Displaying publications 21 - 40 of 142 in total

Abstract:
Sort:
  1. Syuhada N, Huang N, Vijay Kumar S, Lim H, Rahman S, Thien G, et al.
    Sains Malaysiana, 2014;43:851-859.
    Nanocomposite thin films of chitosanlgraphene oxide (cs/Go) and chitosanl EDTA-GO (CSIEDTA-GO) were prepared by environmental friendly method and the properties were compared. The experimental results showed fine dispersion of GO and EDTA-GO in CS matrix and some interaction occur between the filler and the CS matrix that leads to better distribution of stress transfer. At 0.5 wt. %, both CSIGO and CSIEDTA-GO experienced maximum tensile stress by 51 and 71% compared with CS. Moreover, the elongation at break for both nanocomposites increases and the amount of filler increases.
    Matched MeSH terms: Excipients
  2. Tounsia Abbas-Aksil, Salem Benamara
    Sains Malaysiana, 2015;44:301-308.
    Lyophilized powder (LP) from Algerian arbutus wild berries (Arbutus unedo L.) was obtained. This present paper reports about the dissolution (releasing) properties of LP-based tablets, evaluated through the electric conductivity (EC) of distilled water which is employed as surrounding medium, at three different temperatures (291, 298 and 309 K). In addition to this, secondary physicochemical characteristics such as elementary analysis, color and compressibility were evaluated. Regarding the modeling of ionic transfer, among the three tested models, namely Peleg, Singh et al. and Singh and Kulshestha, the latter seems to be the most appropriate (R2 = 0.99), particularly in the case of compacted tablets under 2000 Pa. The temperature dependence of the dissolution process was also studied applying Arrhenius equation (R2>0.8) which allowed to deduce the activation energy, ranging from 18.7 to 21.4 kJ.mol-1 according to the model and compression force employed.
    Matched MeSH terms: Excipients
  3. Asif K, Lock SSM, Taqvi SAA, Jusoh N, Yiin CL, Chin BLF
    Chemosphere, 2023 Jan;311(Pt 1):136936.
    PMID: 36273613 DOI: 10.1016/j.chemosphere.2022.136936
    Polysulfone (PSF) based mixed matrix membranes (MMMs) are one of the most broadly studied polymeric materials used for CO2/CH4 separation. The performance of existing PSF membranes encounters a bottleneck for widespread expansion in industrial applications due to the trade-off amongst permeability and selectivity. Membrane performance has been postulated to be enhanced via functionalization of filler at different weight percentages. Nonetheless, the preparation of functionalized MMMs without defects and its empirical study that exhibits improved CO2/CH4 separation performance is challenging at an experimental scale that needs prior knowledge of the compatibility between the filler and polymer. Molecular simulation approaches can be used to explore the effect of functionalization on MMM's gas transport properties at an atomic level without the challenges in the experimental study, however, they have received less scrutiny to date. In addition, most of the research has focused on pure gas studies while mixed gas transport properties that reflect real separation in functionalized silica/PSF MMMs are scarcely available. In this work, a molecular simulation computational framework has been developed to investigate the structural, physical properties and gas transport behavior of amine-functionalized silica/PSF-based MMMs. The effect of varying weight percentages (i.e., 15-30 wt.%) of amine-functionalized silica and gas concentrations (i.e., 30% CH4/CO2, 50% CH4/CO2, and 70% CH4/CO2) on physical and gas transport characteristics in amine-functionalized silica/PSF MMMs at 308.15 K and 1 atm has been investigated. Functionalization of silica nanoparticles was found to increase the diffusion and solubility coefficients, leading to an increase in the percentage enhancement of permeability and selectivity for amine-functionalized silica/PSF MMM by 566% and 56%, respectively, compared to silica/PSF-based MMMs at optimal weight percentage of 20 wt.%. The model's permeability differed by 7.1% under mixed gas conditions. The findings of this study could help to improve real CO2/CH4 separation in the future design and concept of functionalized MMMs using molecular simulation and empirical modeling strategies.
    Matched MeSH terms: Excipients
  4. Khursheed R, Gulati M, Wadhwa S, Vishwas S, Sharma DS, Corrie L, et al.
    Chem Biol Interact, 2022 Dec 01;368:110223.
    PMID: 36283466 DOI: 10.1016/j.cbi.2022.110223
    Synbiotics, are a combination of probiotics and prebiotics. They play an important role in metabolizing different nutritional substrates and thus helps in the maintenance of human health. Any disbalance in the gut microflora, known as dysbiosis, is known to lead to a number of diseased conditions. It can be reverted by the administration of synbiotics. Present review highlights various mechanistic pathways through which synbiotics act as therapeutics. The dual role of synbiotics as nutraceutical and excipient in developing oral formulations are entailed with case studies. The findings entailed that there exist numerous studies on prebiotics as well as probiotics have been carried out to show their effects in several diseases. However, the concept of combining together them for prevention and treatment of various pathological conditions accruing from dysbiosis is relatively new. Synbiotics, however, face challenge of low stability during their sojourn in the GIT, which is generally overcome by various encapsulation techniques. Various studies also showed potential role of synbiotics in drug delivery. However, it is an emerging area and lacks clinical correlation. It is important to focus on clinical trials of formulations wherein synbiotics have been used as therapeutic moiety as well as pharmaceutical carrier for treating various diseases.
    Matched MeSH terms: Excipients
  5. Shakerardekani, A., Karim, R, Mohd Ghazali, H, Chin, N.L.
    MyJurnal
    Roasting of whole-kernels is an important step in the production of pistachio paste. The effect of hot air roasting temperatures (90-190°C) and times (5-65 min) on the hardness, moisture content and colour attributes (‘L’, ‘a’ and ‘b’ values and yellowness index) of both whole-kernel and ground-state were investigated using response surface methodology (RSM). Increases in roasting temperature and time caused a decrease in all the responses except for ‘a’ value of ground-state. The interaction and quadratic models sufficiently described the changes in the hardness and colour values, respectively. The result of RSM analysis showed that hardness and colour attributes (‘L’ and ‘b’ values, yellowness index) of kernels and ‘a’ value of ground-state could be used to monitor the roasting quality of whole-kernels. This study showed that the recommended range of roasting temperature and time of whole-kernel for the production of pistachio paste were 130-140°C and 30-40 min, respectively.
    Matched MeSH terms: Excipients
  6. Sebastian, Patrick, Yap, Vooi Voon, Comley, Richard
    MyJurnal
    This paper presents a tracking method based on parameters between colour blobs. The colour blobs
    are obtained from segmenting the overall target into multiple colour regions. The colour regions are
    segmented using EM method that determines the normal colour distributions from the overall colour
    pixel distribution. After segmenting into different regions on the different colour layers, parameters
    can be generated between colour regions of interest. In this instance, the colour regions of interest are
    the top and bottom colour regions. The parameters that are generated from these colour regions are
    the vector magnitude, vector angle and the value difference between colour regions. These parameters
    are used as a means for tracking targets of interest. These parameters are used for tracking the target
    of interest across an array of cameras which in this instance are three cameras. Three cameras have
    been set up with different background and foreground conditions. The summarised results of tracking
    targets across three cameras have shown that the consistency of colour regions across different cameras
    and different background settings provided sufficient parameters for targets to be tracked consistently.
    Example of tracking performance across three cameras were 0.88, 0.67 and 0.55. The remaining tracking
    performances across three cameras are shown in Table 2. The tracking performance indicate that the
    parameters between colour regions were able to be used for tracking a target across different cameras
    with different background scenarios. Based on results obtained, parameters between segmented colour
    regions have indicated robustness in tracking target of interest across three cameras.
    Matched MeSH terms: Excipients
  7. Abd Khalil AT, Shah Buddin MMH, Puasa SW, Ahmad AL
    Environ Sci Pollut Res Int, 2023 Mar;30(15):45244-45258.
    PMID: 36705837 DOI: 10.1007/s11356-023-25208-0
    Zinc (Zn) was identified as one of the most toxic heavy metals and often found contaminating the water sources as a result of inefficient treatment of industrial effluent. A green emulsion liquid membrane (GELM) was proposed in this study as a method to minimize the concentration of Zn ions in an aqueous solution. Instead of the common petroleum-based diluent, the emulsion is reformulated with untreated waste cooking oil (WCO) collected from the food industry as a sustainable and cheaper diluent. It also includes Bis(2-ethylhexyl) phosphate (D2EHPA) as a carrier, Span 80 as a surfactant, sulfuric acid (H2SO4) as an internal phase, and ZnSO4 solution as an external phase. Such formulation requires a thorough understanding of the oil characteristics as well as the interaction of the components in the membrane phase. The compatibility of WCO and D2EHPA, as well as the external phase pH, was confirmed via a liquid-liquid extraction (LLE) method. To obtain the best operating conditions for Zn extraction using GELM, the extraction time and speed, carrier, surfactant and internal phase concentrations, and W/O ratio were varied. 95.17% of Zn ions were removed under the following conditions; 0.001 M of H2SO4 in external phase, 700 rpm extraction speed for 10 min, 8 wt% of carrier and 4 wt% of surfactant concentrations, 1:4 of W/O ratio, and 1 M of internal phase concentration.
    Matched MeSH terms: Excipients
  8. Fan PY, Chun KP, Tan ML, Mah DN, Mijic A, Strickert G, et al.
    PLoS One, 2023;18(9):e0289780.
    PMID: 37682889 DOI: 10.1371/journal.pone.0289780
    The importance of easy wayfinding in complex urban settings has been recognized in spatial planning. Empirical measurement and explicit representation of wayfinding, however, have been limited in deciding spatial configurations. Our study proposed and tested an approach to improving wayfinding by incorporating spatial analysis of urban forms in the Guangdong-Hong Kong-Macau Great Bay Area in China. Wayfinding was measured by an indicator of intelligibility using spatial design network analysis. Urban spatial configurations were quantified using landscape metrics to describe the spatial layouts of local climate zones (LCZs) as standardized urban forms. The statistical analysis demonstrated the significant associations between urban spatial configurations and wayfinding. These findings suggested, to improve wayfinding, 1) dispersing LCZ 1 (compact high-rise) and LCZ 2 (compact mid-rise) and 2) agglomerating LCZ 3 (compact low-rise), LCZ 5 (open mid-rise), LCZ 6 (open low-rise), and LCZ 9 (sparsely built). To our knowledge, this study is the first to incorporate the LCZ classification system into the wayfinding field, clearly providing empirically-supported solutions for dispersing and agglomerating spatial configurations. Our findings also provide insights for human-centered spatial planning by spatial co-development at local, urban, and regional levels.
    Matched MeSH terms: Excipients
  9. Thalluri C, Amin R, Mandhadi JR, Gacem A, Emran TB, Dey BK, et al.
    Biomed Res Int, 2022;2022:2467574.
    PMID: 36046453 DOI: 10.1155/2022/2467574
    Ondansetron tablets that are directly compressed using crospovidone and croscarmellose as a synthetic super disintegrant are the subject of this investigation. A central composite, response surface, randomly quadratic, nonblock (version 13.0.9.0) 32 factorial design is used to optimize the formulation (two-factor three-level). To make things even more complicated, nine different formulation batches (designated as F1-F9) were created. There were three levels of crospovidone and croscarmellose (+1, 0, -1). In addition to that, pre- and postcompressional parameters were evaluated, and all evaluated parameters were found to be within acceptable range. Among all postcompressional parameter dispersion and disintegration time, in vitro drug release experiments (to quantify the amount of medication released from the tablet) and their percentage prediction error were shown to have a significant influence on three dependent variables. Various pre- and postcompression characteristics of each active component were tested in vitro. Bulk density, tap density, angle of repose, Carr's index, and the Hausner ratio were all included in this analysis, as were many others. This tablet's hardness and friability were also assessed along with its dimension and weight variations. Additional stability studies may be conducted using the best batch of the product. For this study, we utilised the Design-Expert software to select the formulation F6, which had dispersion times of 17.67 ± 0.03 seconds, disintegration times of 120.12 ± 0.55 seconds, and percentage drug release measurements of 99.25 ± 0.36 within 30 minutes. Predicted values and experimental data had a strong correlation. Fast dissolving pills of ondansetron hydrochloride may be created by compressing the tablets directly.
    Matched MeSH terms: Excipients
  10. Vakili AH, Selamat MR, Moayedi H
    ScientificWorldJournal, 2013;2013:547615.
    PMID: 23864828 DOI: 10.1155/2013/547615
    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.
    Matched MeSH terms: Excipients/chemistry*
  11. Wong TW
    Curr Drug Deliv, 2008 Apr;5(2):77-84.
    PMID: 18393808
    Microwave has received a widespread application in pharmaceuticals and food processing, microbial sterilization, biomedical therapy, scientific and biomedical analysis, as well as, drug synthesis. This paper reviews the basis of application of microwave to prepare pharmaceutical dosage forms such as agglomerates, gel beads, microspheres, nanomatrix, solid dispersion, tablets and film coat. The microwave could induce drying, polymeric crosslinkages as well as drug-polymer interaction, and modify the structure of drug crystallites via its effects of heating and/or electromagnetic field on the dosage forms. The use of microwave opens a new approach to control the physicochemical properties and drug delivery profiles of pharmaceutical dosage forms without the need for excessive heat, lengthy process or toxic reactants. Alternatively, the microwave can be utilized to process excipients prior to their use in the formulation of drug delivery systems. The intended release characteristics of drugs in dosage forms can be met through modifying the physicochemical properties of excipients using the microwave.
    Matched MeSH terms: Excipients/chemistry
  12. Anuar MS, Briscoe BJ
    Int J Pharm, 2010 Mar 15;387(1-2):42-7.
    PMID: 19963050 DOI: 10.1016/j.ijpharm.2009.11.031
    The predilection of a bi-layered tablet to fail in the interface region after its initial formation in the compaction process reduces its practicality as a choice for controlled release solid drug delivery system. Hence, a fundamental appreciation of the governing mechanism that causes the weakening of the interfacial bonds within the bi-layered tablet is crucial in order to improve the overall bi-layered tablet mechanical integrity. This work has shown that the occurrence of the elastic relaxation in the interface region during the ejection stage of the compaction process decreases with the increase in the bi-layered tablet interface strength. This is believed to be due to the increase in the plastic bonding in the interface region. The tablet diametrical elastic relaxation affects the tablet height elastic relaxation, where the impediment of the tablet height expansion is observed when the interface region experiences a diametrical expansion.
    Matched MeSH terms: Excipients/chemistry*
  13. Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S
    Carbohydr Polym, 2017 May 01;163:261-269.
    PMID: 28267505 DOI: 10.1016/j.carbpol.2017.01.036
    Nanocrystalline cellulose (NCC) extracted from lignocellulosic materials has been actively investigated as a drug delivery excipients due to its large surface area, high aspect ratio, and biodegradability. In this study, the hydrophobically modified NCC was used as a drug delivery excipient of hydrophobic drug curcumin. The modification of NCC with a cationic surfactant, cetyl trimethylammonium bromide (CTAB) was used to modulate the loading of hydrophobic drugs that would not normally bind to NCC. The FTIR, Elemental analysis, XRD, TGA, and TEM were used to confirm the modification of NCC with CTAB. The effect of concentration of CTAB on the binding efficiency of hydrophobic drug curcumin was investigated. The amounts of curcumin bound onto the CTAB-NCC nanoparticles were analyzed by UV-vis Spectrophotometric. The result showed that the modified CTAB-NCC bound a significant amount of curcumin, in a range from 80% to 96% curcumin added. Nevertheless, at higher concentration of CTAB resulted in lower binding efficiency.
    Matched MeSH terms: Excipients/chemistry*
  14. Wong TW
    J Pharm Pharmacol, 2011 Dec;63(12):1497-512.
    PMID: 22060280 DOI: 10.1111/j.2042-7158.2011.01347.x
    Use of alginate graft copolymers in oral drug delivery reduces dosage form manufacture complexity with reference to mixing or coating processes. It is deemed to give constant or approximately steady weight ratio of alginate to covalently attached co-excipient in copolymers, thereby leading to controllable matrix processing and drug release. This review describes various grafting approaches and their outcome on oral drug release behaviour of alginate graft copolymeric matrices. It examines drug release modulation mechanism of alginate graft copolymers against that of co-excipients in non-grafted formulations.
    Matched MeSH terms: Excipients/chemistry*
  15. Zeeshan F, Tabbassum M, Jorgensen L, Medlicott NJ
    AAPS PharmSciTech, 2018 Feb;19(2):769-782.
    PMID: 29134579 DOI: 10.1208/s12249-017-0883-1
    Protein biologics are prone to conformational changes during formulation development. Limited methods are available for conformational analysis of proteins in solid state and in the presences of formulation excipients. The aim of this study was to investigate the secondary structures of proteins encased in solid lipid matrices as a novel indicator of their stability upon in vitro release. Model proteins namely catalase and lysozyme were incorporated into lipid namely Precirol® AT05 (glycerol palmitostearate, melting point 58°C) at 30% w/w loading using melting and mixing and wet granulation methods. Attenuated total reflectance (ATR-FTIR) spectroscopy, size-exclusion chromatography (SEC) and biological activity analyses were performed. The information about secondary structure was acquired using second derivative analysis of amide-I band (1600-1700 cm-1). ATR analysis demonstrated interference of lipid spectrum with protein amide-I band which was subsequently subtracted to allow the analysis of the secondary structure. ATR spectra amide-I bands showed shifts peak band positions compared to native protein for matrices prepared using wet granulation. SEC analysis gave evidence of protein aggregation for catalase which was increased using wet granulation. The biological activity of catalase was statistically different from that of control and was affected by the incorporation method and was found to be in alignment with ATR spectral changes and extent of aggregation. In conclusion, ATR spectroscopy could analyze protein secondary structure in lipid matrices provided lipid interference was minimized. The ATR spectral changes and formation of aggregates can indicate the loss in biological activity of protein released from solid lipid matrices.
    Matched MeSH terms: Excipients/chemistry
  16. Likhitrakarn N, Golovatch SI, Panha S
    Zookeys, 2016.
    PMID: 27110157 DOI: 10.3897/zookeys.571.7566
    The genus Antheromorpha is redefined and shown to comprise 11 valid species: Antheromorpha miranda (Pocock, 1895), Antheromorpha bistriata (Pocock, 1895), Antheromorpha comotti (Pocock, 1895), Antheromorpha festiva (Brölemann, 1896), Antheromorpha harpaga (Attems, 1937), Antheromorpha mediovirgata (Carl, 1941), Antheromorpha minlana (Pocock, 1895), Antheromorpha pardalis (Pocock, 1895), Antheromorpha paviei (Brölemann, 1896), comb. n., Antheromorpha rosea Golovatch, 2013 and Antheromorpha uncinata (Attems, 1931). Three new synonymies are proposed: Antheromorpha bivittata (Pocock, 1895) and Antheromorpha melanopleuris (Pocock, 1895) are synonymized under Antheromorpha miranda (Pocock, 1895), and Antheromorpha orophila (Carl, 1941) under Antheromorpha comotti (Pocock, 1895). Detailed descriptions and illustrations of fresh material from Thailand and Malaysia are given, especially regarding colour patterns which appear to be crucial for accurate species identifications. Two Antheromorpha species proposed by Attems are redescribed, based on type material. The genus is rediagnosed and a key and a distribution map are also provided. At least in Thailand, adult Antheromorpha rosea have been found to occur every year only for one or two weeks in September or October, disappearing thereafter.
    Matched MeSH terms: Excipients
  17. Abidin, N.S.A., Rukunudin, I.H., Zaaba, S.K., Wan Omar, W.A.
    MyJurnal
    This work aimed to evaluate the effect of Atmospheric Cold Plasma (ACP) on the quality of mango flour noodles (NMF). ACP treatment of 5 minutes duration on the surface of the noodles strands were performed and evaluated during three days of storage by monitoring parameters related to colour, water activity, antioxidant activity and total phenolic content. The lightness value (L*) was higher for untreated samples (NMF (U)) than for treated samples (NMF (T)), while a greater increased in the redness (a*) and yellowness (b*) values were observed for the NMF (T). The changes in aw, antioxidant activity and total phenolic content (TPC) were negligible. However the NMF (T) showed significant different (p
    Matched MeSH terms: Excipients
  18. Ng SP, Khor YP, Lim HK, Lai OM, Wang Y, Wang Y, et al.
    Foods, 2020 Jul 03;9(7).
    PMID: 32635372 DOI: 10.3390/foods9070877
    The present study focused on investigating the storage stability of oil-in-water (O/W) emulsions with high oil volume fractions prepared with palm olein-based diacylglycerol oil (POL-DAG)/soybean oil (SBO) blends at 25 °C. The incorporation of different ratios of oil blends significantly influenced (p < 0.05) the texture, color, droplet size distribution, and rheological parameters of the emulsions. Only emulsions incorporated with 10% to 20% POL-DAG in oil phase exhibited pseudoplastic behavior that fitted the Power Law model well. Furthermore, the O/W emulsions prepared with POL-DAG/SBO blends exhibited elastic properties, with G' higher than G". During storage, the emulsion was found to be less solid-like with the increase in tan δ values. All emulsions produced with POL-DAG/SBO blends also showed thixotropic behavior. Optical microscopy revealed that the POL-DAG incorporation above 40% caused aggregated droplets to coalesce and flocculate and, thus, larger droplet sizes were observed. The current results demonstrated that the 20% POL-DAG substituted emulsion was more stable than the control emulsion. The valuable insights gained from this study would be able to generate a lot more possible applications using POL-DAG, which could further sustain the competitiveness of the palm oil industry.
    Matched MeSH terms: Excipients
  19. Halim SA, Razali N, Mohd N
    Data Brief, 2020 Dec;33:106535.
    PMID: 34026955 DOI: 10.1016/j.dib.2020.106535
    Pellet mixed with 5 wt% and 10 wt% of binders was tested. The pelleting process was performed using a pellet mill operated at 100 °C and at 50 MPa. The physical and chemical characteristics including hardness, high heating value and proximate analysis of pellet produces were obtained using durometer and through thermographic analysis and the results were reported in this paper. Bulk and unit density were determined according to ASABE standard. The dataset presented here are the data of palm kernel shell pellet prepared using two types of binder; (1) sago starch and (2) sodium acetate. The pelletization of palm kernel shell aimed to increase the density and strength of the palm kernel shell pellet and consequently provide better thermal degradation characteristics.
    Matched MeSH terms: Excipients
  20. Siti Rohana Ahmad, Salmah Husseinsyah, Kamarudin Hussin
    MyJurnal
    In this study, dynamic vulcanization process was used to improve the thermal properties of calcium carbonate filled composites. The composites were prepared using a Z-blade mixer at 180oC and rotor speed 50rpm. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) techniques were used to analyze the thermal properties of the composites. The vulcanized and unvulcanized PP/EPDM composites were filled by CaCO3 at 0, 10, 20, 30, and 40 %wt. Meanwhile, thermogravimetric analysis indicates that the total weight loss of PP/EPDM/CaCO3 composites decreased with increasing filler loading. Dynamic vulcanized composites have higher thermal stability, while the crystallinity of PP/EPDM/CaCO3 composites were increased as compared to unvulcanized composites. Therefore, the thermal properties were improved by the presence of
    dynamic vulcanization process.
    Matched MeSH terms: Excipients
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links