Displaying publications 2321 - 2340 of 2920 in total

Abstract:
Sort:
  1. Ghanbariasad A, Taghizadeh SM, Show PL, Nomanbhay S, Berenjian A, Ghasemi Y, et al.
    Bioengineered, 2019 12;10(1):390-396.
    PMID: 31495263 DOI: 10.1080/21655979.2019.1661692
    FeOOH nanoparticles are commonly synthesized at very high temperature and pressure that makes the process energy consuming and non-economic. Recently, novel approaches were developed for the fabrication of these particles at room temperature. But, the main problem with these methods is that the prepared structures are aggregates of ultra-small nanoparticles where no intact separate nanoparticles are formed. In this study, for the first time, secretory compounds from Chlorella vulgaris cells were employed for the controlled synthesis of FeOOH nanoparticles at room atmosphere. Obtained particles were found to be goethite (α-FeO(OH)) crystals. Controlled synthesis of FeOOH nanoparticles resulted in uniform spherical nanoparticles ranging from 8 to 17 nm in diameter with 12.8 nm mean particle size. Fourier-transform infrared and elemental analyses were indicated that controlled synthesized nanoparticles have not functionalized with secretory compounds of C. vulgaris, and these compounds just played a controlling role over the synthesis reaction.
    Matched MeSH terms: Temperature
  2. Muhammad A, Khan B, Iqbal Z, Khan AZ, Khan I, Khan K, et al.
    ACS Omega, 2019 Sep 03;4(10):14188-14192.
    PMID: 31508540 DOI: 10.1021/acsomega.9b01041
    The antipyretic potential of viscosine, a natural product isolated from the medicinal plant Dodonaea viscosa, was investigated using yeast-induced pyrexia rat model, and its structure-activity relationship was investigated through molecular docking analyses with the target enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1). The in vivo antipyretic experiments showed a progressive dose-dependent reduction in body temperatures of the hyperthermic test animals when injected with viscosine. Comparison of docking analyses with target enzymes showed strongest bonding interactions (binding energy -17.34 kcal/mol) of viscosine with the active-site pocket of mPGES-1. These findings suggest that viscosine shows antipyretic properties by reducing the concentration of prostaglandin E2 in brain through its mPGES-1 inhibitory action and make it a potential lead compound for developing effective and safer antipyretic drugs for treating fever and related pathological conditions.
    Matched MeSH terms: Body Temperature
  3. Ferrando S, Agas D, Mirata S, Signore A, De Angelis N, Ravera S, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Oct;199:111627.
    PMID: 31536925 DOI: 10.1016/j.jphotobiol.2019.111627
    Photobiomodulation relies on the transfer of energy from incident photons to a cell photoacceptor. For many years the concept of photobiomodulation and its outcome has been based upon a belief that the sole receptor within the cell was the mitochondrion. Recently, it has become apparent that there are other photoacceptors operating in different regions of the electromagnetic spectrum. Alternative photoacceptors would appear to be water and mechanisms regulating calcium homeostasis, despite a direct effect of laser photonic energy on intracellular calcium concentration outwith mitochondrial activity or influence, have not been clearly demonstrated. Therefore, to increase the knowledge of intracellular‑calcium and laser photon interaction, as well as to demonstrate differences in irradiation profiles with modern hand-pieces, we tested and compared the photobiomodulatory effect of 808 nm and 980 nm diode laser light by low- and higher-energy (60s, 100 mW/cm2, 100 mW/cm2, 500 mW/cm2, 1000 mW/cm2, 1500 mW/cm2, 2000 mW/cm2) irradiated with a "standard" (Gaussian fluence distribution) hand-piece or with a "flat-top" (uniform fluence) hand-piece. For this purpose, we used the eukaryote unicellular-model Dictyostelium discoideum. The 808 nm and 980 nm infrared laser light, at the energy tested directly affect the stored Ca2+ homeostasis, independent of the mitochondrial respiratory chain activities. From an organism perspective, the effect on Ca2+-dependent signal transduction as the regulator of spore germination in Dictyostelium, demonstrates how a cell can respond quickly to the correct laser photonic stimulus through a different cellular pathway than the known light-chromophore(mitochondria) interaction. Additionally, both hand-piece designs tested were able to photobiomodulate the D. discoideum cell; however, the hand-piece with a flat-top profile, through uniform fluence levels allows more effective and reproducible effects.
    Matched MeSH terms: Temperature
  4. Chieng N, Teo X, Cheah MH, Choo ML, Chung J, Hew TK, et al.
    J Pharm Sci, 2019 12;108(12):3848-3858.
    PMID: 31542436 DOI: 10.1016/j.xphs.2019.09.013
    The study aims to characterize the structural relaxation times of quench-cooled co-amorphous systems using Kohlrausch-Williams-Watts (KWW) and to correlate the relaxation data with the onset of crystallization. Comparison was also made between the relaxation times obtained by KWW and the width of glass transition temperature (ΔTg) methods (simple and quick). Differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and polarized light microscopy were used to characterize the systems. Results showed that co-amorphous systems yielded a single Tg and ΔCp, suggesting the binary mixtures exist as a single amorphous phase. A narrow step change at Tg indicates the systems were fragile glasses. In co-amorphous nap-indo and para-indo, experimental Tgs were in good agreement with the predicted Tg. However, the Tg of co-amorphous nap-cim and indo-cim were 20°C higher than the predicted Tg, possibly due to stronger molecular interactions. Structural relaxation times below the experimental Tg were successfully characterized using the KWW and ΔTg methods. The comparison plot showed that KWW data are directly proportional to the ½ power of ΔTg data, after adjusting for a small offset. A moderate positive correlation was observed between the onset of crystallization and the KWW data. Structural relaxation times may be useful predictor of physical stability of co-amorphous systems.
    Matched MeSH terms: Transition Temperature
  5. An JU, Ho H, Kim J, Kim WH, Kim J, Lee S, et al.
    Front Microbiol, 2018;9:3136.
    PMID: 30619204 DOI: 10.3389/fmicb.2018.03136
    Campylobacter jejuni is a major foodborne pathogen that is increasingly found worldwide and that is transmitted to humans through meat or dairy products. A detailed understanding of the prevalence and characteristics of C. jejuni in dairy cattle farms, which are likely to become sources of contamination, is imperative and is currently lacking. In this study, a total of 295 dairy cattle farm samples from 15 farms (24 visits) in Korea were collected. C. jejuni prevalence at the farm level was 60% (9/15) and at the animal level was 23.8% (68/266). Using the multivariable generalized estimating equation (GEE) model based on farm-environmental factors, we estimated that a high density of cattle and average environmental temperature (7 days prior to sampling) below 24°C affects the presence and survival of C. jejuni in the farm environment. Cattle isolates, together with C. jejuni from other sources (chicken and human), were genetically characterized based on analysis of 10 virulence and survival genes. A total of 19 virulence profile types were identified, with type 01 carrying eight genes (all except hcp and virB11) being the most prevalent. The prevalence of virB11 and hcp was significantly higher in isolates from cattle than in those from other sources (p < 0.05). Multilocus sequence typing (MLST) of C. jejuni isolates from three different sources mainly clustered in the CC-21 and CC-48. Within the CC-21 and CC-48 clusters, cattle isolates shared an indistinguishable pattern with human isolates according to pulsed-field gel electrophoresis (PFGE) and flaA-restriction fragment length polymorphism (RFLP) typing. This suggests that CC-21 and CC-48 C. jejuni from dairy cattle are genetically related to clinical campylobacteriosis isolates. In conclusion, the farm environment influences the presence and survival of C. jejuni, which may play an important role in cycles of cattle re-infection, and dairy cattle represent potential reservoirs of human campylobacteriosis. Thus, environmental management practices could be implemented on cattle farms to reduce the shedding of C. jejuni from cattle, subsequently reducing the potential risk of the spread of cattle-derived C. jejuni to humans through the food chain.
    Matched MeSH terms: Temperature
  6. Mohammed JN, Wan Dagang WRZ
    World J Microbiol Biotechnol, 2019 Jul 22;35(8):121.
    PMID: 31332590 DOI: 10.1007/s11274-019-2696-8
    The economics of bioflocculant production is coupled with the use of a low-cost substrate at appropriate culture conditions. The use of a waste substrate for this purpose offers an additional treatment measure to mitigate environmental pollution. We investigated the growth of Aspergillus flavus and its bioflocculant yield using chicken viscera hydrolysate as the sole media. The effects of culture conditions including time, pH, shaker speed, temperature and inoculum size on bioflocculant production were all investigated and optimised through response surface method based on the central component design (CCD) package of Design Expert. Next, the purified bioflocculant was physically and chemically characterised. Under optimised culture conditions (incubation time 72 h, pH 7, shaker speed 150 rpm, temperature 35 °C and inoculum 4%), 6.75 g/L yield of crude bioflocculant was recorded. The bioflocculant activity was mostly distributed in the cell-free supernatant with optimum efficiency of 91.8% at a dose of 4 mL/100 mL Kaolin suspension. The purified bioflocculant was a glycoprotein consisting of 23.46% protein and 74.5% sugar, including 46% neutral sugar and 2.01% uronic acid. The X-ray photoelectron spectroscopy fundamental analysis of the purified bioflocculant indicated that the mass proportion of C, O and N, were 63.46%, 27.87% and 8.86%, respectively. The bioflocculant is mainly composed of carbonyl, amino, hydroxyl, and amide functional groups. This study for the first time indicates a high potential of bioflocculant yield from chicken viscera at the appropriate culture conditions.
    Matched MeSH terms: Temperature
  7. Ahmad H, Haseen U, Umar K, Ansari MS, Ibrahim MNM
    Mikrochim Acta, 2019 08 27;186(9):649.
    PMID: 31456042 DOI: 10.1007/s00604-019-3753-6
    The authors describe a method for solvent-free mechano-chemical synthesis of a bioinspired sorbent. A 2D ultra-thin carbon sheet similar to graphene oxide was prepared using a natural waste (onion sheet). The formation of 2D carbon sheets was confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy and ATR-IR. The surface morphology was characterized by field emission scanning electron microscopy and high-resolution tunneling electron microscopy. The carbon sheets were decorated with crystalline MnFe2O4 nanoparticles by solid-state reaction at room temperature. The presence of magnetic particles in the final product was confirmed by vibrating sample magnetometry and electron microscopy. The synergistic effect of carbon sheets and MnFe2O4 led to an enhanced sorption of arsenic species compared to bare carbon sheets or to MnFe2O4 nanoparticles. A column was prepared for the simultaneous preconcentration and determination of trace levels of As(III) and As(V) from water samples. The preconcentration factors are between 900 and 833 for As(III) and As(V) species, respectively. The linearity of the calibration plot ranges from 0.4-10 ng mL-1. The detection limits (at 3σ) for both As(III) and As(V) are 30 pg mL-1. The Student's t values for the analysis of spiked samples are lower than the critical Student's t values at a 95% confidence level. The recoveries from spiked water samples range between 99 and 102.8%. Graphical abstract Schematic representation of the preparation of carbon sheets similar to graphene oxide from onion sheaths after pyrolysis at 800 °C. The prepared carbon sheet-MnFe2O4 composite shows excellent arsenic sorption and preconcentration down to the pg mL-1 concentration.
    Matched MeSH terms: Temperature
  8. Mustafa SE, Mustafa S, Abas F, Manap MYABD, Ismail A, Amid M, et al.
    Food Chem, 2019 Apr 25;278:767-772.
    PMID: 30583440 DOI: 10.1016/j.foodchem.2018.11.107
    This study analyzed the effect of pH (X1), temperature (X2) and inulin amount (X3) on transformation of isoflavones (daidzin and daidzein) to equol in soymilk fermented with Bifidobacterium spp. All responses significantly (p  0.05) difference between the experimental and predicted values, suggested the suitability of established models in explaining the daidzin and daidzein transformation to equol as a function of pH, temperature and inulin.
    Matched MeSH terms: Temperature
  9. Nur Nazlina Saimon, Heng Khuan Eu, Anwar Johari, Norzita Ngadi, Mazura Jusoh, Zaki Yamani Zakaria
    Sains Malaysiana, 2018;47:109-115.
    Biodiesel, one of the renewable energy sources has gained attention for decades as the alternative fuel due to its remarkable properties. However, there are several drawbacks from the industrial production of biodiesel such as the spike in the production cost, environmental issues related to the usage of homogeneous catalyst and profitability in long term. One of the solutions to eliminate the problem is by utilizing low cost starting material such as palm fatty acid distillate (PFAD). PFAD is a byproduct from the refining of crude palm oil and abundantly available. Esterification of PFAD to biodiesel will be much easier with the presence of heterogeneous acid catalyst. Most of acid catalyst preparation involves series of heating process using conventional method. In this study, microwave was utilized in catalyst preparation, significantly reducing the reaction time from conventional heating method. The catalyst produced was characterized using X-Ray Diffraction (XRD), Brunauer Emmet and Teller (BET), Scanning Electron Microscopy (SEM), Temperature-Programmed Desorption - Ammonia (TPD-NH3) and Fourier Transform Infrared (FTIR) while percentage yield and conversion of the PFAD were analysed by gas chromatography - flame ionization detector (GC-FID) and acid-base titration, respectively. It has been demonstrated that the percentage yield of biodiesel from the PFAD by employing sulfonated glucose acid catalyst (SGAC) reached 98.23% under the following conditions: molar ratio of methanol to PFAD of 10:1, catalyst loading of 2.5% and reaction temperature of 70oC. The microwave-assisted SGAC showed its potential to replace the SGAC produced via conventional heating method.
    Matched MeSH terms: Temperature
  10. Tahmasebi-Boldaji R, Hatamipour MS, Khanahmadi M, Sadeh P, Najafipour I
    Ultrason Sonochem, 2019 Oct;57:89-97.
    PMID: 31208622 DOI: 10.1016/j.ultsonch.2019.05.018
    This paper presents the successful application of ultrasound-assisted packed-bed (UAE-PB) method for the extraction of hypericin from the Hypericum perfuratum L. The Soxhlet system was utilized for the determination of suitable solvent from ethanol, methanol or from the mixture of different proportions of ethanol-methanol. The mixture of 50:50 v/v ethanol-methanol was obtained to be the most suitable solvent since it led to the highest extraction amount of hypericin. The extraction amount of hypericin increased by 13.6% and 21.4% when the solvent changed from pure methanol to the mixture of 50:50 v/v ethanol-methanol for the extraction time of 3 and 8 h, respectively. Subsequently, the extraction was conducted through the UAE-PB, and the effects of temperature, time, and the ratio of solvent to the dried plant were studied. The response surface method (RSM) was used to investigate the effect of parameters on the extraction in the UAE-PB system. At the temperature of 60 °C, extraction time of 105 min, and the solvent to plant ratio of 15.3, the maximum extraction yield of hypericin was achieved. In the optimal conditions, the amount of extraction was 0.112 mg hypericin/g dried plant, which was in accordance with the optimized predicted value (0.111 mg hypericin/g dried plant) from Design-Expert software.
    Matched MeSH terms: Temperature
  11. Kusrini E, Usman A, Sani FA, Wilson LD, Abdullah MAA
    Environ Monit Assess, 2019 Jul 10;191(8):488.
    PMID: 31292792 DOI: 10.1007/s10661-019-7634-6
    This paper presents the adsorption capacity of a biosorbent derived from the inner part of durian (Durio zibethinus) rinds, which are a low-cost and abundant agro-waste material. The durian rind sorbent has been successfully utilized to remove lanthanum (La) and yttrium (Y) ions from their binary aqueous solution. The effects of several adsorption parameters including contact time, pH, concentrations of La and Y, and temperature on the removal of La and Y ions were investigated. The adsorption isotherm and kinetics of the metal ions were also evaluated in detail. Both La and Y ions were efficiently adsorbed by the biosorbent with optimum adsorption capacity as high as 71 mg La and 35 mg Y per gram biosorbent, respectively. The simultaneous adsorption of La and Y ions follows Langmuir isotherm model, due to the favorable chelation and strong chemical interactions between the functional groups on the surface of the biosorbent and the metal ions. The addition of oxygen content after adsorption offers an interpretation that the rare-earth metal ions are chelated and incorporated most probably in the form of metal oxides. With such high adsorption capacity of La and Y ions, the durian rind sorbent could potentially be used to treat contaminated wastewater containing La and Y metal ions, as well as for separating and extracting rare-earth metal ions from crude minerals.
    Matched MeSH terms: Temperature
  12. Al-Ahdal SA, Ahmad Kayani AB, Md Ali MA, Chan JY, Ali T, Adnan N, et al.
    Int J Mol Sci, 2019 Jul 23;20(14).
    PMID: 31340481 DOI: 10.3390/ijms20143595
    We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aβ) in a microfluidic environment. The Aβ was separated from the cells and characterized using the gradual dissolution of Aβ as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aβ under specific dielectrophoretic parameters. Further, Aβ in the fibril form at the tip of the electrode dissolved at high frequency. This was perhaps due to the conductivity of the suspending medium changing according to the frequency, which resulted in a higher temperature at the tips of the electrodes, and consequently in the breakdown of the hydrogen bonds. However, those shaped as spheroidal monomers experienced a delay in the Aβ fibril transformation process. Yeast cells exposed to relatively low temperatures at the base of the electrode did not experience a positive or negative change in viability. The DEP microfluidic platform incorporating the integrated microtip electrode array was able to selectively manipulate the yeast cells and dissolve the Aβ to a controlled extent. We demonstrate suitable dielectrophoretic parameters to induce such manipulation, which is highly relevant for Aβ-related colloidal microfluidic research and could be applied to Alzheimer's research in the future.
    Matched MeSH terms: Temperature
  13. Daramola J, M Ekhwan T, Adepehin EJ, Mokhtar J, Lam KC, Er AC
    Heliyon, 2019 Jul;5(7):e02121.
    PMID: 31384682 DOI: 10.1016/j.heliyon.2019.e02121
    Water constitutes a major environmental and public health concerns worldwide. A large proportion of global water consumption is sourced from surface water. The dependency level on surface water is higher in developing countries, especially in rural-to-semi-urban areas, where subsurface water is not accessible. Presented in this paper is a spatiotemporal and hydrochemical quality assessment of the spring-originated Landzun Stream in Bida, Nigeria; which is usually consumed in its untreated state. Water samples were systematically collected in eighteen locations along the stream channel in both rainy and dry seasons at an equidistance interval of 500m. On-site and laboratory measurement of important physical and hydrochemical parameters were carried out using standard procedures. Water temperature in the rainy season (34-37 °C) slightly exceeds measured values in the dry season (29-33 °C). 72.22% (rainy) and 83.33% (dry) of collected samples did not meet the odourless requirement for drinking water. Similarly, estimated percentages of 66.67 and 94.44 of collected samples in rainy and dry seasons respectively have a taste. Contrary to data in the rainy season, 89%, 11%, 67% and 56% of the dry season's samples were enriched in magnesium (Mg), lead (Pb), potassium (K) and iron (Fe) respectively above the 2018 World Health Organisation guidelines for drinking water. This study further established that seasonal variation plays a major role in altering the aesthetic surface water quality. The intake of untreated surface water is a vehicle for potential water-borne diseases and allergies, hence alternative sources of drinking water for the populace dependent on the Landzun Stream is recommended to reduce risks and possible dangers of consuming the stream water.
    Matched MeSH terms: Temperature
  14. Fathordoobady, F., Manap, M.Y., Selamat, J., Singh, A.P.
    MyJurnal
    In the present work, supercritical fluid extraction (SFE) with CO2 as solvent and EtOH/water (v/v) as co-solvent was optimised by applying 23 factorial experimental design for the extraction of betacyanins from red pitaya fruit (Hylocereus polyrhizus) peel. Three independent variables of pressure (20-30 MPa), temperature (40-60°C) and co-solvent concentration (10-20%) were chosen for response variables. With the 2 mL/min flow rate of CO2, the dynamic time of extraction was found to be 90 min. The linear effects of main factors and interactions were evaluated. The calculated response surface model for the pressure/temperature was found to be significant for all the dependent variables. At optimal condition of SFE, the response variables were assessed as maximum extraction yield of 4.09 ± 0.69%, total betacyanins content of 25.49 ± 1.54 mg/100 mL, redness (a*) of 58.18 ± 0.82, and IC50 (antioxidant activity) of 1.34 ± 0.12 mg/mL for the experimental peel extracts. The optimal levels of independent variables were validated for the experimental responses as predicted by the mathematical model. The reliability of this method was confirmed as there was no significant difference between experimental and predicted values. The HPLC-MS profile of betacyanins extract comprised of both acylated and non-acylated betacyanins constituents.
    Matched MeSH terms: Temperature
  15. Pagthinathan, M., Ghazali, H.M., Yazid, A.M., Foo, H.L.
    MyJurnal
    Extracts from ‘kesinai’ (Streblus asper) leaves were investigated as a potential source of enzymes that can serve as an alternative to calf rennet in cheese making. Different types of extraction buffers were investigated namely sodium acetate buffer (pH 4.2-5.0), phosphate buffer (pH 6.0-7.0) and Tris-HCl buffer (pH 7.0-9.0). Finally, the milk-clotting enzyme was extracted using 100 mM Tris-HCl buffer (pH 7.4) with and without 5.0 mg/mL polyvinylpyrrolidone, 0.015 mL/mL Triton X-100 and 2 mM sodium metabisulphite. Purification was carried out using acetone precipitation, and ion-exchange and size-exclusion chromatographic techniques. Results showed that 100 mM Tris-HCl buffer (pH 7.4) was the most efficient extraction buffer among the buffers used in the extraction study. After the final purification step of size-exclusion chromatography, the enzyme was purified 3.3-fold with 42.3% of recovery. The enzyme showed an optimum temperature and pH at 60°C and pH 7.4, respectively. The enzyme was stable up to 70°C for one hour and the partially purified enzyme retained 83% and 96% of its original activity at pH 6.0 and 8.0, respectively. The molecular weight of the partially enzyme was estimated to be 75.8 kDa on SDS-PAGE. The milk-clotting activity of ‘kesinai’ enzyme was found to be lower than that of commercial Mucor rennet.
    Matched MeSH terms: Temperature
  16. Khan MS, Ibrahim SM, Adamu AA, Rahman MBA, Bakar MZA, Noordin MM, et al.
    Cryobiology, 2020 02 01;92:26-33.
    PMID: 31580830 DOI: 10.1016/j.cryobiol.2019.09.012
    A number of living creatures in the Antarctic region have developed characteristic adaptation of cold weather by producing antifreeze proteins (AFP). Antifreeze peptide (Afp1m) fragment have been designed in the sequence of strings from native proteins. The objectives of this study were to assess the properties of Afp1m to cryopreserve skin graft at the temperature of -10 °C and -20 °C and to assess sub-zero injuries in Afp1m cryopreserved skin graft using light microscopic techniques. In the present study, a process was developed to cryopreserve Sprague-Dawley (SD) rat skin grafts with antifreeze peptide, Afp1m, α-helix peptide fragment derived from Glaciozyma antractica yeast. Its viability assessed by different microscopic techniques. This study also described the damages caused by subzero temperatures (-10 and -20 °C) on tissue cryopreserved in different concentrations of Afp1m (0.5, 1, 2, 5 and 10 mg/mL) for 72 h. Histological scores of epidermis, dermis and hypodermis of cryopreserved skin grafts showed highly significant difference (p 
    Matched MeSH terms: Temperature
  17. Mutazah R, Hamid HA, Mazila Ramli AN, Fasihi Mohd Aluwi MF, Yusoff MM
    Food Chem Toxicol, 2019 Oct 15.
    PMID: 31626839 DOI: 10.1016/j.fct.2019.110869
    Clinacanthus nutans has attracted Malaysian public interest due to its high medicinal value in the prevention of cancer. Currently, the specific compound or compounds giving rise to the anticancer potential of C. nutans has not been investigated thoroughly. The extraction was carried out by MeOH at room temperature using the powdered bark of C. nutans, while chromatography was carried out on a silica gel RP-18 column using the crude methanolic extract. Six fractions collected from column chromatography were evaluated by MTT assay against two breast cancer cell lines: MDA-MB-231 and MCF-7. Amongst the fractions, A12 and A17 were shown to exhibit the highest activity. Two sulphur-containing compounds, viz., entadamide C (1) and clinamide D (2), were isolated from these fractions. Molecular docking simulation studies revealed that entadamide C and clinamide D could bind favourably to the caspase-3 binding site with the binding energy of -4.28 kcal/mol and -4.84 kcal/mol, respectively. This study provides empirical evidence for the presence of sulphur-containing compounds in the leaves of C. nutans that displayed anticancer effects which explains its ethnomedicinal application against breast cancer. The docking simulation study showed that both compounds could serve as important templates for future drug design and development.
    Matched MeSH terms: Temperature
  18. Ismail I, Hwang YH, Joo ST
    Meat Sci, 2019 Nov;157:107882.
    PMID: 31295690 DOI: 10.1016/j.meatsci.2019.107882
    This paper describes the influence of different factors on toughness of beef semitendinosus (ST) by means of low temperature-long time cooking with single-stage (60 °C, 65 °C, 70 °C, and 75 °C for 6 h and 12 h) and two-stage sous-vide procedure (45 + 60 °C, 45 + 65 °C, 45 + 70 °C, and 45 + 75 °C; 49 + 60 °C, 49 + 65 °C, 49 + 70 °C, and 49 + 75 °C for 3 h at the first temperature, and either 3 or 9 h at the second temperature). Reduced toughness of ST beef steak muscle could be attained in 6 h at 60 °C and 45 + 60 °C were due from the minimum shrinkage of sarcomere as well as lower perimysial thickness, cooking loss, and elastic modulus. Collagen solubility showed a positive correlation to the toughness values. The relationship between proteolytic activity and shear force can be seen after 12 h of cooking duration. For the other quality attributes, two stepped cooking temperature-time combination seems to be more effective in preserving the redness values and water content than a single-stage sous-vide method.
    Matched MeSH terms: Temperature
  19. Kausar S, Altaf AA, Hamayun M, Rasool N, Hadait M, Akhtar A, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752133 DOI: 10.3390/molecules25153520
    Lignin depolymerization for the purpose of synthesizing aromatic molecules is a growing focus of research to find alternative energy sources. In current studies, the photocatalytic depolymerization of lignin has been investigated by two new iso-propylamine-based lead chloride perovskite nanomaterials (SK9 and SK10), synthesized by the facile hydrothermal method. Characterization was done by Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV-Visible (UV-Vis), Photoluminescence (PL), and Fourier-Transform Infrared (FTIR) Spectroscopy and was used for the photocatalytic depolymerization of lignin under UV light. Lignin depolymerization was monitored by taking absorption spectra and catalytic paths studied by applying kinetic models. The %depolymerization was calculated for factors such as catalyst dose variation, initial concentration of lignin, and varying temperatures. Pseudo-second order was the best suited kinetic model, exhibiting a mechanism for lignin depolymerization that was chemically rate controlled. The activation energy (Ea) for the depolymerization reaction was found to be 15 kJ/mol, which is remarkably less than conventional depolymerization of the lignin, i.e., 59.75 kJ/mol, exhibiting significant catalytic efficiencies of synthesized perovskites. Products of lignin depolymerization obtained after photocatalytic activity at room temperature (20 °C) and at 90 °C were characterized by GC-MS analysis, indicating an increase in catalytic lignin depolymerization structural subunits into small monomeric functionalities at higher temperatures. Specifically, 2-methoxy-4-methylphenol (39%), benzene (17%), phenol (10%) and catechol (7%) were detected by GC-MS analysis of lignin depolymerization products.
    Matched MeSH terms: Temperature
  20. Norizan NABM, Halim M, Tan JS, Abbasiliasi S, Mat Sahri M, Othman F, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752106 DOI: 10.3390/molecules25153516
    Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774.
    Matched MeSH terms: Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links