Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Abdullah NH, Thomas NF, Sivasothy Y, Lee VS, Liew SY, Noorbatcha IA, et al.
    Int J Mol Sci, 2016 Feb 14;17(2):143.
    PMID: 26907251 DOI: 10.3390/ijms17020143
    The mammalian hyaluronidase degrades hyaluronic acid by the cleavage of the β-1,4-glycosidic bond furnishing a tetrasaccharide molecule as the main product which is a highly angiogenic and potent inducer of inflammatory cytokines. Ursolic acid 1, isolated from Prismatomeris tetrandra, was identified as having the potential to develop inhibitors of hyaluronidase. A series of ursolic acid analogues were either synthesized via structure modification of ursolic acid 1 or commercially obtained. The evaluation of the inhibitory activity of these compounds on the hyaluronidase enzyme was conducted. Several structural, topological and quantum chemical descriptors for these compounds were calculated using semi empirical quantum chemical methods. A quantitative structure activity relationship study (QSAR) was performed to correlate these descriptors with the hyaluronidase inhibitory activity. The statistical characteristics provided by the best multi linear model (BML) (R² = 0.9717, R²cv = 0.9506) indicated satisfactory stability and predictive ability of the developed model. The in silico molecular docking study which was used to determine the binding interactions revealed that the ursolic acid analog 22 had a strong affinity towards human hyaluronidase.
    Matched MeSH terms: Pentacyclic Triterpenes/chemical synthesis*; Pentacyclic Triterpenes/pharmacology*; Pentacyclic Triterpenes/chemistry
  2. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology*
  3. Adnan SN, Ibrahim N, Yaacob WA
    J Glob Antimicrob Resist, 2017 03;8:48-54.
    PMID: 27992774 DOI: 10.1016/j.jgar.2016.10.006
    OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen with multiple antibiotic resistance that causes morbidity and mortality worldwide. Multidrug-resistant (MDR) MRSA with increased resistance to currently available antibiotics has challenged the world to develop new therapeutic agents. Stigmasterol and lupeol, from the plant Phyllanthus columnaris, exhibit antibacterial activities against MRSA. The aim of this study was to utilise next-generation sequencing (NGS) to provide further insight into the novel transcriptional response of MRSA exposed to stigmasterol and lupeol.

    METHODS: Time-kill analysis of one MRSA reference strain (ATCC 43300) and three clinical isolates (WM3, BM1 and KJ7) for both compounds was first performed to provide the bacteriostatic/bactericidal profile. Then, MRSA ATCC 43300 strain treated with both compounds was interrogated by NGS.

    RESULTS: Both stigmasterol and lupeol possessed bacteriostatic properties against all MRSA tested; however, lupeol exhibited both bacteriostatic and bactericidal properties within the same minimum inhibitory concentration and minimum bactericidal concentration values against BM1 (12.5mg/mL). Transcriptome profiling of MRSA ATCC 43300 revealed significant modulation of gene expression with multiple desirable targets by both compounds, which caused a reduction in the translation processes leading to inhibition of protein synthesis and prevention of bacterial growth.

    CONCLUSIONS: This study highlights the potential of both stigmasterol and lupeol as new promising anti-MRSA agents.

    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology*
  4. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Ku H, Tucci J, et al.
    J Chromatogr A, 2023 Sep 13;1706:464241.
    PMID: 37541060 DOI: 10.1016/j.chroma.2023.464241
    This study compares different solvent systems with the use of spontaneous fermentation on the phytochemical composition of leaf extracts from a locally grown white variety of common fig (Ficus carica Linn.). The aim was to detect and identify bioactive compounds that are responsible for acetylcholinesterase (AChE), α-amylase and cyclooxygenase-1 (COX-1) enzyme inhibition, and compounds that exhibit antimicrobial activity. Bioactive zones in chromatograms were detected by combining High-performance thin-layer chromatography (HPTLC) with enzymatic and biological assays. A new experimental protocol for measuring the relative half-maximum inhibitory concentration (IC50) was designed to evaluate the potency of the extracts compared to the potency of known inhibitors. Although the IC50 of the fig leaf extract for α-amylase and AChE inhibition were significantly higher when compared to IC50 for acarbose and donepezil, the COX-1 inhibition by the extract (IC50 = 627 µg) was comparable to that of salicylic acid (IC50 = 557 µg), and antimicrobial activity of the extract (IC50 = 375-511 µg) was similar to ampicillin (IC50 = 495 µg). Four chromatographic zones exhibited bioactivity. Compounds from detected bioactive bands were provisionally identified by comparing the band positions to coeluted standards, and by Fourier transform infrared (FTIR) spectra from eluted zones. Flash chromatography was used to separate selected extract into fractions and isolate fractions that are rich in bioactive compounds for further characterisation with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) analysis. The main constituents identified were umbelliferon (zone 1), furocoumarins psoralen and bergapten (zone 2), different fatty acids (zone 3 and 4), and pentacyclic triterpenoids (calotropenyl acetate or lupeol) and stigmasterol (zone 4).
    Matched MeSH terms: Pentacyclic Triterpenes
  5. Al Muqarrabun LM, Ahmat N, Aris SR, Shamsulrijal N, Baharum SN, Ahmad R, et al.
    Nat Prod Res, 2014;28(9):597-605.
    PMID: 24568340 DOI: 10.1080/14786419.2014.886211
    A new sesquiterpenoid, malayscaphiol (1), and three known compounds, lupeol (2), lupenone (3) and stigmasterol (4), were isolated from the methanolic extract of the stem bark of Scaphium macropodum. The structures of the isolated compounds were determined using several spectroscopic methods, including UV-vis, FT-IR, 1D and 2D NMR, and mass spectrometer. Major isolated compounds were assayed for cytotoxicity and anti-acetylcholinesterase activities. The chemotaxonomy significance of this plant was also discussed.
    Matched MeSH terms: Pentacyclic Triterpenes/isolation & purification; Pentacyclic Triterpenes/chemistry
  6. Amir Yusri MA, Sekar M, Wong LS, Gan SH, Ravi S, Subramaniyan V, et al.
    Drug Des Devel Ther, 2023;17:1079-1096.
    PMID: 37064431 DOI: 10.2147/DDDT.S389977
    Celastrol is a naturally occurring chemical isolated from Tripterygium wilfordii Hook. f., root extracts widely known for their neuroprotective properties. In this review, we focus on the efficacy of celastrol in mitigating memory impairment (MI) in both in vivo and in vitro models. Scopus, PubMed and Web of Science databases were utilised to locate pertinent literatures that explore the effects of celastrol in the brain, including its pharmacokinetics, bioavailability, behavioral effects and some of the putative mechanisms of action on memory in many MI models. To date, preclinical studies strongly suggest that celastrol is highly effective in enhancing the cognitive performance of MI animal models, particularly in the memory domain, including spatial, recognition, retention and reference memories, via reduction in oxidative stress and attenuation of neuro-inflammation, among others. This review also emphasised the challenges and potential associated enhancement of medication delivery for MI treatment. Additionally, the potential structural alterations and derivatives of celastrol in enhancing its physicochemical and drug-likeness qualities are examined. The current review demonstrated that celastrol can improve cognitive performance and mitigate MI in several preclinical investigations, highlighting its potential as a natural lead molecule for the design and development of a novel neuroprotective medication.
    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology
  7. Chung PY, Chung LY, Navaratnam P
    Fitoterapia, 2014 Apr;94:48-54.
    PMID: 24508863 DOI: 10.1016/j.fitote.2014.01.026
    The evolution of antibiotic resistance in Staphylococcus aureus showed that there is no long-lasting remedy against this pathogen. The limited number of antibacterial classes and the common occurrence of cross-resistance within and between classes reinforce the urgent need to discover new compounds targeting novel cellular functions not yet targeted by currently used drugs. One of the experimental approaches used to discover novel antibacterials and their in vitro targets is natural product screening. Three known pentacyclic triterpenoids were isolated for the first time from the bark of Callicarpa farinosa Roxb. (Verbenaceae) and identified as α-amyrin [3β-hydroxy-urs-12-en-3-ol], betulinic acid [3β-hydroxy-20(29)-lupaene-28-oic acid], and betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al]. These compounds exhibited antimicrobial activities against reference and clinical strains of methicillin-resistant (MRSA) and methicillin-sensitive S. aureus (MSSA), with minimum inhibitory concentration (MIC) ranging from 2 to 512 μg/mL. From the genome-wide transcriptomic analysis to elucidate the antimicrobial effects of these compounds, multiple novel cellular targets in cell division, two-component system, ABC transporters, fatty acid biosynthesis, peptidoglycan biosynthesis, aminoacyl-tRNA synthetases, ribosomes and β-lactam resistance pathways are affected, resulting in destabilization of the bacterial cell membrane, halt in protein synthesis, and inhibition of cell growth that eventually lead to cell death. The novel targets in these essential pathways could be further explored in the development of therapeutic compounds for the treatment of S. aureus infections and help mitigate resistance development due to target alterations.
    Matched MeSH terms: Pentacyclic Triterpenes/isolation & purification; Pentacyclic Triterpenes/pharmacology*; Pentacyclic Triterpenes/chemistry
  8. Chung PY, Navaratnam P, Chung LY
    PMID: 21658242 DOI: 10.1186/1476-0711-10-25
    There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA) which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin) against reference strains of Staphylococcus aureus.
    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology*; Pentacyclic Triterpenes/chemistry
  9. Chung PY, Chung LY, Navaratnam P
    Res. Microbiol., 2013 May;164(4):319-26.
    PMID: 23385141 DOI: 10.1016/j.resmic.2013.01.005
    Staphylococcus aureus has become a serious concern in hospitals and community due to rapid adaptation to existing antimicrobial agents. Betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al (BE)] belongs to pentacyclic triterpenoids that are based on a 30-carbon skeleton comprising four six-membered rings and one five-membered ring. In a preliminary study, BE exhibited antimicrobial activity against reference strains of methicillin-resistant and methicillin-sensitive S. aureus. However, the response mechanism of S. aureus to this compound is not known. In this study, the global gene expression patterns of both the reference strains in response to sub-inhibitory concentrations of BE were analyzed using DNA microarray to identify gene targets, particularly essential targets in novel pathways, i.e. not targeted by currently used antibiotics, or novel targets in existing pathways. The transcriptome analysis revealed repression of genes in the aminoacyl-tRNA synthetase and ribosome pathways in both the reference strains. Other pathways such as cell division, two-component systems, ABC transporters, fatty acid biosynthesis and peptidoglycan biosynthesis were affected only in the reference strain of methicillin-resistant S. aureus. The findings suggest that BE regulates multiple desirable targets which could be further explored in the development of therapeutic agents for the treatment of S. aureus infections.
    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology*
  10. Chung PY
    Phytomedicine, 2020 Jul 15;73:152933.
    PMID: 31103429 DOI: 10.1016/j.phymed.2019.152933
    BACKGROUND: Staphylococcus aureus is an important pathogen both in community-acquired and healthcare-associated infections, and has successfully evolved numerous strategies for resisting the action to practically all antibiotics. Resistance to methicillin is now widely described in the community setting (CMRSA), thus the development of new drugs or alternative therapies is urgently necessary. Plants and their secondary metabolites have been a major alternative source in providing structurally diverse bioactive compounds as potential therapeutic agents for the treatment of bacterial infections. One of the classes of natural secondary metabolites from plants with the most bioactive compounds are the triterpenoids, which comprises structurally diverse organic compounds. In nature, triterpenoids are often found as tetra- or penta-cyclic structures.

    AIM: This review highlights the anti-staphylococcal activities of pentacyclic triterpenoids, particularly α-amyrin (AM), betulinic acid (BA) and betulinaldehyde (BE). These compounds are based on a 30-carbon skeleton comprising five six-membered rings (ursanes and lanostanes) or four six-membered rings and one five-membered ring (lupanes and hopanes).

    METHODS: Electronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2018, using relevant keywords. Literature focusing on the antimicrobial and antibiofilms of effects of pentacyclic triterpenoids on S. aureus were identified and summarized.

    RESULTS: Pentacyclic triterpenoids can be divided into three representative classes, namely ursane, lupane and oleananes. This class of compounds have been shown to exhibit analgesic, immunomodulatory, anti-inflammatory, anticancer, antioxidant, antifungal and antibacterial activities. In studies of the antimicrobial activities and targets of AM, BA and BE in sensitive and multidrug-resistant S. aureus, these compounds acted synergistically and have different targets from the conventional antibiotics.

    CONCLUSION: The inhibitory mechanisms of S. aureus in novel targets and pathways should stimulate further researches to develop AM, BA and BE as therapeutic agents for infections caused by S. aureus. Continued efforts to identify and exploit synergistic combinations by the three compounds and peptidoglycan inhibitors, are also necessary as alternative treatment options for S. aureus infections.

    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology
  11. Coldren CD, Hashim P, Ali JM, Oh SK, Sinskey AJ, Rha C
    Planta Med, 2003 Aug;69(8):725-32.
    PMID: 14531023
    The molecular pathways underlying the diverse biological activity of the triterpeniod compounds isolated from the tropical medicinal plant Centella asiatica were studied with gene microarrays and real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to quantify the expression of 1053 human genes in human fibroblasts. Fibroblast cells grown in culture were used as a model system to evaluate the stimulation of wound healing by titrated extract from Centella asiatica (TECA) as well as by the four principal triterpenoid components of Centella. TECA treatment effects the expression of genes involved in angiogenesis and the remodeling of extracellular matrix, as well as diverse growth factor genes. The extent of expression change of TNFAIP6, an extracellular hyaluronan binding protein, was found to be largely dose-dependent, to respond most strongly to the free acids asiatic acid and madecassic acid, and to increase in expression over 48 hours of treatment. These results show that Centella triterpenes evoke a gene-expression response consistent with their prevailing medical uses in the treatment of connective tissue disorders such as wound healing and microangiopathy. The identification of genes modulated by these compounds provides the basis for a molecular understanding of Centella's bioactivity, and opportunities for the quantitative correlation of this activity with clinical effectiveness at a molecular level.
    Matched MeSH terms: Pentacyclic Triterpenes
  12. Fong LY, Ng CT, Yong YK, Hakim MN, Ahmad Z
    Vascul. Pharmacol., 2019 06;117:15-26.
    PMID: 30114509 DOI: 10.1016/j.vph.2018.08.005
    Endothelial hyperpermeability represents an initiating step in early atherosclerosis and it often occurs as a result of endothelial barrier dysfunction. Asiatic acid, a major triterpene isolated from Centella asiatica (L.) Urban, has previously been demonstrated to protect against tumor necrosis factor (TNF)-α-induced endothelial barrier dysfunction. The present study aimed to investigate the mechanisms underlying the barrier protective effect of asiatic acid in human aortic endothelial cells (HAECs). The localization of F-actin, diphosphorylated myosin light chain (diphospho-MLC), adherens junctions (AJs) and tight junctions (TJs) was studied using immunocytochemistry techniques and confocal microscopy. Their total protein expressions were examined using western blot analysis. The endothelial permeability was assessed using In Vitro Vascular Permeability Assay kits. In addition, intracellular redistribution of the junctional proteins was evaluated using subcellular fractionation kits. We show that asiatic acid stabilized F-actin and diphospho-MLC at the cell periphery and prevented their rearrangement stimulated by TNF-α. However, asiatic acid failed to attenuate cytochalasin D-induced increased permeability. Besides, asiatic acid abrogated TNF-α-induced structural reorganization of vascular endothelial (VE)-cadherin and β-catenin by preserving their reticulum structures at cell-cell contact areas. In addition, asiatic acid also inhibited TNF-α-induced redistribution of occludin and zona occludens (ZO)-1 in different subcellular fractions. In conclusion, the barrier-stabilizing effect of asiatic acid might be associated with preservation of AJs and prevention of TJ redistribution caused by TNF-α. This study provides evidence to support the potential use of asiatic acid in the prevention of early atherosclerosis, which is initiated by endothelial barrier dysfunction.
    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology*
  13. Halder A, Jethwa M, Mukherjee P, Ghosh S, Das S, Helal Uddin ABM, et al.
    Artif Cells Nanomed Biotechnol, 2020 Nov 17;48(1):1362-1371.
    PMID: 33284038 DOI: 10.1080/21691401.2020.1850465
    Cancer management presents multifarious problems. Triple negative breast cancer (TNBC) is associated with inaccurate prognosis and limited chemotherapeutic options. Betulinic acid (BA) prevents angiogenesis and causes apoptosis of TNBC cells. NIH recommends BA for rapid access in cancer chemotherapy because of its cell-specific toxicity. BA however faces major challenges in therapeutic practices due to its limited solubility and cellular entree. We report lactoferrin (Lf) attached BA nanoparticles (Lf-BAnp) for rapid delivery in triple negative breast (MDA-MB-231) and laryngeal (HEp-2) cancer cell types. Lf association was confirmed by SDS-PAGE and FT-IR analysis. Average hydrodynamic size of Lf-BAnp was 147.7 ± 6.20 nm with ζ potential of -28.51 ± 3.52 mV. BA entrapment efficiency was 75.38 ± 2.70% and the release mechanism followed non-fickian pattern. Impact of Lf-BAnp on cell cycle and cytotoxicity of triple negative breast cancer and its metastatic site laryngeal cancer cell lines were analyzed. Lf-BAnp demonstrated strong anti-proliferative and cytotoxic effects, along with increased sub-G1 population and reduced number of cells in G1 and G2/M phases of the cell cycle, confirming reduced cell proliferation and significant cell death. Speedy intracellular entry of Lf-BAnp occurred within 30 min. Lf-BAnp design was explored for the first time as safer chemotherapeutic arsenals against complex TNBC conditions.
    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology*; Pentacyclic Triterpenes/chemistry*
  14. Hanapi NA, Mohamad Arshad AS, Abdullah JM, Tengku Muhammad TS, Yusof SR
    J Pharm Sci, 2021 02;110(2):698-706.
    PMID: 32949562 DOI: 10.1016/j.xphs.2020.09.015
    Neurotherapeutic potentials of Centella asiatica and its reputation to boost memory, prevent cognitive deficits and improve brain functions are widely acknowledged. The plant's bioactive compounds, i.e. asiaticoside, madecassoside and asiatic acid were reported to have central nervous system (CNS) actions, particularly in protecting the brain against neurodegenerative disorders. Hence, it is important for these compounds to cross the blood-brain barrier (BBB) to be clinically effective therapeutics. This study aimed to explore the capability of asiaticoside, madecassoside and asiatic acid to cross the BBB using in vitro BBB model from primary porcine brain endothelial cells (PBECs). Our findings showed that asiaticoside, madecassoside and asiatic acid are highly BBB permeable with apparent permeability (Papp) of 70.61 ± 6.60, 53.31 ± 12.55 and 50.94 ± 10.91 × 10-6 cm/s respectively. No evidence of cytotoxicity and tight junction disruption of the PBECs were observed in the presence of these compounds. Asiatic acid showed cytoprotective effect towards the PBECs against oxidative stress. This study reported for the first time that Centella asiatica compounds demonstrated high capability to cross the BBB, comparable to central nervous system drugs, and therefore warrant further development as therapeutics for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Pentacyclic Triterpenes
  15. Hashim, P
    MyJurnal
    Centella asiatica L. is traditionally used as a medicinal herbs and alternative medicine in treating numerous kinds of diseases. The use of Centella in food and beverages has increased over the years. Its potential antioxidant and neuroprotective activity has been widely claimed in many reports and basically is very much related to its properties and mechanism of action of the plant’s bioactive constituents namely the asiaticoside, asiatic acid, madecassoside and madecassic acid. As such, this review will cover the biological activity of the plant’s active constituents in relation to its food and beverage applications. The plant cultivation and biotechnological approaches to improve the production of desired bioactive constituents by cultured cells will also be reviewed. In addition, the range of chemical compositions found in Centella and safety aspects are also included.
    Matched MeSH terms: Pentacyclic Triterpenes
  16. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI
    Molecules, 2020 Jul 24;25(15).
    PMID: 32721993 DOI: 10.3390/molecules25153353
    Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
    Matched MeSH terms: Pentacyclic Triterpenes/isolation & purification; Pentacyclic Triterpenes/pharmacology*
  17. Latifah Saiful Yazan, Faujan Ahmad, Ooi, Choong Li, Raha Abdul Rahim, Hisyam Abdul Hamid, Lee, Pei Sze
    MyJurnal
    Betulinic acid (BA) is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNA fragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24h. The incidence of apoptosis in MDA-MB-231 was further confirmed by the DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs), giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.
    Matched MeSH terms: Pentacyclic Triterpenes
  18. Malik A, Jamil U, Butt TT, Waquar S, Gan SH, Shafique H, et al.
    Drug Des Devel Ther, 2019;13:1501-1513.
    PMID: 31123393 DOI: 10.2147/DDDT.S176698
    Background: In silico characterization can help to explain the interaction between molecules and predict three-dimensional structures. Various studies have confirmed the glucose-lowering effects of plant extracts, ie, lupeol and iso-orientin, which enable them to be used as antidiabetic agents. Purpose: Aims of the present study were to evaluate the hypoglycemic activities of lupeol and iso-orientin in a rat model. The study proposed the effects of alloxan on blood glucose level, body weight, and oxidative stress. Materials and Methods: Thirty (n=30) Wistar albino rats were divided into six groups and were subjected to different combinations of the compounds. Levels of different stress markers, ie, malondialdehyde, superoxide dismutase, catalase, nitric oxide, glutathione, glutathione peroxide, glutathione reductase, and blood glucose levels were estimated with their respective methods. Whereas, for their in silico analysis, identified target proteins, GPR40, glucose-6-phosphatase, UCP2, glycogen phosphorylase, aldose reductase, and glucose transporter-4 were docked with lupeol and iso-orientin. Three-dimensional structures were predicted by ERRAT, Rampage, Verify3D, threading and homology approaches. Results: Blood glucose levels were significantly increased in rats receiving intraperitoneal injection of alloxan (208±6.94 mg/dL) as compared to controls (90±7.38 mg/dL). Infected rats were administered plant extracts; combined treatment of both extracts (lupeol+iso-orientin) significantly reduced the levels of blood glucose (129.06±6.29 mg/dL) and improved the antioxidant status. Fifteen structures of each selected protein were evaluated using various techniques. Consequently, satisfactory quality factors [GPR40 (96.41%), glucose-6-phosphatase (96.56%), UCP2 (72.56%), glycogen phosphorylase (87.24%), aldose reductase (82.46%), and glucose transporter-4 (94.29%)] were selected. Molecular docking revealed interacting residues, effective drug properties and their binding affinities (ie, -8.9 to -12.6 Kcal/mol). Conclusion: Results of the study affirmed the antidiabetic activities of lupeol and iso-orientin. Administration of these extracts (either individually or in combination) significantly reduced blood glucose levels and oxidative stress. Hence, it may be considered beneficial in the treatment of diabetes.
    Matched MeSH terms: Pentacyclic Triterpenes/therapeutic use*; Pentacyclic Triterpenes/chemistry
  19. Nasir MN, Abdullah J, Habsah M, Ghani RI, Rammes G
    Phytomedicine, 2012 Feb 15;19(3-4):311-6.
    PMID: 22112723 DOI: 10.1016/j.phymed.2011.10.004
    The asiatic acid, a triterpenoids isolated from Centella asiatica was used to delineate its inhibitory effect on acetylcholinesterase (AChE) properties, excitatory post synaptic potential (EPSP) and locomotor activity. This study is consistent with asiatic acid having an effect on AChE, a selective GABA(B) receptor agonist and no sedative effect on locomotor.
    Matched MeSH terms: Pentacyclic Triterpenes/administration & dosage; Pentacyclic Triterpenes/pharmacology*; Pentacyclic Triterpenes/chemistry
  20. Nasir MN, Habsah M, Zamzuri I, Rammes G, Hasnan J, Abdullah J
    J Ethnopharmacol, 2011 Mar 24;134(2):203-9.
    PMID: 21167268 DOI: 10.1016/j.jep.2010.12.010
    Centella asiatica has a reputation to restore declining cognitive function in traditional medicine. To date, only a few compounds that show enhancing learning and memory properties are available. Therefore, the present study investigates the effects of for acute administration of asiatic acid (A-A) isolated from Centella asiatica administration on memory and learning in male Spraque-Dawley rats.
    Matched MeSH terms: Pentacyclic Triterpenes/isolation & purification; Pentacyclic Triterpenes/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links