Displaying publications 21 - 40 of 92 in total

Abstract:
Sort:
  1. Khanuja HK, Awasthi R, Mehta M, Satija S, Aljabali AAA, Tambuwala MM, et al.
    Recent Pat Nanotechnol, 2021;15(4):351-366.
    PMID: 33357187 DOI: 10.2174/1872210514666201224103010
    BACKGROUND: Nanosuspensions are colloidal systems consisting of pure drug and stabilizers, without matrix or lyophilized into a solid matrix. Nanosuspensions improve the solubility of the drug both in the aqueous and organic phases. Nanosuspensions are also known as brick dust molecules, as they increase the dissolution of a system and improve absorption.

    METHODS: Extensive information related to nanosuspensions and its associated patents were collected using Pub Med and Google Scholar.

    RESULTS: Over the last decade nanosuspensions have attracted tremendous interest in pharmaceutical research. It provides unique features including, improved solubility, high drug loading capacity, and passive targeting. These particles are cost-effective, simple, and have lesser side effects with minimal dose requirements. However, the stability of nanosuspensions still warrants attention.

    CONCLUSION: Nanosuspensions play a vital role in handling the numerous drug entities with difficult physico-chemical characteristics such as solubility and can further aid with a range of routes that include nasal, transdermal, ocular, parenteral, pulmonary etc. This review highlights the relevance of nanosuspensions in achieving safe, effective and targeted drug delivery.

    Matched MeSH terms: Administration, Cutaneous
  2. Lim JL, Yusof NS, Md Tarekh NA, Abdul Rahman R
    Cureus, 2020 Nov 19;12(11):e11580.
    PMID: 33364104 DOI: 10.7759/cureus.11580
    Dermatomyositis is often presented as paraneoplastic syndrome. The diagnosis of dermatomyositis can prompt clinicians to further investigate the underlying cause, in particular malignancy. This case report illustrates the association of lung adenocarcinoma and dermatomyositis with antecedent presentation of cutaneous and musculoskeletal manifestations, one year prior to the diagnosis of carcinoma.
    Matched MeSH terms: Administration, Cutaneous
  3. Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, et al.
    Int J Pharm, 2020 Sep 25;587:119673.
    PMID: 32739388 DOI: 10.1016/j.ijpharm.2020.119673
    Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance. Microneedles can be broadly classified into five types: solid microneedles, coated microneedles, dissolving microneedles, hollow microneedles, and hydrogel-forming microneedles. The materials used for the preparation of microneedles dictate the different applications and features present in the microneedle. Polymeric microneedle arrays present an improved method for transdermal administration of drugs as they penetrate the skin stratum corneum barrier with minimal invasiveness. The review summarizes the importance of polymeric microneedle and discussed some of the most important therapeutic drugs in research, mainly protein drugs, vaccines and small molecule drugs in regenerative medicine.
    Matched MeSH terms: Administration, Cutaneous
  4. Goh CF, Boyd BJ, Craig DQM, Lane ME
    Expert Opin Drug Deliv, 2020 09;17(9):1321-1334.
    PMID: 32634033 DOI: 10.1080/17425247.2020.1792440
    BACKGROUND: Drug crystallization following application of transdermal and topical formulations may potentially compromise the delivery of drugs to the skin. This phenomenon was found to be limited to the superficial layers of the stratum corneum (~7 µm) in our recent reports and tape stripping of the skin samples was necessary. It remains a significant challenge to profile drug crystallization in situ without damaging the skin samples.

    METHODS: This work reports the application of an X-ray microbeam via synchrotron SAXS/WAXS analysis to monitor drug crystallization in the skin, especially in the deeper skin layers. Confocal Raman spectroscopy (CRS) was employed to examine drug distribution in the skin to complement the detection of drug crystallization using SAXS/WAXS analysis.

    RESULTS: Following application of saturated drug solutions (ibuprofen, diclofenac acid, and salts), CRS depth profiles confirmed that the drugs generally were delivered to a depth of ~15 - 20 µm in the skin. This was compared with the WAXS profiles that measured drug crystal diffraction at a depth of up to ~25 µm of the skin.

    CONCLUSION: This study demonstrates the potential of synchrotron SAXS/WAXS analysis for profiling of drug crystallization in situ in the deeper skin layers without pre-treatment for the skin samples. [Figure: see text].

    Matched MeSH terms: Administration, Cutaneous
  5. Harjoh N, Wong TW, Caramella C
    Int J Pharm, 2020 Jun 30;584:119416.
    PMID: 32423875 DOI: 10.1016/j.ijpharm.2020.119416
    Inhaled/oral insulin have been investigated as an alternative to injectable insulin, but are met with unsatisfactory outcomes. Transdermal administration bears several advantages unmet by inhalation/oral delivery, but macromolecular drugs permeation is poor. This study explored microwave to elicit transdermal insulin permeation, and compared against conventional permeation enhancers (fatty acids) in vitro/in vivo. The transdermal insulin permeation was promoted by microwave (2450 MHz/1 mW) > oleic acid (monounsaturated) ~ linoleic acid (double unsaturated bonds). The linolenic acid (triple unsaturated bonds) or combination of microwave/fatty acid reduced skin insulin permeation. Transdermal insulin permeation enhancement was attributed to epidermal lipid bilayer fluidization (CH) and corneocyte shrinkage due to keratin condensation (OH/NH, CO), which had aqueous pore enlarged to facilitate insulin transport. Its reduction by linolenic acid, a molecularly larger and rigid fatty acid with higher surface tension, was due to reduced fatty acid permeation into epidermis and minimal skin microstructural changes. The oleic acid, despite favoured skin microstructural changes, did not provide a remarkably high insulin permeation due to it embedded in skin as hydrophobic shield to insulin transport. Microwave penetrates skin volumetrically with no chemical residue retention. It alone promoted insulin absorption and sustained blood glucose level reduction in vivo.
    Matched MeSH terms: Administration, Cutaneous
  6. Pandey P, Satija S, Wadhwa R, Mehta M, Purohit D, Gupta G, et al.
    Dermatol Ther, 2020 05;33(3):e13292.
    PMID: 32126154 DOI: 10.1111/dth.13292
    Matched MeSH terms: Administration, Cutaneous
  7. Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Pharmaceutics, 2020 Apr 24;12(4).
    PMID: 32344768 DOI: 10.3390/pharmaceutics12040392
    The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
    Matched MeSH terms: Administration, Cutaneous
  8. Firdaus Hayati, Meryl Grace Lansing, Nornazirah Azizan
    MyJurnal
    Dear editor, We read with great interest the article by Go ZL et al., which was published in your esteemed journal1. The authors had reported an unusual and yet important case of cutaneous manifestations of malignancy. Being the only and initial presentation of Hodgkin’s lymphoma, prurigo nodularis can manifest as a benign dermatological appearance in the underlying sinister condition. We want to again highlight the importance of this bizarre cutaneous presentation which can counterfeit the actual and occult villain.
    Matched MeSH terms: Administration, Cutaneous
  9. How KN, Yap WH, Lim CLH, Goh BH, Lai ZW
    Front Pharmacol, 2020;11:1105.
    PMID: 32848737 DOI: 10.3389/fphar.2020.01105
    Hyaluronic acid (HA), a major component of extracellular matrix has been widely applied in pharmaceutical and cosmetic industries due to its reported pharmacological properties. Various types of HA drug delivery system including nanoparticles, cryogel-based formulations, microneedle patches, and nano-emulsions were developed. There are studies reporting that several HA-based transdermal delivery systems exhibit excellent biocompatibility, enhanced permeability and efficient localized release of anti-psoriasis drugs and have shown to inhibit psoriasis-associated skin inflammation. Similarly HA is found in abundant at epidermis of atopic dermatitis (AD) suggesting its role in atopic AD pathology. Anti-allergenic effect of atopic eczema can be achieved through the inhibition of CD44 and protein kinase C alpha (PKCα) interaction by HA. Herein, we aim to evaluate the current innovation on HA drug delivery system and the other potential applications of HA in inflammatory skin diseases, focusing on atopic dermatitis and psoriasis. HA is typically integrated into different delivery systems including nanoparticles, liposomes, ethosomes and microneedle patches in supporting drug penetration through the stratum corneum layer of the skin. For instance, ethosomes and microneedle delivery system such as curcumin-loaded HA-modified ethosomes were developed to enhance skin retention and delivery of curcumin to CD44-expressing psoriatic cells whereas methotrexate-loaded HA-based microneedle was shown to enhance skin penetration of methotrexate to alleviate psoriasis-like skin inflammation. HA-based nanoparticles and pluronic F-127 based dual responsive (pH/temperature) hydrogels had been described to enhance drug permeation through and into the intact skin for AD treatment.
    Matched MeSH terms: Administration, Cutaneous
  10. Md S, Karim S, Saker SR, Gie OA, Hooi LC, Yee PH, et al.
    Curr Pharm Des, 2020;26(19):2222-2232.
    PMID: 32175832 DOI: 10.2174/1381612826666200316154300
    Rotigotine is a non-ergoline, high lipophilic dopamine agonist. It is indicated as the first-line therapy for Parkinson's disease (PD) and Restless Leg Syndrome (RLS). However, the precise mechanism of rotigotine is yet to be known. Rotigotine has similar safety and tolerability to the other oral non-ergolinic dopamine antagonists in clinical trials, which include nausea, dizziness and somnolence. Neupro® was the first marketed transdermal patch formulation having rotigotine. The transdermal delivery system is advantageous as it enables continuous administration of the drug, thus providing steady-state plasma drug concentration for 24-hours. Intranasal administration of rotigotine allows the drug to bypass the blood-brain barrier enabling it to reach the central nervous system within minutes. Rotigotine can also be formulated as an extended-release microsphere for injection. Some challenges remain in other routes of rotigotine administration such as oral, parenteral and pulmonary, whereby resolving these challenges will be beneficial to patients as they are less invasive and comfortable in terms of administration. This review compiles recent work on rotigotine delivery, challenges and its future perspective.
    Matched MeSH terms: Administration, Cutaneous
  11. Tou KAS, Rehman K, Ishak WMW, Zulfakar MH
    Drug Dev Ind Pharm, 2019 Sep;45(9):1451-1458.
    PMID: 31216907 DOI: 10.1080/03639045.2019.1628042
    Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques. Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions. Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93-409.86 nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97 ± 0.91 mg/cm2) and drug flux (0.19 ± 0.05 mg/cm2/h). Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin.
    Matched MeSH terms: Administration, Cutaneous
  12. Sabri AH, Ogilvie J, Abdulhamid K, Shpadaruk V, McKenna J, Segal J, et al.
    Eur J Pharm Biopharm, 2019 Jul;140:121-140.
    PMID: 31059780 DOI: 10.1016/j.ejpb.2019.05.001
    Since the first patent for microneedles was filed in the 1970s, research on utilising microneedles as a drug delivery system has progressed significantly. In addition to the extensive research on microneedles for improving transdermal drug delivery, there is a growing interest in using these devices to manage dermatological conditions. This review aims to provide the background on microneedles, the clinical benefits, and challenges of the device along with the potential dermatological conditions that may benefit from the application of such a drug delivery system. The first part of the review provides an outline on benefits and challenges of translating microneedle-based drug delivery systems into clinical practice. The second part of the review covers the application of microneedles in treating dermatological conditions. The efficacy of microneedles along with the limitations of such a strategy to treat diseased skin shall be addressed.
    Matched MeSH terms: Administration, Cutaneous
  13. Sundralingam U, Khan TM, Elendran S, Muniyandy S, Palanisamy UD
    Pak J Pharm Sci, 2019 May;32(3):1121-1128.
    PMID: 31278729
    There has been a number of studies looking into an alternative mode of therapy for the treament of breast cancer via 4-hydroxytamoxifen (4-OHT) transdermal administration.This systematic review aims to compare the safety and efficacy of a transdermal 4-OHT local therapy and oral tamoxifen (oral-T) on the treatment of ductal carcinoma in situ breast cancer. Through a systematic search of health science databases, eligible trials were located and the end points assessed were Ki-67 labeling index, concentration of 4-OHT in breast adipose tissue (ng/g) and plasma (ng/ml). Revman 5.3 version was used to perfom the meta-analysis. Three trials were identified (n=103), while only two were included for meta analysis. The mean difference between the two studies included were 0.40 and -10.58. Overall the I2 value was 89.0%, (Tau2 =53.86) and the differences between the two trials were statistically significant p=0.002. The meta analysis of the randomized controlled trials showed that the use of local transdermal therapy of 4-OHT gel is more safer than oral-T. However, due to the limited number of studies, the potential use of 4-OHT topical transdermal therapy for the treatment of breast cancer could not be concluded for healthcare professionals.
    Matched MeSH terms: Administration, Cutaneous
  14. Sheshala R, Anuar NK, Abu Samah NH, Wong TW
    AAPS PharmSciTech, 2019 Apr 15;20(5):164.
    PMID: 30993407 DOI: 10.1208/s12249-019-1362-7
    This review highlights in vitro drug dissolution/permeation methods available for topical and transdermal nanocarriers that have been designed to modulate the propensity of drug release, drug penetration into skin, and permeation into systemic circulation. Presently, a few of USFDA-approved in vitro dissolution/permeation methods are available for skin product testing with no specific application to nanocarriers. Researchers are largely utilizing the in-house dissolution/permeation testing methods of nanocarriers. These drug release and permeation methods are pending to be standardized. Their biorelevance with reference to in vivo plasma concentration-time profiles requires further exploration to enable translation of in vitro data for in vivo or clinical performance prediction.
    Matched MeSH terms: Administration, Cutaneous*
  15. Singh I, Nair RS, Gan S, Cheong V, Morris A
    Pharm Dev Technol, 2019 Apr;24(4):448-454.
    PMID: 30084268 DOI: 10.1080/10837450.2018.1509347
    The drawbacks associated with chemical skin permeation enhancers such as skin irritation and toxicity necessitated the research to focus on potential permeation enhancers with a perceived lower toxicity. Crude palm oil (CPO) is obtained by direct compression of the mesocarp of the fruit of the oil palm belonging to the genus Elaeis. In this research, CPO and tocotrienol-rich fraction (TRF) of palm oil were evaluated for the first time as skin permeation enhancers using full-thickness human skin. The in vitro permeation experiments were conducted using excised human skin mounted in static upright 'Franz-type' diffusion cells. The drugs selected to evaluate the enhancing effects of these palm oil derivatives were 5-fluorouracil, lidocaine and ibuprofen: compounds covering a wide range of Log p values. It was demonstrated that CPO and TRF were capable of enhancing the percutaneous permeation of drugs across full-thickness human skin in vitro. Both TRF and CPO were shown to significantly enhance the permeation of ibuprofen with flux values of 30.6 µg/cm2 h and 23.0 µg/cm2 h respectively, compared to the control with a flux of 16.2 µg/cm2 h. The outcome of this research opens further scope for investigation on the transdermal penetration enhancement activity of pure compounds derived from palm oil.
    Matched MeSH terms: Administration, Cutaneous
  16. Devaraj NK, Aneesa AR, Abdul Hadi AM, Shaira N
    Med J Malaysia, 2019 04;74(2):187-189.
    PMID: 31079135
    Topical corticosteroids are common medications prescribed for skin problems encountered in the primary care or dermatology clinic settings. As skin conditions comprise of around 20% of cases seen in primary care, this article written to guide readers, especially non-dermatologists on the appropriate potency of topical corticosteroids to be chosen for skin problems of patients and to list the side effects both local and systemic.
    Matched MeSH terms: Administration, Cutaneous
  17. Siddique MI, Katas H, Jamil A, Mohd Amin MCI, Ng SF, Zulfakar MH, et al.
    Drug Deliv Transl Res, 2019 04;9(2):469-481.
    PMID: 29159691 DOI: 10.1007/s13346-017-0439-7
    Hydrocortisone (HC), topical glucocorticoid along with hydroxytyrosol (HT), and anti-microbial- and anti-oxidant-loaded chitosan nanoparticles (CSNPs) were prepared in large scale and analyzed for their adverse effects on healthy human skin followed by repeated applications. Ten subjects were randomized to receive test (HC-HT CSNPs) and vehicle samples (aqueous (AQ) cream). They were applied on the arms for 28 days, and transepidermal water loss (TEWL), erythema intensity, and irritation score were measured. Blood samples were analyzed for blood hematology, blood biochemistry, and adrenal cortico-thyroid hormone (ACTH) levels. Skin biopsy was obtained to assess histopathological changes in the skin. HC-HT CSNP AQ cream was stored at 4, 25, and 45 °C for a period of 1 year, and its stability was assessed by monitoring their physical appearances, particle size, and pH. Spherical-shaped NPs were successfully upscaled using spinning-disc technology, with insignificant changes in particle size, zeta potential, and incorporation of drugs as compared to the well-established laboratory method. Particle size of HC-HT CSNPs was
    Matched MeSH terms: Administration, Cutaneous
  18. Nair RS, Morris A, Billa N, Leong CO
    AAPS PharmSciTech, 2019 Jan 10;20(2):69.
    PMID: 30631984 DOI: 10.1208/s12249-018-1279-6
    Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
    Matched MeSH terms: Administration, Cutaneous
  19. Shahid N, Siddique MI, Razzaq Z, Katas H, Waqas MK, Rahman KU
    Drug Dev Ind Pharm, 2018 Dec;44(12):2061-2070.
    PMID: 30081679 DOI: 10.1080/03639045.2018.1509081
    OBJECTIVE: This study was designed to optimize and develop matrix type transdermal drug delivery system (TDDS) containing tizanidine hydrochloride (TZH) using different polymers by solvent evaporation method.

    SIGNIFICANCE: A strong need exists for the development of transdermal patch having improved bioavailability at the site of action with fewer side effects at off-target organs.

    METHODS: The patches were physically characterized by texture analysis (color, flexibility, smoothness, transparency, and homogeneity), in vitro dissolution test and FTIR analysis. Furthermore, functional properties essential for TDDS, in vitro percentage of moisture content, percentage of water uptake, in vitro permeation by following different kinetic models, in vivo drug content estimation and skin irritation were determined using rabbit skin.

    RESULTS: The optimized patches were soft, of uniform texture and thickness as well as pliable in nature. Novel transdermal patch showed ideal characteristics in terms of moisture content and water uptake. FTIR analysis confirmed no interaction between TZH and cellulose acetate phthalate (CAP). The patch showed sustained release of the drug which increased the availability of short acting TZH at the site of action. The patch also showed its biocompatibility to the in vivo model of rabbit skin.

    CONCLUSIONS: The results demonstrated that topically applied transdermal patch will be a potential medicated sustain release patch for muscle pain which will improve patient compliance.

    Matched MeSH terms: Administration, Cutaneous
  20. Nawaz A, Wong TW
    J Invest Dermatol, 2018 11;138(11):2412-2422.
    PMID: 29857069 DOI: 10.1016/j.jid.2018.04.037
    5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.
    Matched MeSH terms: Administration, Cutaneous
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links