiole extract. Some compounds were documented as potent anti-inflammatory and arthritis related diseases by other researchers. In this study, the efficiency of solvents to extract bioactives was found to be ethanol > water, methanol > hexane > chloroform. Together, our results suggest the prospective utilization of fruit and petiole of A. longiloba to inhibit the activity of XO enzyme.
    Matched MeSH terms: Plant Extracts/isolation & purification
  4. Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT
    Br J Nutr, 2012 Oct;108(7):1194-201.
    PMID: 22152092
    Zingiber officinale (ZO), commonly known as ginger, has been traditionally used in the treatment of diabetes mellitus. Several studies have reported the hypoglycaemic properties of ginger in animal models. The present study evaluated the antihyperglycaemic effect of its aqueous extract administered orally (daily) in three different doses (100, 300, 500 mg/kg body weight) for a period of 30 d to streptozotocin (STZ)-induced diabetic rats. A dose-dependent antihyperglycaemic effect revealed a decrease of plasma glucose levels by 38 and 68 % on the 15th and 30th day, respectively, after the rats were given 500 mg/kg. The 500 mg/kg ZO significantly (P<0·05) decreased kidney weight (% body weight) in ZO-treated diabetic rats v. control rats, although the decrease in liver weight (% body weight) was not statistically significant. Kidney glycogen content increased significantly (P<0·05) while liver and skeletal muscle glycogen content decreased significantly (P<0·05) in diabetic controls v. normal controls. ZO (500 mg/kg) also significantly decreased kidney glycogen (P<0·05) and increased liver and skeletal muscle glycogen in STZ-diabetic rats when compared to diabetic controls. Activities of glucokinase, phosphofructokinase and pyruvate kinase in diabetic controls were decreased by 94, 53 and 61 %, respectively, when compared to normal controls; and ZO significantly increased (P<0·05) those enzymes' activities in STZ-diabetic rats. Therefore, the present study showed that ginger is a potential phytomedicine for the treatment of diabetes through its effects on the activities of glycolytic enzymes.
    Matched MeSH terms: Plant Extracts/isolation & purification
  5. Abed SA, Sirat HM, Taher M
    Pak J Pharm Sci, 2016 Nov;29(6):2071-2078.
    PMID: 28375126
    The leaves of Gynotroches axillaris were chemically and biologically studied. Sequential extraction of the leaves using petroleum ether, chloroform, and methanol afforded three extracts. Purification of pet. ether extract yielded, squalene and β-amyrin palmitate as the major compounds, together with palmitic acid and myristic acid as the minor components. The methanol extract yielded two flavonoids, quercitrin and epicatechin. The isolated compounds were characterized by MS, IR and NMR (1D and 2D). Anti-acetyl cholinesterase screening using TLC bio-autography assay showed that palmitic acid and myristic acid were the strongest inhibition with detection limit 1.14 and 1.28 μ/g/ 5 μL respectively. Antibacterial against Gram-positive and negative and antifungal activities exhibited that β-amyrin palmitate was the strongest (450-225 μ/mL) against all the tested microbes. The tyrosinase inhibition assay of extracts and the pure compounds were screened against tyrosinase enzyme. The inhibition percentage (I%) of methanol extract against tyrosinase enzyme was stronger than the other extracts with value 68.4%. Quercitrin (59%) was found to be the highest in the tyrosinase inhibition activity amongst the pure compounds. To the best of our knowledge, this is first report on the phytochemicals, tyrosinase inhibition, anti-acetycholinesterase and antimicrobial activities of the leaves of G. axillaris.
    Matched MeSH terms: Plant Extracts/isolation & purification
  6. Abiri R, Silva ALM, de Mesquita LSS, de Mesquita JWC, Atabaki N, de Almeida EB, et al.
    Food Res Int, 2018 07;109:403-415.
    PMID: 29803465 DOI: 10.1016/j.foodres.2018.03.072
    Artemisia vulgaris is one of the important medicinal plant species of the genus Artemisia, which is usually known for its volatile oils. The genus Artemisia has become the subject of great interest due to its chemical and biological diversity as well as the discovery and isolation of promising anti-malarial drug artemisinin. A. vulgaris has a long history in treatment of human ailments by medicinal plants in various parts of the world. This medicinal plant possesses a broad spectrum of therapeutic properties including: anti-malarial, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-tumoral, immunomodulatory, hepatoprotective, anti-spasmodic and anti-septic. These activities are mainly attributed to the presence of various classes of secondary metabolites, including flavonoids, sesquiterpene lactones, coumarins, acetylenes, phenolic acids, organic acids, mono- and sesquiterpenes. Studies related to A. vulgaris morphology, anatomy and phytochemistry has gained a significant interest for better understanding of production and accumulation of therapeutic compounds in this species. Recently, phytochemical and pharmacological investigations have corroborated the therapeutic potential of bioactive compounds of A. vulgaris. These findings provided further evidence for gaining deeper insight into the identification and isolation of novel compounds, which act as alternative sources of anti-malarial drugs in a cost-effective manner. Considering the rising demand and various medical applications of A. vulgaris, this review highlights the recent reports on the chemistry, biological activities and biotechnological interventions for controlled and continuous production of bioactive compounds from this plant species.
    Matched MeSH terms: Plant Extracts/isolation & purification
  7. Abubakar BM, Salleh FM, Shamsir Omar MS, Wagiran A
    Pharm Biol, 2018 Dec;56(1):368-377.
    PMID: 30058427 DOI: 10.1080/13880209.2018.1479869
    CONTEXT: Eurycoma longifolia Jack (Simaroubaceae) commonly known as Tongkat Ali is one of the most important plants in Malaysia. The plant extracts (particularly roots) are widely used for the treatment of cough and fever besides having antimalarial, antidiabetic, anticancer and aphrodisiac activities.

    OBJECTIVES: This study assesses the extent of adulteration of E. longifolia herbal medicinal products (HMPs) using DNA barcoding validated by HPLC analysis.

    MATERIALS AND METHODS: Chloroplastic rbcL and nuclear ITS2 barcode regions were used in the present study. The sequences generated from E. longifolia HMPs were compared to sequences in the GenBank using MEGABLAST to verify their taxonomic identity. These results were verified by neighbor-joining tree analysis in which branches of unknown specimen are compared to the reference sequences established from this study and other retrieved from the GenBank. The HMPs were also analysed using HPLC analysis for the presence of eurycomanone bioactive marker.

    RESULTS: Identification using DNA barcoding revealed that 37% of the tested HMPs were authentic while 27% were adulterated with the ITS2 barcode region proven to be the ideal marker. The validation of the authenticity using HPLC analysis showed a situation in which a species which was identified as authentic was found not to contain the expected chemical compound.

    DISCUSSION AND CONCLUSIONS: DNA barcoding should be used as the first screening step for testing of HMPs raw materials. However, integration of DNA barcoding with HPLC analysis will help to provide detailed knowledge about the safety and efficacy of the HMPs.

    Matched MeSH terms: Plant Extracts/isolation & purification*
  8. Abubakar IB, Loh HS
    J Pharm Pharmacol, 2016 Apr;68(4):423-32.
    PMID: 26887962 DOI: 10.1111/jphp.12523
    OBJECTIVES: Tabernaemontana is a genus from the plant family, Apocynaceae with vast medicinal application and widespread distribution in the tropics and subtropics of Africa, Americas and Asia. The objective of this study is to critically evaluate the ethnobotany, medicinal uses, pharmacology and phytochemistry of the species, Tabernaemontana corymbosa (Roxb. ex Wall.) and provide information on the potential future application of alkaloids isolated from different parts of the plant.

    KEY FINDINGS: T. corymbosa (Roxb. ex Wall.) parts are used as poultice, boiled juice, decoctions and infusions for treatment against ulceration, fracture, post-natal recovery, syphilis, fever, tumours and orchitis in Malaysia, China, Thailand and Bangladesh. Studies recorded alkaloids as the predominant phytochemicals in addition to phenols, saponins and sterols with vast bioactivities such as antimicrobial, analgesic, anthelmintic, vasorelaxation, antiviral and cytotoxicity.

    SUMMARY: An evaluation of scientific data and traditional medicine revealed the medicinal uses of different parts of T. corymbosa (Roxb. ex Wall.) across Asia. Future studies exploring the structure-bioactivity relationship of alkaloids such as jerantinine and vincamajicine among others could potentially improve the future application towards reversing anticancer drug resistance.

    Matched MeSH terms: Plant Extracts/isolation & purification
  9. Ado MA, Abas F, Mohammed AS, Ghazali HM
    Molecules, 2013;18(12):14651-69.
    PMID: 24287996 DOI: 10.3390/molecules181214651
    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.
    Matched MeSH terms: Plant Extracts/isolation & purification
  10. Adom MB, Taher M, Mutalabisin MF, Amri MS, Abdul Kudos MB, Wan Sulaiman MWA, et al.
    Biomed Pharmacother, 2017 Dec;96:348-360.
    PMID: 29028587 DOI: 10.1016/j.biopha.2017.09.152
    The medicinal benefits of Plantago major have been acknowledged around the world for hundreds of years. This plant contains a number of effective chemical constituents including flavonoids, alkaloids, terpenoids, phenolic acid derivatives, iridoid glycosides, fatty acids, polysaccharides and vitamins which contribute to its exerting specific therapeutic effects. Correspondingly, studies have found that Plantago major is effective as a wound healer, as well as an antiulcerative, antidiabetic, antidiarrhoeal, anti-inflammatory, antinociceptive, antibacterial, and antiviral agent. It also combats fatigue and cancer, is an antioxidant and a free radical scavenger. This paper provides a review of the medicinal benefits and chemical constituents of Plantago major published in journals from year 1937 to 2015 which are available from PubMed, ScienceDirect and Google Scholar.
    Matched MeSH terms: Plant Extracts/isolation & purification
  11. Ahbirami R, Zuharah WF, Yahaya ZS, Dieng H, Thiagaletchumi M, Fadzly N, et al.
    Trop Biomed, 2014 Sep;31(3):456-65.
    PMID: 25382472
    Bioprospecting of plant-based insecticides for vector control has become an area of interest within the last two decades. Due to drawbacks of chemical insecticides, phytochemicals of plant origin with mosquito control potential are being utilized as alternative sources in integrated vector control. In this regard, the present study aimed to investigate oviposition deterring and oviciding potentials of Ipomoea cairica (L.) (Family: Convolvulaceae) crude leaf extract against dengue vectors, Aedes aegypti and Aedes albopictus. Ipomoea cairica is an indigenous plant that has demonstrated marked toxicity towards larvae of Ae. aegypti and Ae. albopictus. Leaves of I. cairica were extracted using Soxhlet apparatus with acetone as solvent. Oviposition deterrent activity and ovicidal assay was carried out in oviposition site choice tests with three different concentrations (50, 100, 450 ppm). Acetone extract of I. cairica leaf strongly inhibited oviposition with 100% repellence to Ae. aegypti at lower concentration of 100 ppm, while for Ae. albopictus was at 450 ppm. The oviposition activity index (OAI) values which ranged from -0.69 to -1.00 revealed that I. cairica demonstrated deterrent effect. In ovicidal assay, similar trend was observed whereby zero hatchability was recorded for Ae. aegypti and Ae. albopictus eggs at 100 and 450 ppm, respectively. It is noteworthy that I. cairica leaf extract had significantly elicited dual properties as oviposition deterrent and oviciding agent in both Aedes species. Reduction in egg number through oviposition deterring activity, reduction in hatching percentage and survival rates, suggested an additional hallmark of this plant to be integrated in Aedes mosquito control. Ipomoea cairica deserved to be considered as one of the potential alternative sources for the new development of novel plant based insecticides in future.
    Matched MeSH terms: Plant Extracts/isolation & purification
  12. Ahmad K, Thomas NF, Hadi AH, Mukhtar MR, Mohamad K, Nafiah MA, et al.
    Chem Pharm Bull (Tokyo), 2010 Aug;58(8):1085-7.
    PMID: 20686264
    A phytochemical study on the bark of Neisosperma oppositifolia (Apocynaceae) yielded two new beta-carboline indole alkaloids, oppositinines A (1) and B (2), together with five known alkaloids, isoreserpiline, isocarapanaubine, vobasine, 10-methoxydihydrocorynantheol-N-oxide, and ochropposinine oxindole. Structural elucidation of 1 and 2 was performed using 2D NMR methods. Oppositinines A (1) and B (2) showed potent vasorelaxant effects on the rat aorta.
    Matched MeSH terms: Plant Extracts/isolation & purification
  13. Ahmad M, Lim CP, Akowuah GA, Ismail NN, Hashim MA, Hor SY, et al.
    Phytomedicine, 2013 Sep 15;20(12):1124-30.
    PMID: 23827665 DOI: 10.1016/j.phymed.2013.05.005
    The present study aims to evaluate the safety of methanol extract of Cinnamomum burmannii (MECB) by acute 14-day (single dose) and sub-chronic 28-day (repeated doses) oral administration to Sprague-Dawley rats. Our results showed that no toxicity was found in either acute or sub-chronic toxicity studies. MECB (containing 0.07% and 0.20% (w/w) of coumarin and trans-cinnamaldehyde, respectively), which was given orally at doses of 500, 1000 and 2000 mg/kg caused neither visible signs of toxicity nor mortality. No significant differences were observed in general condition, growth, organ weight, hematological parameters, biochemical values, or the gross and microscopic appearance of the organs from the treatment groups as compared to the control group. In conclusion, MECB did not cause any mortality nor did it cause any abnormalities in the necropsy and histopathology findings of treated rats. The LD50 for the MECB was found to be more than 2000 mg/kg. No adverse effects were observed in the treated rats at all the doses tested. The no-observed-adverse-effect level (NOAEL) for the 28-day study was determined to be 2000 mg/kg body weight/day.
    Matched MeSH terms: Plant Extracts/isolation & purification
  14. Ahmad MN, Karim NU, Normaya E, Mat Piah B, Iqbal A, Ku Bulat KH
    Sci Rep, 2020 06 12;10(1):9566.
    PMID: 32533034 DOI: 10.1038/s41598-020-66488-7
    Lipid oxidation and microbial contamination are the major factors contributing to food deterioration. Food additives like antioxidants and antibacterials can prevent food spoilage by delaying oxidation and preventing the growth of bacteria. Artocarpus altilis leaves exhibited biological properties that suggested its use as a new source of natural antioxidant and antimicrobial. Supercritical fluid extraction (SFE) was used to optimize the extraction of bioactive compounds from the leaves using response surface methodology (yield and antioxidant activity). The optimum SFE conditions were 50.5 °C temperature, 3784 psi pressure and 52 min extraction time. Verification test results (Tukey's test) showed that no significant difference between the expected and experimental DPPH activity and yield value (99%) were found. Gas-chromatography -mass spectrometry (GC-MS) analysis revealed three major bioactive compounds existed in A. altilis extract. The extract demonstrated antioxidant and antibacterial properties with 2,3-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing ability of plasma (FRAP), hydroxyl radical scavenging activity, tyrosinase mushrrom inhibition of 41.5%, 8.15 ± 1.31 (µg of ascorbic acid equivalents), 32%, 37% and inhibition zone diameter of 0.766 ± 0.06 cm (B. cereus) and 1.27 ± 0.12 cm (E. coli). Conductor like screening model for real solvents (COSMO RS) was performed to explain the extraction mechanism of the major bioactive compounds during SFE. Molecular electrostatic potential (MEP) shows the probability site of nucleophilic and electrophilic attack during bacterial inhibition. Based on molecular docking study, non-covalent interactions are the main interaction occurring between the major bioactive compounds and bacteria (antibacterial inhibition).
    Matched MeSH terms: Plant Extracts/isolation & purification
  15. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
    Matched MeSH terms: Plant Extracts/isolation & purification
  16. Ahmed AS, Ahmed Q, Saxena AK, Jamal P
    Pak J Pharm Sci, 2017 Jan;30(1):113-126.
    PMID: 28603121
    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.
    Matched MeSH terms: Plant Extracts/isolation & purification
  17. Aisha AF, Ismail Z, Abu-Salah KM, Siddiqui JM, Ghafar G, Abdul Majid AM
    PMID: 23842450 DOI: 10.1186/1472-6882-13-168
    Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract.
    Matched MeSH terms: Plant Extracts/isolation & purification
  18. Akinboro A, Mohamed KB, Asmawi MZ, Sulaiman SF, Sofiman OA
    J Zhejiang Univ Sci B, 2011 Nov;12(11):915-22.
    PMID: 22042656 DOI: 10.1631/jzus.B1000315
    In this study, freeze-dried water extract from the leaves of Myristica fragrans (Houtt.) was tested for mutagenic and antimutagenic potentials using the Allium cepa assay. Freeze-dried water extract alone and its combination with cyclophosphamide (CP) (50 mg/kg) were separately dissolved in tap water at 500, 1000, 2000, and 4000 mg/kg. Onions (A. cepa) were suspended in the solutions and controls for 48 h in the dark. Root tips were prepared for microscopic evaluation. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals' scavenging power of the extract was tested using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as standards. Water extract of Myristica fragrans scavenged free radicals better than BHA, but worse than BHT. The extract alone, as well as in combination with CP suppressed cell division, and induced chromosomal aberrations that were insignificantly different from the negative control (P ≤ 0.05). However, cytotoxic and mutagenic actions of CP were considerably suppressed. The observed effects on cell division and chromosomes of A. cepa may be principally connected to the antioxidant properties of the extract. The obtained results suggest mitodepressive and antimutagenic potentials of water extract of the leaves of M. fragrans as desirable properties of a promising anticancer agent.
    Matched MeSH terms: Plant Extracts/isolation & purification
  19. Al-Abd NM, Nor ZM, Mansor M, Hasan MS, Kassim M
    Korean J Parasitol, 2016 Jun;54(3):273-80.
    PMID: 27417081 DOI: 10.3347/kjp.2016.54.3.273
    We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis.
    Matched MeSH terms: Plant Extracts/isolation & purification
  20. Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Mahmud R
    J Ethnopharmacol, 2010 Oct 28;132(1):362-4.
    PMID: 20723596 DOI: 10.1016/j.jep.2010.08.006
    Various plants species are used in the traditional medicine for the treatment of malaria. This is the first community based ethnobotanical study in Peninsular Malaysia.
    Matched MeSH terms: Plant Extracts/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links