Displaying publications 341 - 360 of 721 in total

Abstract:
Sort:
  1. Fatmawati S, Yuliana, Purnomo AS, Abu Bakar MF
    Heliyon, 2020 Jul;6(7):e04396.
    PMID: 32685725 DOI: 10.1016/j.heliyon.2020.e04396
    Cassia alata or locally known as Ketepeng Cina (Indonesia) and Gelenggang (Malaysia) has been used as a traditional medicine to treat various diseases, especially skin diseases. In addition, C. alata has been reported to have potential anti allergic, anti inflammatory, antioxidant, anticancer, antidiabetic, and antifungal. Metabolite compounds that have been isolated from C. alata include flavones, flavonols, flavonoids glycosides, alatinon, alanonal and β-sitosterol-β-D-glucoside. The compounds have been isolated mainly from the leaves. Further identification is needed to discover the secondary metabolites from other parts of the plant such as seed, flower and bark which are reported to have potent antibacterial and antifungal activity. Therefore, this article highlights the secondary metabolites and biological activity of this plant which has been shown to have pharmacological properties against selected diseases.
    Matched MeSH terms: Anti-Inflammatory Agents
  2. Khan H., Aamir K., Arya A.
    MyJurnal
    Introduction: Systemic inflammation is the major clinical problem which is constellation of communicable and non-communicable infection equipped with acute to chronic inflammation. It may lead to unfavourable conditions for instance, systemic inflammatory syndrome, burns and sepsis. Systemic inflammation might rotate the steering towards vital clinical maladies including cardiomyopathy, neuroinflammation, hepatitis, liver and kidney diseases and even diabetes. In order to elucidate the molecular insights in these clinical implications, there is an intensive need
    to design rodent model of systemic inflammation having close association with systemic inflammatory conditions in humans. Methods: Presently, lipopolysaccharide (LPS) induced systemic inflammatory rodent model is widely established, reproducible and acceptable among scientists. In this model animals are treated with intraperitoneal injection of LPS ranging from 1-10 mg/kg which leads to instant release of proinflammatory cytokines to provide robust model of systemic inflammation in order to elucidate pathological conditions and their in-depth mechanism to uncover the new anti-inflammatory therapeutic targets. Conclusion: Robust model would open new window to explore anti-inflammatory activities of phytochemicals, small molecules and drug candidates along with crosstalk of different signaling pathways at molecular level.
    Matched MeSH terms: Anti-Inflammatory Agents
  3. Zakaria ZA, Raden Mohd Nor RN, Hanan Kumar G, Abdul Ghani ZD, Sulaiman MR, Rathna Devi G, et al.
    Can J Physiol Pharmacol, 2006 Dec;84(12):1291-9.
    PMID: 17487238
    The present study was carried out to establish the antinociceptive, anti-inflammatory, and antipyretic properties of the aqueous extract of Melastoma malabathricum leaves in experimental animals. The antinociceptive activity was measured using abdominal constriction, hot-plate, and formalin tests, whereas the anti-inflammatory and antipyretic activities were measured using carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. The extract, which was obtained after soaking the air-dried leaves in distilled water for 72 h and then preparing in concentrations of 10%, 50%, and 100% (v/v), was administered subcutaneously 30 min prior to subjection to the above mentioned assays. At all concentrations tested, the extract was found to exhibit significant (P < 0.05) antinociceptive, anti-inflammatory, and antipyretic activities in a concentration-independent manner. Our findings that the aqueous extract of M. malabathricum possesses antinociceptive, anti-inflammatory, and antipyretic activities supports previous claims on its traditional uses to treat various ailments.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*; Anti-Inflammatory Agents/therapeutic use; Anti-Inflammatory Agents/chemistry
  4. Aw Yong PY, Islam F, Harith HH, Israf DA, Tan JW, Tham CL
    Front Pharmacol, 2020;11:599080.
    PMID: 33574752 DOI: 10.3389/fphar.2020.599080
    Honey has been conventionally consumed as food. However, its therapeutic properties have also gained much attention due to its application as a traditional medicine. Therapeutic properties of honey such as anti-microbial, anti-inflammatory, anti-cancer and wound healing have been widely reported. A number of interesting studies have reported the potential use of honey in the management of allergic diseases. Allergic diseases including anaphylaxis, asthma and atopic dermatitis (AD) are threatening around 20% of the world population. Although allergic reactions are somehow controllable with different drugs such as antihistamines, corticosteroids and mast cell stabilizers, modern dietary changes linked with allergic diseases have prompted studies to assess the preventive and therapeutic merits of dietary nutrients including honey. Many scientific evidences have shown that honey is able to relieve the pathological status and regulate the recruitment of inflammatory cells in cellular and animal models of allergic diseases. Clinically, a few studies demonstrated alleviation of allergic symptoms in patients after application or consumption of honey. Therefore, the objective of this mini review is to discuss the effectiveness of honey as a treatment or preventive approach for various allergic diseases. This mini review will provide insights into the potential use of honey in the management of allergic diseases in clinical settings.
    Matched MeSH terms: Anti-Inflammatory Agents
  5. Mohd Faudzi SM, Abdullah MA, Abdull Manap MR, Ismail AZ, Rullah K, Mohd Aluwi MFF, et al.
    Bioorg Chem, 2020 01;94:103376.
    PMID: 31677861 DOI: 10.1016/j.bioorg.2019.103376
    In search of potent anti-inflammatory agents, twenty-four chalcone derivatives including seven new compounds (13 - 17, 21 and 23) containing pyrrole moiety were designed, synthesized, and assessed for their nitric oxide (NO) and prostaglandin E2 (PGE2) suppression ability on IFN-γ/LPS-induced RAW 264.7 macrophage cells. Results showed that none of the synthesized compounds were PAINS-associated molecules, with 3-(2,5-dimethoxyphenyl)-1-(1H-pyrrol-2-yl)-prop-2-en-1-one (compound 16) exhibiting remarkable inhibition activity towards PGE2 and NO production with IC50 values of 0.5 ± 1.5 µM and 12.1 ± 1.5 µM, respectively. Physicochemical and ADMET studies showed that majority of the compounds obey to Lipinski's rule of five (RO5) having high blood brain barrier (BBB) penetration, human intestinal absorption (HIA), P- glycoprotein (PgP) inhibition and plasma binding protein (PPB) inhibition. The obtained atomic coordinates for the single-crystal XRD of 16 were then applied in a molecular docking simulation, and compound 16 was found to participate in a number of important binding interactions in the binding sites of ERK and mPGES-1. Based on these results, we have observed the potential of compound 16 as a new hit anti-inflammatory agent, and these findings could serve as a basis for further studies on its mechanism of action.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis; Anti-Inflammatory Agents, Non-Steroidal/pharmacology*; Anti-Inflammatory Agents, Non-Steroidal/chemistry
  6. Mohd Aluwi MF, Rullah K, Yamin BM, Leong SW, Abdul Bahari MN, Lim SJ, et al.
    Bioorg Med Chem Lett, 2016 05 15;26(10):2531-8.
    PMID: 27040659 DOI: 10.1016/j.bmcl.2016.03.092
    The syntheses and bioactivities of symmetrical curcumin and its analogues have been the subject of interest by many medicinal chemists and pharmacologists over the years. To improve our understanding, we have synthesized a series of unsymmetrical monocarbonyl curcumin analogues and evaluated their effects on prostaglandin E2 production in lipopolysaccharide-induced RAW264.7 and U937 cells. Initially, compounds 8b and 8c exhibited strong inhibition on the production of PGE2 in both LPS-stimulated RAW264.7 (8b, IC50=12.01μM and 8c, IC50=4.86μM) and U937 (8b, IC50=3.44μM and 8c, IC50=1.65μM) cells. Placing vanillin at position Ar2 further improved the potency when both compounds 15a and 15b significantly lowered the PGE2 secretion level (RAW264.7: 15a, IC50=0.78μM and 15b, IC50=1.9μM while U937: 15a, IC50=0.95μM and 15b, IC50=0.92μM). Further experiment showed that compounds 8b, 8c, 15a and 15b did not target the activity of downstream inflammatory COX-2 mediator. Finally, docking simulation on protein targets COX-2, IKK-β, ERK, JNK2, p38α and p38β were performed using the conformation of 15a determined by single-crystal XRD.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis; Anti-Inflammatory Agents, Non-Steroidal/pharmacology; Anti-Inflammatory Agents, Non-Steroidal/chemistry
  7. Tang KS
    Curr Diabetes Rev, 2021;17(4):496-502.
    PMID: 33045978 DOI: 10.2174/1573399816999201012201111
    BACKGROUND: Diabetes mellitus is a metabolic disease that requires immediate attention. Oxidative stress that leads to the generation of reactive oxygen species is a contributing factor to the disease progression. Yttrium oxide nanoparticles (Y2O3 NPs) have a profound effect on alleviating oxidative damage.

    METHODS: The literature related to Y2O3 NPs and oxidative stress has been thoroughly searched using PubMed and Scopus databases and relevant studies from inception until August 2020 were included in this scoping review.

    RESULTS: Y2O3 NPs altered oxidative stress-related biochemical parameters in different disease models including diabetes.

    CONCLUSION: Although Y2O3 NPs are a promising antidiabetic agent due to their antioxidant and anti- inflammatory properties, more studies are required to further elucidate the pharmacological and toxicological properties of these nanoparticles.

    Matched MeSH terms: Anti-Inflammatory Agents
  8. Sambasevam, Yogesvari, Wong, Siong Jiun, Farihah Hanani Ghazali, Ammar Izzati Amir Ramadan, Mohd Roslan Sulaiman, Mohd Khairi Hussain, et al.
    MyJurnal
    Introduction: Active compounds derived from plants are able to inhibit nerve conduction. Cardamonin, a naturally occurring chalcone, manifests anti-nociceptive, anti-inflammatory and anti-neuropathy properties. Consequently, cardamonin may potentially inhibit nerve action potential, whereby, it affects the nerve conduction. Compound action potential is the sum of the activity which is measured from a nerve trunk. Objective: The experiment was carried out to investigate the inhibitory effect of cardamonin on compound action potentials and its possible mechanism of action on frog sciatic nerve. Methodology: LabTutor software was used to record compound action potentials in frog sciatic nerve. Sciatic nerve was isolated from the frog and soaked in Ringer’s solution. Stimulating electrodes were used to stimulate the nerve and recording electrodes were used to record compound action potentials. Compound action potential of the nerve were recorded before and after treatments [vehicle, cardamonin (0.5, 1 & 2 mg/ml) & morphine (3mg/ml)]. Participation of opioid system was investigated by pre-treating the nerve with naloxone and followed by cardamonin. All the data were recorded and analysed via LabTutor software. The data were analysed by using Two-way ANOVA followed by Bonferonni’s post hoc test with significant value at P < 0.05. Results: The outcomes showed that all the doses of cardamonin significantly reduced the peak amplitude of compound action potential in frog sciatic nerves. Besides, co-treatment of naloxone and cardamonin significantly (P < 0.001) reversed the effect of cardamonin on peak amplitude of compound action potential, suggesting the involvement of opioid receptors to inhibit nerve conduction. Conclusion: Cardamonin reduces the nerve signal conduction via activation of opioid receptors to modulate pain and contribute to the analgesic effects.
    Matched MeSH terms: Anti-Inflammatory Agents
  9. Siddique MI, Katas H, Amin MC, Ng SF, Zulfakar MH, Jamil A
    Int J Pharm, 2016 Jun 30;507(1-2):72-82.
    PMID: 27154252 DOI: 10.1016/j.ijpharm.2016.05.005
    The objective of this study was to investigate the in-vivo behavior of topically applied cationic polymeric chitosan nanoparticles (CSNPs) loaded with anti-inflammatory (hydrocortisone, HC) and antimicrobial (hydroxytyrosol, HT) drugs, to elucidate their skin targeting potential for the treatment of atopic dermatitis (AD). Compared to the commercial formulation, the HC-HT loaded CSNPs showed significantly improved drug penetration into the epidermal and dermal layers of albino Wistar rat skin without saturation. Dermal pharmacokinetic of CSNPs with a size of 228.5±7nm and +39±5mV charges revealed that they penetrated 2.46-fold deeper than the commercial formulation did, and had greater affinity at the skin target site without spreading to the surrounding tissues, thereby providing substantial safety benefits. In repeated dermal application toxicity studies, the HC-HT CSNPs showed no evidence of toxicity compared to the commercial formulation, which induced skin atrophy and higher liver enzyme levels. In conclusion, the positively charged HC-HT CSNP formulation exhibited promising local delivery and virtually no treatment-related toxicities, suggesting it may be an efficient and viable alternative for commercially available AD treatments.
    Matched MeSH terms: Anti-Inflammatory Agents
  10. Olorunnisola, S. K., Asiyanbi, -H. T., Hammed, A. M., Simsek, S.
    MyJurnal
    The use of herbal preparations remained the main approach of folk medicine to the treatment of ailments and debilitating diseases. Initial intensive researches conducted on Lemongrass extracts (tea) may have showed conflicting evidences, however the resurgence in claims of folk medicine practitioners necessitated further inquiry into the efficacy of the tea. Lemongrass tea contains several biocompounds in its decoction, infusion and essential oil extracts. Anti-oxidant, anti-inflammatory, anti-bacterial, anti-obesity, antinociceptive, anxiolytic and antihypertensive evidences of lemongrass tea were clearly elucidated to support initial pharmacological claims. Lemongrass tea was non-toxic, non-mutagenic and receives wide acceptance among alternative medicine practitioners in several developing countries. This review therefore presents previous research activities, technologies and information surrounding bioactivities of lemongrass tea. Areas of future researches which may elucidate mechanisms of the biological properties of lemongrass extracts were highlighted.
    Matched MeSH terms: Anti-Inflammatory Agents
  11. Siddiqui R, Lakhundi S, Iqbal J, Khan NA
    Exp Parasitol, 2016 Jul 2;168:45-50.
    PMID: 27381503 DOI: 10.1016/j.exppara.2016.06.011
    Non-steroidal anti-inflammatory drug, Diclofenac, targeting COX have shown promise in the treatment of Acanthamoeba keratitis, but the underlying mechanisms remain unknown. Using various NSAIDs, Diclofenac sodium, Indomethacin, and Acetaminophen, here we determined the effects of NSAIDs on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Using amoebicidal assays, the results revealed that Diclofenac sodium, and Indomethacin affected growth of A. castellanii. In contrast, none of the compounds tested had any effect on the viability of A. castellanii. Importantly, all NSAIDs tested abolished A. castellanii encystation. This is a significant finding as the ability of amoebae to transform into the dormant cyst form presents a significant challenge in the successful treatment of infection. The NSAIDs inhibit production of cyclo-oxegenase, which regulates the synthesis of prostaglandins suggesting that cyclooxygenases (COX-1 and COX-2) and prostaglandins play significant role(s) in Acanthamoeba biology. As NSAIDs are routinely used in the clinical practice, these findings may help design improved preventative strategies and/or of therapeutic value to improve prognosis, when used in combination with other anti-amoebic drugs.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal
  12. Bukhari SN, Lauro G, Jantan I, Fei Chee C, Amjad MW, Bifulco G, et al.
    Future Med Chem, 2016 Oct;8(16):1953-1967.
    PMID: 27654499
    In present study, the anti-inflammatory activities of a new series of benzimidazole derivatives were studied, investigating their inhibition of secretory phospholipase A2, lipoxygenase, COXs and lipopolysaccharide-induced secretion of TNF-α and IL-6 in mouse RAW264.7 macrophages.
    Matched MeSH terms: Anti-Inflammatory Agents
  13. Zin SRM, Kassim NM, Alshawsh MA, Hashim NE, Mohamed Z
    Biomed Pharmacother, 2017 Jul;91:611-620.
    PMID: 28486192 DOI: 10.1016/j.biopha.2017.05.011
    Anastatica hierochuntica L. (A. hierochuntica) is a desert plant consumed by people across the globe to treat various medical conditions. This review is aimed at providing a summary of the scientific findings on biological activities of A. hierochuntica and suggests areas in which further research is needed. This systematic review was synthesized from the literature obtained from the following databases; PubMed, Science Direct, Web of Science, Ovid Medline, Scopus, Google Scholar and WorldCat. Previous studies have indicated that the methanolic and aqueous extracts of this plant have antioxidant, antifungal and antimicrobial activities. It was shown to have the ability to activate phagocytes and to possess microbicidal activity, thereby causing increased resistance to infection. Both methanolic and aqueous extracts of this plant were also demonstrated to have a hypoglycaemic property, whilst the methanolic extract significantly exhibited hypolipidaemic effects in diabetic rats. Moreover, the methanolic extract of A. hierochuntica has been suggested to have hepatoprotective properties. This is supported by its ability to significantly decrease transaminase and alkaline phosphatase activities in alloxan-induced diabetic rats. Besides, this desert plant exhibited anti-inflammatory, anti-melanogenic and gastroprotective activities. Even though A. hierochuntica is widely used, studies on this plant are still scarce, thus its reputed biological activities and medical benefits require critical evaluation. Before A. hierochuntica can be used clinically, further studies need to be conducted to increase our understanding of the effects of this plant, its constituents, and possible mechanisms of action.
    Matched MeSH terms: Anti-Inflammatory Agents
  14. Latifah, S. Y., Faujan, H. A., Sze, L. P., Raha, A. R., Hisyam, A. H., Li, O. C.
    MyJurnal
    Introduction: Curcumin, a natural compound present in turmeric (Curcuma longa) has been known to possess both anti-inflammatory and antioxidant effects. Objectives: The objectives of the study were to evaluate the cytotoxic activities and to determine the mode of cell death induced by curcumin towards the human mammary carcinoma cells (MDAMB-231). Methodology: Cytotoxicity of curcumin and its effect on cell viability were determined by using MTT assay and trypan blue dye exclusion method, respectively. The mode of cell death was detected by viewing under a light microscope and through DNA fragmentation analysis. Results and discussion: Curcumin was cytotoxic to MDA-MB-231 cells with the IC50 of 17.25 ì g/ml. Cell viability treatment using curcumin at concentrations of 30 ì g/ml and 10 ì g/ml was significantly (p
    Matched MeSH terms: Anti-Inflammatory Agents
  15. Arumugam M, Azhar MZ
    MyJurnal
    Introduction: The Cyclooxygenase-2 (COX-2) enzyme is responsible for the synthesis of prostaglandin which is responsible for inflammation and pain. Celecoxib a cyclooxygenase-2 inhibitor was first used as a non-steroidal anti-inflammatory drug in 1999. Celecoxib is as effective as NSAIDs but causes less ulceration of the gastrointestinal tract, hence it is commonly used. It has been widely used in patients with osteoarthritis and rheumatoid arthritis. We present 3 cases of temporary psychiatric disorders associated with consumption of celecoxib, two of the patients presented with auditory hallucinations while one was diagnosed to be having depression. None had pre-existing psychiatric disorders or consumed alcohol or substance of abuse. All 3 patients recovered from their temporary psychiatric disorders after stopping celecoxib. Discussion: It is important to be aware of the psychiatric side effects when prescribing the drug for prolonged periods.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal
  16. Amirah Haziyah Ishak, Nurul Husna Shafie, Norhaizan Mohd Esa, Hasnah Bahari
    MyJurnal
    Mikania micrantha Kunth (Asteraceae) is a perennial creeping vine that can be found in South and North America, Africa, Pacific Islands and Southeast Asia, including Southern China and Malaysia. Previous studies have reported that this plant possesses several pharmacological properties which can be used to prevent and cure several diseases. Phytochemicals found from various parts of M. micrantha have been linked to beneficial medicinal properties such as antioxidant, antimicrobial, antitumour, anti-inflammatory, anti-stress, and also anti-diabetic activities. The primary aim of this paper is to review available scientific information on the nutritional, phytochemical and pharmacological properties of M. micrantha to provide baseline information for future studies.
    Matched MeSH terms: Anti-Inflammatory Agents
  17. Malik A, Arooj M, Butt TT, Zahid S, Zahid F, Jafar TH, et al.
    Drug Des Devel Ther, 2018;12:1431-1443.
    PMID: 29872266 DOI: 10.2147/DDDT.S154169
    Background: The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone), Solanum incanum (solasodin), and Salvadora oleioides (salvadorin) in rats.

    Materials and methods: Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4) (1 mL/kg b.wt.) once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.). Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α), isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied.

    Results: Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents.

    Conclusion: Cabralealactone, solasodin, and salvadorin confer some hepatoprotective and DNA-damage protective effects against CCl4-induced toxicity. They successfully restored the normal architecture of hepatocytes and have the potential to be used as inhibitor to main culprits, that is, cyclooxygenase-2 and TNF-α. They can combat oxidative stress and liver injuries both as mono and combinational therapies. However, combination therapy has more ameliorating effects.

    Matched MeSH terms: Anti-Inflammatory Agents/isolation & purification; Anti-Inflammatory Agents/pharmacology*; Anti-Inflammatory Agents/chemistry
  18. Iman V, Mohan S, Abdelwahab SI, Karimian H, Nordin N, Fadaeinasab M, et al.
    Drug Des Devel Ther, 2017;11:103-121.
    PMID: 28096658 DOI: 10.2147/DDDT.S115135
    Therapy that directly targets apoptosis and/or inflammation could be highly effective for the treatment of cancer. Murraya koenigii is an edible herb that has been traditionally used for cancer treatment as well as inflammation. Here, we describe that girinimbine, a carbazole alkaloid isolated from M. koenigii, induced apoptosis and inhibited inflammation in vitro as well as in vivo. Induction of apoptosis in human colon cancer cells (HT-29) by girinimbine revealed decreased cell viability in HT-29, whereas there was no cytotoxic effect on normal colon cells. Changes in mitochondrial membrane potential, nuclear condensation, cell permeability, and cytochrome c translocation in girinimbine-treated HT-29 cells demonstrated involvement of mitochondria in apoptosis. Early-phase apoptosis was shown in both acridine orange/propidium iodide and annexin V results. Girinimbine treatment also resulted in an induction of G0/G1 phase arrest which was further corroborated with the upregulation of two cyclin-dependent kinase proteins, p21 and p27. Girinimbine treatment activated apoptosis through the intrinsic pathway by activation of caspases 3 and 9 as well as cleaved caspases 3 and 9 which ended by triggering the execution pathway. Moreover, apoptosis was confirmed by downregulation of Bcl-2 and upregulation of Bax in girinimbine-treated cells. In addition, the key tumor suppressor protein, p53, was seen to be considerably upregulated upon girinimbine treatment. Induction of apoptosis by girinimbine was also evidenced in vivo in zebrafish embryos, with results demonstrating significant distribution of apoptotic cells in embryos after a 24-hour treatment period. Meanwhile, anti-inflammatory action was evidenced by the significant dose-dependent girinimbine inhibition of nitric oxide production in lipopolysaccharide/interferon-gamma-induced cells along with significant inhibition of nuclear factor-kappa B translocation from the cytoplasm to nucleus in stimulated RAW 264.7 cells. Girinimbine was also shown to have considerable antioxidant activity whereby 20 μg/mL of girinimbine was equivalent to 82.17±1.88 μM of Trolox. In mice with carrageenan-induced peritonitis, oral pretreatment with girinimbine helped limit total leukocyte migration (mainly of neutrophils), and reduced pro-inflammatory cytokine levels (interleukin-1beta and tumor necrosis factor-alpha) in the peritoneal fluid. These findings strongly suggest that girinimbine could act as a chemopreventive and/or chemotherapeutic agent by inducing apoptosis while suppressing inflammation. There is a potential for girinimbine to be further investigated for its applicability in treating early stages of cancer.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/isolation & purification; Anti-Inflammatory Agents, Non-Steroidal/pharmacology*; Anti-Inflammatory Agents, Non-Steroidal/chemistry
  19. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M
    BMC Complement Altern Med, 2017 Jan 14;17(1):47.
    PMID: 28088220 DOI: 10.1186/s12906-017-1555-0
    Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells.
    Matched MeSH terms: Anti-Inflammatory Agents/analysis; Anti-Inflammatory Agents/isolation & purification; Anti-Inflammatory Agents/pharmacology*
  20. Aziz AN, Ismail NH, Halim SNA, Looi CY, Anouar EH, Langat MK, et al.
    Phytochemistry, 2018 Dec;156:193-200.
    PMID: 30316148 DOI: 10.1016/j.phytochem.2018.10.002
    A phytochemical investigation of the stem barks of the Malaysian Croton oblongus Burm.f. (Syn. Croton laevifolius Blume) (Euphorbiaceae) yielded seven previously undescribed ent-neo-clerodane diterpenoids, laevifins A - G and the known crovatin (3). Structures were established by a combination of spectroscopic methods including HRESIMS, NMR spectroscopy and X-ray crystallography. The absolute configuration of crovatin and laevifins A-G was established by comparison of experimental ECD and theoretical TDDFT ECD calculated spectra. This is the first report on the occurrence of the sesquiterpenoid cryptomeridiol in a Croton species. In vitro cytotoxicity assays on laevifins A, B and G showed moderate activities against the MCF-7 cancer cell line (IC50 102, 115 and 106 μM, respectively) while β-amyrin and acetyl aleuritolic acid showed good anti-inflammatory activity on the LPS-induced NF-κB translocation inhibition in RAW 264.7 cells assay with IC50 values of 23.5 and 35.4 μg/mL, respectively.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/isolation & purification; Anti-Inflammatory Agents, Non-Steroidal/pharmacology*; Anti-Inflammatory Agents, Non-Steroidal/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links