Displaying publications 201 - 220 of 247 in total

Abstract:
Sort:
  1. Fan S, Ji B, Abu Hasan H, Fan J, Guo S, Wang J, et al.
    Bioprocess Biosyst Eng, 2021 Aug;44(8):1733-1739.
    PMID: 33772637 DOI: 10.1007/s00449-021-02556-0
    Microalgal-bacterial granular sludge (MBGS) process has become a focal point in treating municipal wastewater. However, it remains elusive whether the emerging process can be applied for the treatment of aquaculture wastewater, which contains considerable concentrations of nitrate and nitrite. This study evaluated the feasibility of MBGS process for aquaculture wastewater treatment. Result showed that the MBGS process was competent to remove respective 64.8%, 84.9%, 70.8%, 50.0% and 84.2% of chemical oxygen demand, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen and phosphate-phosphorus under non-aerated conditions within 8 h. The dominant microalgae and bacteria were identified to be Coelastrella and Rhodobacteraceae, respectively. Further metagenomics analysis implied that microbial assimilation was the main contributor in organics, nitrogen and phosphorus removal. Specifically, considerable nitrate and nitrite removals were also obtained with the synergy between microalgae and bacteria. Consequently, this work demonstrated that the MBGS process showed a prospect of becoming an environmentally friendly and efficient alternative in aquaculture wastewater treatment.
    Matched MeSH terms: Microalgae/metabolism*
  2. Hariz HB, Takriff MS
    Environ Sci Pollut Res Int, 2017 Sep;24(25):20209-20240.
    PMID: 28791508 DOI: 10.1007/s11356-017-9742-6
    In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.
    Matched MeSH terms: Microalgae/metabolism*
  3. Rezaei Motlagh S, Harun R, Awang Biak DR, Hussain SA, Omar R, Elgharbawy AA
    Mar Drugs, 2020 Feb 12;18(2).
    PMID: 32059424 DOI: 10.3390/md18020108
    One of the essential fatty acids with therapeutic impacts on human health is known to be omega-3 polyunsaturated fatty acids (PUFA). More lately, ionic liquids (ILs) have received significant attention among scientists in overcoming the disadvantages of traditional solvents in biomass lipid extraction. However, the large pool of cations and anions possibly accessible will lead to a growing number of innovatively synthesized ILs. Nevertheless, the exhaustive measurement of all these systems is economically impractical. The conductive screening model for real solvents (COSMO-RS) is considered a precious approach with the availability of a few models to predict the characteristics of ILs. This work introduces the estimate of capacity values at infinite dilution for a range of ILs using COSMO-RS software as part of solid-liquid extraction. This favorable outcome presented that the capacity values of the IL molecules are extremely dependent on both anions and cations. Among the 352 combinations of cation/anion tested, short alkyl chain cations coupled with inorganic anions were found to be most efficient and therefore superior in the extraction method. Sulphate-, chloride-, and bromide-based ILs were found to have higher extraction capacities in contrast with the remainders, while propanoate revealed an extraordinary capacity when combined with ethyl-based cations. Eventually, the predicted results from COSMO-RS were validated through the experimentally calculated extraction yield of alpha-linolenic acid (ALA) compound from Nannochloropsis sp. microalgae. Three selected ILs namely [EMIM][Cl], [TMAm][Cl], and [EMPyrro][Br] were selected from COSMO-RS for empirical extraction purpose and the validation results pinpointed the good prediction capability of COSMO-RS.
    Matched MeSH terms: Microalgae/chemistry*
  4. Thanh T, Chi VT, Abdullah MP, Omar H, Napis S
    Mol Biol (Mosk), 2012 Jan-Feb;46(1):64-70.
    PMID: 22642102
    Isolation of promoter sequences from known gene sequences is a tedious task in genome-related research. An efficient method of obtaining the promoter sequences is necessary in order to successfully use targeted promoters for genetic manipulations. Here, efficiency and usefulness of two PCR-based methods, namely: ligation-mediated PCR and thermal asymmetric interlaced (TAIL) PCR, for isolation of promoter sequences of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) gene from green microalgae Ankistrodesmus convolutus (A. convolutus) were evaluated. The results showed that the amplification efficiency of TAIL-PCR was higher than that of the ligation-mediated PCR method, i.e. the amplified promoter fragments of 1.2 and 0.8 kb in length or promoter sequences of 813 and 606 bp (after eliminating the unreadable sequences). The use of TAIL-PCR described here presents a low cost and efficient strategy for the isolation of promoter sequences of known genes, especially in GC-rich regions, and species with little or no available genome information such as A. convolutus.
    Matched MeSH terms: Microalgae/enzymology*
  5. Raman R, Mohamad SE
    Pak J Biol Sci, 2012 Dec 15;15(24):1182-6.
    PMID: 23755409
    There are numerous commercial applications of microalgae nowadays owing to their vast biotechnological and economical potential. Indisputably, astaxanthin is one of the high value product synthesized by microalgae and is achieving commercial success. Astaxanthin is a keto-carotenoid pigment found in many aquatic animals including microalgae. Astaxanthin cannot be synthesized by animals and provided in the diet is compulsory. In this study, the production of astaxanthin by the freshwater microalgae Chlorella sorokiniana and marine microalgae Tetraselmis sp. were studied. The relationship between growth and astaxanthin production by marine and freshwater microalgae cultivated under various carbon sources and concentrations, environmental conditions and nitrate concentrations was investigated in this study. Inorganic carbon source and low nitrate concentration favored the growth and production of astaxanthin by the marine microalgae Tetraselmis sp. and the freshwater microalgae Chlorella sorokiniana. Outdoor cultivation enhanced the growth of microalgae, while indoor cultivation promoted the formation of astaxanthin. The results indicated that supplementation of light, inorganic carbon and nitrate could be effectively manipulated to enhance the production of astaxanthin by both microalgae studied.
    Matched MeSH terms: Microalgae/metabolism*
  6. Yee MS, Khiew PS, Chiu WS, Tan YF, Kok YY, Leong CO
    Colloids Surf B Biointerfaces, 2016 Dec 01;148:392-401.
    PMID: 27639489 DOI: 10.1016/j.colsurfb.2016.09.011
    Fouling of marine surfaces has been a perpetual problem ever since the days of the early sailors. The tenacious attachment of seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred undesirable economic losses. Graphene receives great attention in the materials world for its unique combination of physical and chemical properties. Herein, we present a novel 2-step synthesis method of graphene-silver nanocomposites which bypasses the formation of graphene oxide (GO), and produces silver nanoparticles supported on graphene sheets through a mild hydrothermal reduction process. The graphene-Ag (GAg) nanocomposite combines the antimicrobial property of silver nanoparticles and the unique structure of graphene as a support material, with potent marine antifouling properties. The GAg nanocomposite was composed of micron-scaled graphene flakes with clusters of silver nanoparticles. The silver nanoparticles were estimated to be between 72 and 86nm (SEM observations) while the crystallite size of the silver nanoparticles (AgNPs) was estimated between 1 and 5nm. The nanocomposite also exhibited the SERS effect. GAg was able to inhibit Halomonas pacifica, a model biofilm-causing microbe, from forming biofilms with as little as 1.3wt.% loading of Ag. All GAg samples displayed significant biofilm inhibition property, with the sample recording the highest Ag loading (4.9wt.% Ag) associated with a biofilm inhibition of 99.6%. Moreover, GAg displayed antiproliferative effects on marine microalgae, Dunaliella tertiolecta and Isochrysis sp. and inhibited the growth of the organisms by more than 80% after 96h. The marine antifouling properties of GAg were a synergy of the biocidal AgNPs anchored on the stable yet flexible graphene sheets, providing maximum active contact surface areas to the target organisms.
    Matched MeSH terms: Microalgae/drug effects; Microalgae/physiology
  7. Tan YH, Lim PE, Beardall J, Poong SW, Phang SM
    Aquat Toxicol, 2019 Dec;217:105349.
    PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349
    Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Matched MeSH terms: Microalgae/drug effects; Microalgae/metabolism*
  8. Thanh T, Chi VT, Abdullah MP, Omar H, Noroozi M, Napis S
    Mol Biol Rep, 2011 Nov;38(8):5297-305.
    PMID: 21287365 DOI: 10.1007/s11033-011-0679-4
    An initial study on gene cloning and characterization of unicellular green microalga Ankistrodesmus convolutus was carried out to isolate and characterize the full-length cDNA of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) as a first step towards elucidating the structure of A. convolutus RbcS gene. The full-length of A. convolutus RbcS cDNA (AcRbcS) contained 28 bp of 5' untranslated region (UTR), 225 bp of 3' non-coding region, and an open reading frame of 165 amino acids consisting of a chloroplast transit peptide with 24 amino acids and a mature protein of 141 amino acids. The amino acid sequence has high identity to those of other green algae RbcS genes. The AcRbcS contained a few conserved domains including protein kinase C phosphorylation site, tyrosine kinase phosphorylation site and N-myristoylation sites. The AcRbcS was successfully expressed in Escherichia coli and a ~21 kDa of anticipated protein band was observed on SDS-PAGE. From the phylogenetic analysis of RbcS protein sequences, it was found that the RbcS of A. convolutus has closer genetic relationship with green microalgae species compared to those of green seaweed and green macroalgae species. Southern hybridization analysis revealed that the AcRbcS is a member of a small multigene family comprising of two to six members in A. convolutus genome. Under different illumination conditions, RT-PCR analysis showed that AcRbcS transcription was reduced in the dark, and drastically recovered in the light condition. Results presented in this paper established a good foundation for further study on the photosynthetic process of A. convolutus and other green algae species where little information is known on Rubisco small subunit.
    Matched MeSH terms: Microalgae/enzymology*; Microalgae/genetics*; Microalgae/radiation effects
  9. Zulkifly SB, Graham JM, Young EB, Mayer RJ, Piotrowski MJ, Smith I, et al.
    J Phycol, 2013 Feb;49(1):1-17.
    PMID: 27008383 DOI: 10.1111/jpy.12025
    The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri-phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora-dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora-dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well-known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer.
    Matched MeSH terms: Microalgae
  10. Rao AR, Sarada R, Shylaja MD, Ravishankar GA
    J Food Sci Technol, 2015 Oct;52(10):6703-10.
    PMID: 26396419 DOI: 10.1007/s13197-015-1775-6
    Effect of isolated astaxanthin (ASX) and astaxanthin esters (ASXEs) from green microalga-Haematococcus pluvialis on hepatotoxicity and antioxidant activity against carbon tetrachloride (CCl4) induced toxicity in rats was compared with synthetic astaxanthin (SASX). ASX, ASXEs, and SASX, all dissolved in olive oil, fed to rats with 100 and 250 μg/kg b.w for 14 days. They were evaluated for their hepatoprotective and antioxidant activity by measuring appropriate enzymes. Among the treated groups, the SGPT, SGOT and ALP levels were decreased by 2, 2.4, and 1.5 fold in ASXEs treated group at 250 μg/Kg b.w. when compared to toxin group. Further, antioxidant enzymes catalase, glutathione, superoxide dismutase and lipid peroxidase levels were estimated in treated groups, their levels were reduced by 30-50 % in the toxin group, however these levels restored by 136.95 and 238.48 % in ASXEs treated group at 250 μg/kg. The lipid peroxidation was restored by 5.2 and 2.8 fold in ASXEs and ASX treated groups at 250 μg/kg. The total protein, albumin and bilirubin contents were decreased in toxin group, whereas normalized in ASXEs treated group. These results indicates that ASX and ASXEs have better hepatoprotection and antioxidant activity, therefore can be used in pharmaceutical and nutraceutical applications and also extended to use as food colorant.
    Matched MeSH terms: Microalgae
  11. Syafaat MN, Muhammad T, Abol-Munafi AB, Ikhwanuddin M
    Data Brief, 2019 Oct;26:104438.
    PMID: 31528675 DOI: 10.1016/j.dib.2019.104438
    Population density, growth, survival, water quality and larval stage index of purple mud crab, Scylla tranquebarica at different feeding regimes and the data on ingestion rate of chosen microalgae, survival and larval development of blue swimming crab, Portunus pelagicus are presented. A twenty days of S. tranquebarica larval culture from zoeal 1 until megalopa stage under two different feeding regimes of A) Rotifer, Artemia nauplii and shrimp meat and B) Rotifer, Artemia nauplii and artificial feed is shared. A method on investigation of individual larvae of P. pelagicus capability to catch four different types of microalgae within 24 h is also shared. Direct eye observation, data collected through the larval rearing culture of S. tranquebarica and further statistical analysis were done daily until the crabs reached the megalopa stage. The result obtained from the optimum density of selected microalgae fed by individual larvae of P. pelagicus will be combined with the highest survival rate and larval stage index to develop feeding schedule for crab larvae P. pelagicus. This dataset has not previously been published and is of great potential for further comparison with other - and future investigation of various feeding regimes affected the crab culture. The collected information could be used as a standard feeding regime for nursery and hatchery seed production of others portunids crabs. The data described in this article are available as a supplementary file to this article.
    Matched MeSH terms: Microalgae
  12. Yong WK, Sim KS, Poong SW, Wei D, Phang SM, Lim PE
    3 Biotech, 2019 Aug;9(8):315.
    PMID: 31406637 DOI: 10.1007/s13205-019-1848-8
    An ecologically important tropical freshwater microalga, Scenedesmus quadricauda, was exposed to Ni toxicity under two temperature regimes, 25 and 35 °C to investigate the interactive effects of warming and different Ni concentrations (0.1, 1.0 and 10.0 ppm). The stress responses were assessed from the growth, photosynthesis, reactive oxygen species (ROS) generation and metabolomics aspects to understand the effects at both the physiological and biochemical levels. The results showed that the cell densities of the cultures were higher at 35 °C compared to 25 °C, but decreased with increasing Ni concentrations at 35 °C. In terms of photosynthetic efficiency, the maximum quantum yield of photosystem II (Fv/Fm) of S. quadricauda remained consistent across different conditions. Nickel concentration at 10.0 ppm affected the maximum rate of relative electron transport (rETRm) and saturation irradiance for electron transport (Ek) in photosynthesis. At 25 °C, the increase of non-photochemical quenching (NPQ) values in cells exposed to 10.0 ppm Ni might indicate the onset of thermal dissipation process as a self-protection mechanism against Ni toxicity. The combination of warming and Ni toxicity induced a strong oxidative stress response in the cells. The ROS level increased significantly by 40% after exposure to 10.0 ppm of Ni at 35 °C. The amount of Ni accumulated in the biomass was higher at 25 °C compared to 35 °C. Based on the metabolic profile, temperature contributed the most significant differentiation among the samples compared to Ni treatment and the interaction between the two factors. Amino acids, sugars and organic acids were significantly regulated by the combined factors to restore homeostasis. The most affected pathways include sulphur, amino acids, and nitrogen metabolisms. Overall, the results suggest that the inhibitory effect of Ni was lower at 35 °C compared to 25 °C probably due to lower metal uptake and primary metabolism restructuring. The ability of S. quadricauda to accumulate substantial amount of Ni and thrive at 35 °C suggests the potential use of this strain for phycoremediation and outdoor wastewater treatment.
    Matched MeSH terms: Microalgae
  13. Wu S, Gu W, Huang A, Li Y, Kumar M, Lim PE, et al.
    Microb Cell Fact, 2019 Sep 23;18(1):161.
    PMID: 31547820 DOI: 10.1186/s12934-019-1214-x
    BACKGROUND: Numerous studies have shown that stress induction and genetic engineering can effectively increase lipid accumulation, but lead to a decrease of growth in the majority of microalgae. We previously found that elevated CO2 concentration increased lipid productivity as well as growth in Phaeodactylum tricornutum, along with an enhancement of the oxidative pentose phosphate pathway (OPPP) activity. The purpose of this work directed toward the verification of the critical role of glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme in the OPPP, in lipid accumulation in P. tricornutum and its simultaneous rapid growth rate under high-CO2 (0.15%) cultivation.

    RESULTS: In this study, G6PDH was identified as a target for algal strain improvement, wherein G6PDH gene was successfully overexpressed and antisense knockdown in P. tricornutum, and systematic comparisons of the photosynthesis performance, algal growth, lipid content, fatty acid profiles, NADPH production, G6PDH activity and transcriptional abundance were performed. The results showed that, due to the enhanced G6PDH activity, transcriptional abundance and NAPDH production, overexpression of G6PDH accompanied by high-CO2 cultivation resulted in a much higher of both lipid content and growth in P. tricornutum, while knockdown of G6PDH greatly decreased algal growth as well as lipid accumulation. In addition, the total proportions of saturated and unsaturated fatty acid, especially the polyunsaturated fatty acid eicosapentaenoic acid (EPA; C20:5, n-3), were highly increased in high-CO2 cultivated G6PDH overexpressed strains.

    CONCLUSIONS: The successful of overexpression and antisense knockdown of G6PDH well demonstrated the positive influence of G6PDH on algal growth and lipid accumulation in P. tricornutum. The improvement of algal growth, lipid content as well as polyunsaturated fatty acids in high-CO2 cultivated G6PDH overexpressed P. tricornutum suggested this G6PDH overexpression-high CO2 cultivation pattern provides an efficient and economical route for algal strain improvement to develop algal-based biodiesel production.

    Matched MeSH terms: Microalgae
  14. Tan CH, Show PL, Ling TC, Nagarajan D, Lee DJ, Chen WH, et al.
    Bioresour Technol, 2019 Aug;285:121331.
    PMID: 30999192 DOI: 10.1016/j.biortech.2019.121331
    Third generation biofuels, also known as microalgal biofuels, are promising alternatives to fossil fuels. One attractive option is microalgal biodiesel as a replacement for diesel fuel. Chlamydomonas sp. Tai-03 was previously optimized for maximal lipid production for biodiesel generation, achieving biomass growth and productivity of 3.48 ± 0.04 g/L and 0.43 ± 0.01 g/L/d, with lipid content and productivity of 28.6 ± 1.41% and 124.1 ± 7.57 mg/L/d. In this study, further optimization using 5% CO2 concentration and semi-batch operation with 25% medium replacement ratio, enhanced the biomass growth and productivity to 4.15 ± 0.12 g/L and 1.23 ± 0.02 g/L/d, with lipid content and productivity of 19.4 ± 2.0% and 239.6 ± 24.8 mg/L/d. The major fatty acid methyl esters (FAMEs) were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). These short-chain FAMEs combined with high growth make Chlamydomonas sp. Tai-03 a suitable candidate for biodiesel synthesis.
    Matched MeSH terms: Microalgae
  15. Arumugam K, Ahmad MF, Yaacob NS, Ikram WM, Maniyam MN, Abdullah H, et al.
    Heliyon, 2020 Jul;6(7):e04556.
    PMID: 32775725 DOI: 10.1016/j.heliyon.2020.e04556
    Natural growth-promoting nutrients extracted from aquaculture sludge waste can be used to maximise microalgal growth. This study identified the influence of aquaculture sludge extract (SE) on four microalgae species. Conway or Bold's Basal Media (BBM) was supplemented with SE collected from a Sabak Bernam shrimp pond (SB) and Kota Puteri fish pond (KP), and tested using a novel microplate-incubation technique. Five different autoclave extraction treatment parameters were assessed for both collected SE, i.e., 1-h at 105 °C, 2-h at 105 °C, 1-h at 121 °C, 2-h at 121 °C, and 24-h at room temperature (natural extraction). Microalgae culture in the microplates containing control (media) and enriched (media + SE) samples were incubated for nine days, at 25 °C with the light intensity of 33.75 μmol photons m-2 s-1 at 12-h light/dark cycle. The total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP) in KP SE were 44.0-82.0 mg L-1 and 0.96-8.60 mg L-1. TDN (8.0%-515.0%) and TDP (105%-186 %) were relatively higher in KP SE compared to SB SE. The growth of microalgae species Nannochloropsis ocenica showed significant differences (p < 0.05) between the five extraction treatments from SB and the control. However, Chlorella vulgaris, Neochloris conjuncta, and Nephroclamys subsolitaria showed no significant differences (p > 0.05) in SB SE. N. ocenica, C. vulgaris, and N. conjuncta showed significant differences (p < 0.05) between five extraction treatments from KP and the control while N. subsolitaria showed no significant difference (p > 0.05). The specific growth rate (SGR) in the exponential phase of all microalgae species were relatively higher in SB SE compared to KP SE. While the organic matter content of KP SE was relatively higher, there were no significant differences in microalgae growth compared to SB SE. Nonetheless, modified SE did influence microalgae growth compared to the control. This study shows that modified SE could be used as enrichment media for microalgae cultivation.
    Matched MeSH terms: Microalgae
  16. Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, et al.
    Front Bioeng Biotechnol, 2021;9:568776.
    PMID: 33585428 DOI: 10.3389/fbioe.2021.568776
    Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (F
    v
    /F
    m
    ), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31-0.87 gL-1) for 6 days under a light source with an intensity of 300 μmol photons m-2 s-1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (


    NH


    4


    +


    -N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of


    NH


    4


    +


    -N. Chlorophyll a content in T. tetrathele grown in all of the different


    NH


    4


    +


    -N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of


    NH


    4


    +


    -N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
    Matched MeSH terms: Microalgae
  17. Chew KW, Khoo KS, Foo HT, Chia SR, Walvekar R, Lim SS
    Chemosphere, 2020 Dec 15;268:129322.
    PMID: 33359993 DOI: 10.1016/j.chemosphere.2020.129322
    With the rapid urbanisation happening around the world followed by the massive demand for clean energy resources, green cities play a pivotal role in building a sustainable future for the people. The continuing depletion of natural resources has led to the development of renewable energy with algae as the promising source. The high growth rate of microalgae and their strong bio-fixation ability to convert CO2 into O2 have been gaining attention globally and intensive research has been conducted regarding the microalgae benefits. The focus on potential of microalgae in contributing to the development of green cities is rising. The advantage of microalgae is their ability to gather energy from sunlight and carbon dioxide, followed by transforming the nutrients into biomass and oxygen. This leads to the creation of green cities through algae cultivation as waste and renewable materials can be put to good use. The challenges that arise when using algae and the future prospect in terms of SDGs and economy will also be covered in this review. The future of green cities can be enhanced with the adaptation of algae as the source of renewable plants to create a better outlook of an algae green city.
    Matched MeSH terms: Microalgae
  18. Goh, L.P., Loh, S.P., Fatimah, M.Y., Perumal, K.
    Malays J Nutr, 2009;15(1):77-86.
    MyJurnal
    Microalgae can produce various natural products such as pigments, enzymes, unique fatty acids and vitamin that benefit humans. The objective of the study is to study the bioaccessibility of carotenoids (β-carotene and lycopene) and vitamin E (α- and β-tocopherol) of Nannochloropsis oculata and Chaetoceros calcitrans. Analyses were carried out for both the powdered forms of N. oculata and C. calcitrans, and the dried extract forms of N. oculata and C. calcitrans. In vitro digestion method together with RP-HPLC was used to determine the bioaccessibility of carotenoids and vitamin E for both forms of microalgae. Powdered form of N. oculata had the highest bioaccessibility of β-carotene (28.0 ± 0.6 g kg-1), followed by dried extract N. oculata (21.5 ± 1.1 g kg-1), dried extract C. calcitrans (16.9 ± 0.1 g kg-1), and powdered C. calcitrans (15.6 ± 0.1 g kg-1). For lycopene, dried extract of N. oculata had the highest bioaccessibility of lycopene (42.6 ± 1.1 g kg-1), followed by dried extract C. calcitrans (41.9 ± 0.6 g kg-1), powdered C. calcitrans (39.7 ± 0.1 g kg-1) and powdered N. oculata (32.6 ± 0.7 g kg-1). Dried extract C. calcitrans had the highest bioaccessibility of α-tocopherol (72.1 ± 1.2 g kg-1). However, β-tocopherol was not detected in both dried extract and powdered form of C. calcitrans. In conclusion, all samples in their dried extract forms were found to have significantly higher bioaccessibilities than their powdered forms. This may be due to the disruption of the food matrix contributing to a higher bioaccessibility of nutrients shown by the dried extract forms.
    Matched MeSH terms: Microalgae
  19. Asma Liyana Shaari, Misni Surif, Faazaz Abd. Latiff, Wan Maznah Wan Omar, Mohd Noor Ahmad
    Trop Life Sci Res, 2011;22(1):-.
    MyJurnal
    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0–5, mid = week 6–10 and final = week 11–15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to
    fluctuate widely with light intensity ranging between 182.23–1278 µmol photon m–2s–1, temperature between 29.56ºC –31.59ºC, dissolved oxygen (DO) between 4.56–8.21 mg/l, pH between 7.65–8.49 and salinity between 20‰–30‰. Ammonium (NH4+-N), nitrite (NO2– -N), nitrate (NO3– -N), and orthophosphate (PO43– -P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p
    Matched MeSH terms: Microalgae
  20. Shaari AL, Surif M, Latiff FA, Omar WM, Ahmad MN
    Trop Life Sci Res, 2011 May;22(1):51-69.
    PMID: 24575209
    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0-5, mid = week 6-10 and final = week 11-15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to fluctuate widely with light intensity ranging between 182.23-1278 μmol photon m(-2)s(-1), temperature between 29.56°C -31.59°C, dissolved oxygen (DO) between 4.56-8.21 mg/l, pH between 7.65-8.49 and salinity between 20‰-30‰. Ammonium (NH4 (+)-N), nitrite (NO2 (-)-N), nitrate (NO3 (-)-N), and orthophosphate (PO4 (3-)-P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p<0.05) in nutrients concentrations among the cultivation stages. All nutrients concentrations however were still in the tolerable level and safe for shrimp culture. The chlorophyll a contents were found to range from 5.03±2.17 to 32.61±0.35 μg/l throughout the cultivation period. A total of 19 microalgae species were found in the shrimp pond, with diatoms contributing up to 72% of the species followed by Chlorophyta (11%) and Cyanophyta (11%). However, weekly species abundance varied through the study period. At the initial stage, when there were no shrimps in the pond, Anabaena spp. and Oscillatoria spp. (Cyanophyta) were the dominant species, followed by Chlorella sp. and Dunaliella sp. (Chlorophyta). When shrimps were introduced into the pond, Amphora sp., Navicula sp. Gyrosigma sp. and Nitzschia sp. (diatoms) started to exist. At the middle and towards the final stage of the shrimp culture period diatoms were the dominant species. The Chlorophyta (Chlorella sp.) domination took place only twice, which was at week 2 and 13. The absence of some of the coastal water microalgae species in the shrimp pond was most likely due to the fact that they could not tolerate the physicochemical factors of harsh environment. In this study, Cylindrotheca closterium was regarded as the most tolerant species among the microalgae due to its ability to exist for 6 weeks out of the 15 weeks of cultivation.
    Matched MeSH terms: Microalgae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links