Displaying publications 381 - 400 of 508 in total

Abstract:
Sort:
  1. Tan WN, Tan ZH, Zulkifli NI, Nik Mohamed Kamal NNS, Rozman NAS, Tong WY, et al.
    Nat Prod Res, 2020 Dec;34(23):3404-3408.
    PMID: 30773054 DOI: 10.1080/14786419.2019.1569012
    Garcinia celebica L., locally known as "manggis hutan" in Malaysia is widely used in folkloric medicine to treat various diseases. The present study was aimed to examine the chemical composition of the essential oil from the leaves of G. celebica L. (EO-GC) and its cytotoxic and antimicrobial potential. EO-GC obtained by hydrodistillation was analysed using capillary GC and GC-MS. Twenty-two compounds were identified, dominated by α-copaene (61.25%), germacrene D (6.72%) and β-caryophyllene (5.85%). In the in vitro MTT assay, EO-GC exhibited significant anti-proliferative effects towards MCF-7 human breast cancer cells with IC50 value of 45.2 μg/mL. Regarding the antimicrobial activity, it showed better inhibitory effects on Gram-positive bacteria than Gram-negative bacteria and none on the fungi and yeasts tested.
    Matched MeSH terms: Plant Leaves/chemistry
  2. Ling SK, Pisar MM, Man S
    Biol Pharm Bull, 2007 Jun;30(6):1150-2.
    PMID: 17541171
    The leaf, stem and root extracts of Chromolaena odorata were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using 3H-PAF as a ligand. The leaf extract demonstrated high PAF receptor binding inhibitory activity of 79.2+/-2.1% at 18.2 microg/ml. A total of eleven flavonoids were subsequently isolated from the active leaf extract and evaluated for their effects on PAF receptor binding. Eight of the flavonoids exhibited >50% inhibition on the binding activity at 18.2 microg/ml. These flavonoids were identified as eriodictyol 7,4'-dimethyl ether, quercetin 7,4'-methyl ether, naringenin 4'-methyl ether, kaempferol 4'-methyl ether, kaempferol 3-O-rutinoside, taxifolin 4'-methyl ether, taxifolin 7-methyl ether and quercetin 4'-methyl ether. Their IC50 values ranged from 19.5 to 62.1 microM.
    Matched MeSH terms: Plant Leaves/chemistry
  3. Hassan M, Maarof ND, Ali ZM, Noor NM, Othman R, Mori N
    Biosci Biotechnol Biochem, 2012;76(8):1463-70.
    PMID: 22878188
    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).
    Matched MeSH terms: Plant Leaves/chemistry
  4. Shamsee ZR, Al-Saffar AZ, Al-Shanon AF, Al-Obaidi JR
    Mol Biol Rep, 2019 Feb;46(1):381-390.
    PMID: 30426385 DOI: 10.1007/s11033-018-4482-3
    Lantana camara is an important medicinal plant that contains many active compounds, including pentacyclic triterpenoids, with numerous biological activities. The present study was conducted to evaluate the anti-oxidant, anti-tumour, and cell cycle arrest properties of chemical compounds extracted from L. camara leaves. Four compounds were identified after subjecting the plant methanolic extract to LC-MS/MS analysis: lantadene A, lantadene B, icterogenin, and lantadene C. Potential antioxidant activity was examined using 2, 2-diphenyl-1-picrylhydrazyl and compared with vitamin C as a control. Lantadene A and B were confirmed to possess the highest scavenging activity, while icterogenin and lantadene C exhibited a lesser antioxidant effect. All extracted compounds exerted a dose-dependent reduction in MCF-7 cell viability; however, lantadene B showed the highest anti-cancer activity, with an IC50 of 112.2 μg mL-1, and was therefore used in subsequent experiments. The results also confirmed the significant release of caspase 9 in a dose-dependent pattern following treatment of MCF-7 cells with a range of lantadene B concentrations. Lantadene B was found to induce MCF-7 cell cycle arrest in G1, blocking the G1/S transition with a maximum significant (p ≤ 0.01) cell count of 80.35% at 25 µg mL-1. No significant changes were observed in S phase, but a decrease in the MCF-7 population was exhibited in G2/M phase.
    Matched MeSH terms: Plant Leaves/chemistry
  5. Ahmad MN, Karim NU, Normaya E, Mat Piah B, Iqbal A, Ku Bulat KH
    Sci Rep, 2020 06 12;10(1):9566.
    PMID: 32533034 DOI: 10.1038/s41598-020-66488-7
    Lipid oxidation and microbial contamination are the major factors contributing to food deterioration. Food additives like antioxidants and antibacterials can prevent food spoilage by delaying oxidation and preventing the growth of bacteria. Artocarpus altilis leaves exhibited biological properties that suggested its use as a new source of natural antioxidant and antimicrobial. Supercritical fluid extraction (SFE) was used to optimize the extraction of bioactive compounds from the leaves using response surface methodology (yield and antioxidant activity). The optimum SFE conditions were 50.5 °C temperature, 3784 psi pressure and 52 min extraction time. Verification test results (Tukey's test) showed that no significant difference between the expected and experimental DPPH activity and yield value (99%) were found. Gas-chromatography -mass spectrometry (GC-MS) analysis revealed three major bioactive compounds existed in A. altilis extract. The extract demonstrated antioxidant and antibacterial properties with 2,3-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing ability of plasma (FRAP), hydroxyl radical scavenging activity, tyrosinase mushrrom inhibition of 41.5%, 8.15 ± 1.31 (µg of ascorbic acid equivalents), 32%, 37% and inhibition zone diameter of 0.766 ± 0.06 cm (B. cereus) and 1.27 ± 0.12 cm (E. coli). Conductor like screening model for real solvents (COSMO RS) was performed to explain the extraction mechanism of the major bioactive compounds during SFE. Molecular electrostatic potential (MEP) shows the probability site of nucleophilic and electrophilic attack during bacterial inhibition. Based on molecular docking study, non-covalent interactions are the main interaction occurring between the major bioactive compounds and bacteria (antibacterial inhibition).
    Matched MeSH terms: Plant Leaves/chemistry
  6. Rosli N, Sumathy V, Vikneswaran M, Sreeramanan S
    Trop Biomed, 2014 Dec;31(4):871-9.
    PMID: 25776614 MyJurnal
    Hymenocallis littoralis (Jacq.) Salisb (Melong kecil) commonly known as 'Spider Lily' is an herbaceous plant from the family Amaryllidaceae. Study was carried out to determine the effect of H. littoralis leaf extract on the growth and morphogenesis of two pathogenic microbes, Candida albicans and Escherichia coli. The leaf extract displayed favourable anticandidal and antibacterial activity with a minimum inhibition concentration (MIC) of 6.25 mg/mL. Time kill study showed both microbes were completely killed after treated with leaf extract at 20 h. Both microbes' cell walls were heavily ruptured based on scanning electron microscopy (SEM) analysis. The significant anticandidal and antibacterial activities showed by H. littoralis leaf extract suggested the potential antimicrobial agent against C. albicans and E. coli.
    Matched MeSH terms: Plant Leaves/chemistry
  7. Malahubban M, Alimon AR, Sazili AQ, Fakurazi S, Zakry FA
    Trop Biomed, 2013 Sep;30(3):467-80.
    PMID: 24189677 MyJurnal
    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.
    Matched MeSH terms: Plant Leaves/chemistry
  8. Zaidan MR, Noor Rain A, Badrul AR, Adlin A, Norazah A, Zakiah I
    Trop Biomed, 2005 Dec;22(2):165-70.
    PMID: 16883283 MyJurnal
    Medicinal plants have many traditional claims including the treatment of ailments of infectious origin. In the evaluation of traditional claims, scientific research is important. The objective of the study was to determine the presence of antibacterial activity in the crude extracts of some of the commonly used medicinal plants in Malaysia, Andrographis paniculata, Vitex negundo, Morinda citrifolia, Piper sarmentosum, and Centella asiatica. In this preliminary investigation, the leaves were used and the crude extracts were subjected to screening against five strains of bacteria species, Methicillin Resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli, using standard protocol of Disc Diffusion Method (DDM). The antibacterial activities were assessed by the presence or absence of inhibition zones and MIC values. M. citrifolia, P. sarmentosum and C. asiatica methanol extract and A. paniculata (water extract) have potential antibacterial activities to both gram positive S. aureus and Methicillin Resistant S. aureus (MRSA). None of the five plant extracts tested showed antibacterial activities to gram negative E. coli and K. pneumoniae, except for A. paniculata and P. sarmentosum which showed activity towards P. aeruginosa. A. paniculata being the most potent at MIC of 2 g/disc. This finding forms a basis for further studies on screening of local medicinal plant extracts for antibacteria properties.
    Matched MeSH terms: Plant Leaves/chemistry
  9. Jani NA, Sirat HM, Ahmad F, Mohamad Ali NA, Jamil M
    Nat Prod Res, 2017 Dec;31(23):2793-2796.
    PMID: 28278643 DOI: 10.1080/14786419.2017.1294172
    Hydrodistillation of the fresh stem and leaf of Neolitsea kedahense Gamble, collected from Gunung Jerai, Malaysia followed by the GC-FID and GC-MS analysis revealed the detection of a total of 47 constituents of which 28 (86.4%) from the stem and 31 (96.4%) constituents from the leaf. δ-Cadinene (17.4%), 1-epi-cubenol (11.8%), cyperotundone (9.0%), cis-cadin-4-en-7-ol (7.7%), τ-cadinol (7.1%) and α-cadinol (7.1%) were the principle constituents in the stem oil, whereas β-caryophyllene (18.9%), bicyclogermacrene (18.6%) and trans-muurola-4(14),5-diene (9.8%) were the major constituents in the leaf oil. Among the identified constituents, three constituents namely 7-epi-α-selinene, junenol and cis-cadin-4-en-7-ol have not been found previously from Neolitsea oils. The stem and leaf oils were screened for their α-glucosidase inhibitory and antibacterial activities. Both oils displayed potential α-glucosidase inhibitory activity, while the stem oil possessed weak antibacterial activity against Bacillus subtilis.
    Matched MeSH terms: Plant Leaves/chemistry
  10. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Feb;95:1064-1071.
    PMID: 27984140 DOI: 10.1016/j.ijbiomac.2016.09.114
    In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.
    Matched MeSH terms: Plant Leaves/chemistry
  11. Zakaria ZA, Kamisan FH, Omar MH, Mahmood ND, Othman F, Abdul Hamid SS, et al.
    BMC Complement Altern Med, 2017 May 18;17(1):271.
    PMID: 28521788 DOI: 10.1186/s12906-017-1781-5
    BACKGROUND: The present study investigated the potential of methanolic extract of Dicranopteris linearis (MEDL) leaves to attenuate liver intoxication induced by acetaminophen (APAP) in rats.

    METHODS: A group of mice (n = 5) treated orally with a single dose (5000 mg/kg) of MEDL was first subjected to the acute toxicity study using the OECD 420 model. In the hepatoprotective study, six groups of rats (n = 6) were used and each received as follows: Group 1 (normal control; pretreated with 10% DMSO (extract's vehicle) followed by treatment with 10% DMSO (hepatotoxin's vehicle) (10% DMSO +10% DMSO)), Group 2 (hepatotoxic control; 10% DMSO +3 g/kg APAP (hepatotoxin)), Group 3 (positive control; 200 mg/kg silymarin +3 g/kg APAP), Group 4 (50 mg/kg MEDL +3 g/kg APAP), Group 5 (250 mg/kg MEDL +3 g/kg APAP) or Group 6 (500 mg/kg MEDL +3 g/kg APAP). The test solutions pre-treatment were made orally once daily for 7 consecutive days, and 1 h after the last test solutions administration (on Day 7th), the rats were treated with vehicle or APAP. Blood were collected from those treated rats for biochemical analyses, which were then euthanized to collect their liver for endogenous antioxidant enzymes determination and histopathological examination. The extract was also subjected to in vitro anti-inflammatory investigation and, HPLC and GCMS analyses.

    RESULTS: Pre-treatment of rats (Group 2) with 10% DMSO failed to attenuate the toxic effect of APAP on the liver as seen under the microscopic examination. This observation was supported by the significant (p 

    Matched MeSH terms: Plant Leaves/chemistry
  12. Ng CT, Fong LY, Tan JJ, Rajab NF, Abas F, Shaari K, et al.
    BMC Complement Altern Med, 2018 Jul 06;18(1):210.
    PMID: 29980198 DOI: 10.1186/s12906-018-2270-1
    BACKGROUND: Clinacanthus nutans (Burm. f.) Lindau. has traditionally been using in South East Asia countries to manage cancer. However, scientific evidence is generally lacking to support this traditional claim. This study aims to investigate the in vitro, ex-vivo and in vivo effects of C. nutans extracts on angiogenesis.

    METHODS: C. nutans leaves was extracted with 50-100% ethanol or deionised water at 1% (w/v). Human umbilical veins endothelial cell (HUVEC) proliferation was examined using MTT assay. The in vitro anti-angiogenic effects of C. nutans were assessed using wound scratch, tube formation and transwell migration assays. The VEGF levels secreted by human oral squamous cell carcinoma (HSC-4) cell and HUVEC permeability were also measured. Besides, the rat aortic ring and chick embryo chorioallantoic membrane (CAM) assays, representing ex vivo and in vivo models, respectively, were performed.

    RESULTS: The MTT assay revealed that water extract of C. nutans leaves exhibited the highest activity, compared to the ethanol extracts. Therefore, the water extract was chosen for subsequent experiments. C. nutans leaf extract significantly suppressed endothelial cell proliferation and migration in both absence and presence of VEGF. However, the water extract failed to suppress HUVEC transmigration, differentiation and permeability. C. nutans water extract also did not suppress HSC-4 cell-induced VEGF production. Importantly, C. nutans water extract significantly abolished the sprouting of vessels in aortic rings as well as in chick embryo CAM.

    CONCLUSION: In conclusion, these findings reveal potential anti-angiogenic effects of C. nutans, providing new evidence for its potential application as an anti-angiogenic agent.

    Matched MeSH terms: Plant Leaves/chemistry
  13. Hamid HA, Ramli ANM, Zamri N, Yusoff MM
    Food Chem, 2018 Nov 01;265:253-259.
    PMID: 29884381 DOI: 10.1016/j.foodchem.2018.05.033
    Eleven compounds were identified during profiling of polyphenols by UPLC-QTOF/MS. In abundance was quercetin-3-O-α-l-arabinofuranoside in M. malabathricum ethanolic leaves extract while 6-hydroxykaempferol-3-O-glucoside was present in the leaves extract of M. decenfidum (its rare variety). TPC and TFC were significantly higher in M. decemfidum extract than M. malabathricum extract. During DPPH, FRAF and β-carotene bleaching assays, M. decemfidum extract exhibited greater antioxidant activity compared to M. malabathricum extract. Effect of M. malabathricum and M. decemfidum extracts on viability of MDA-MB-231 cell at concentrations 6.25-100 μg/mL were evaluated for 24, 48 and 72 h. After 48 and 72 h treatment, M. malabathricum and M. decemfidum leaves extracts exhibited significant activity in inhibiting MDA-MB-231 cancer cell line with M. malabathricum extract being more cytotoxic. M. malabathricum and M. imbricatum serves as potential daily dietary source of natural phenolics and to improve chemotherapeutic effectiveness.
    Matched MeSH terms: Plant Leaves/chemistry
  14. Ogar I, Egbung GE, Nna VU, Iwara IA, Itam E
    Biomed Pharmacother, 2018 Nov;107:1268-1276.
    PMID: 30257341 DOI: 10.1016/j.biopha.2018.08.115
    Uncontrolled hyperglycaemia and oxidative stress have been implicated in the pathophysiology of diabetes mellitus. Hyptis verticillata is reportedly explored traditionally for its therapeutic benefits. Resulting from the paucity of information on the anti-hyperglycaemic potential of this plant, the present study assessed the anti-hyperglycaemic activity of H. verticillata leaf extract. Fifty-four albino Wistar rats were divided into two main groups consisting of diabetic and non-diabetic rats. The diabetic and non-diabetic rats were either treated with oral doses of metformin (500 mg/kg b.w.), quercetin (10 mg/kg b.w.), ethanol extract of H. verticillata leaf (low dose: 250 mg/kg b.w.) or H. verticillata (high dose: 500 mg/kg b.w.) for 28 days. Results showed significantly decreased body weight, increased fasting blood glucose (FBG) and glycated haemoglobin (HbA1c) levels, decreased pancreatic islet area and β-cell number in the diabetic untreated group, relative to normal control. H. verticillata - treated diabetic rats showed decreased FBG and HbA1c, increased body weight, pancreatic islet area and β-cell number, comparable to the effects of metformin. GCMS analysis of H. verticillata showed the presence of ten bioactive volatile compounds, with squalene which possess strong antioxidant, hypoglycaemic and hypotriglyceridemic effects, as the most abundant. We therefore conclude that H. verticillata has anti-hyperglycaemic properties.
    Matched MeSH terms: Plant Leaves/chemistry
  15. Giribabu N, Karim K, Salleh N
    Phytomedicine, 2018 Oct 01;49:95-105.
    PMID: 30217266 DOI: 10.1016/j.phymed.2018.05.018
    BACKGROUND: In sex-steroid deficiency, increased in the pH of vaginal fluid is due to low estrogen levels.

    HYPOTHESIS: Consumption of Marantodes pumilum leaves helps to ameliorate increased in vaginal fluid pH in sex-steroid deficient condition.

    PURPOSE: To investigate changes in vaginal fluid pH and expression of proteins that participate in pH changes i.e vacoular (V)-ATPases and carbonic anhydrases (CA) in the vagina following M. pumilum leaves consumption.

    METHODS: Ovariectomized adult female rats were treated orally with M. pumilum leaves extract (MPE) at 100, 250 and 500 mg/kg.b.w and estradiol at 0.2 µg/kg/b.w for 28 days. At the end of the treatment, vaginal fluid pH was measured in anesthetised rats by using micropH probe. Following sacrificed, levels of V-ATPase and CA proteins and mRNAs in the vagina were identified by Western blotting and real-time PCR, respectively. Protein distribution was visualized by immunohistochemistry.

    RESULTS: Administration of MPE causes the pH of vaginal fluid to decrease and expression and distribution of vaginal V-ATPase A & B and CA II, III, IX, XII and XIII to increase.

    CONCLUSIONS: The decrease in vaginal fluid pH following MPE treatment suggested that this herb has potential to be used to ameliorate vaginal fluid pH changes in sex-steroid deficient condition.

    Matched MeSH terms: Plant Leaves/chemistry
  16. Khoo LW, Foong Kow AS, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    Molecules, 2018 Aug 29;23(9).
    PMID: 30158427 DOI: 10.3390/molecules23092172
    The present study aims for the first time to provide the in vivo acute toxicological profile of the highest dose of Clinacanthus nutans (Burm. f.) Lindau water leaf extract according to the Organization for economic co-operation and development (OECD) 423 guidelines through conventional toxicity and advanced proton nuclear magnetic resonance (¹H-NMR) serum and urinary metabolomics evaluation methods. A single dose of 5000 mg/kg bw of C. nutans water extract was administered to Sprague Dawley rats, and they were observed for 14 days. Conventional toxicity evaluation methods (physical observation, body and organ weight, food and water consumption, hematology, biochemical testing and histopathological analysis) suggested no abnormal toxicity signs. Serum ¹H-NMR metabolome revealed no significant metabolic difference between untreated and treated groups. Urinary ¹H-NMR analysis, on the other hand, revealed alteration in carbohydrate metabolism, energy metabolism and amino acid metabolism in extract-treated rats after 2 h of extract administration, but the metabolic expression collected after 24 h and at Day 5, Day 10 and Day 15 indicated that the extract-treated rats did not accumulate any toxicity biomarkers. Importantly, the outcomes further suggest that single oral administration of up to 5000 mg/kg bw of C. nutans water leaf extract is safe for consumption.
    Matched MeSH terms: Plant Leaves/chemistry
  17. Hariharan D, Thangamuniyandi P, Jegatha Christy A, Vasantharaja R, Selvakumar P, Sagadevan S, et al.
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111636.
    PMID: 31739259 DOI: 10.1016/j.jphotobiol.2019.111636
    Titanium dioxide (TiO2) nanoparticles (NPs) have been doped with varying amounts (0.005, 0.010 and 0.015 M) of silver nanoparticles (Ag NPs) using hydrothermal method. Further, in this work, a green approach was followed for the formation of Ag@TiO2 NPs using Aloe vera gel as a capping and reducing agent. The structural property confirmed the presence of anatase phase TiO2. Increased peak intensity was observed while increasing the Ag concentration. Further, the morphological and optical properties have been studied, which confirmed the effective photocatalytic behavior of the prepared Ag@TiO2 NPs. The photocatalytic performance of Ag@TiO2 has been considered for the degradation of picric acid in the visible light region. The concentration at 0.010 M of the prepared Ag@TiO2 has achieved higher photocatalytic performance within 50 min, which could be attributed to its morphological behavior. Similarly, anticancer activity against lung cancer cell lines (A549) was also determined. The Ag@TiO2 NPs generated a large quantity of reactive oxygen species (ROS), resulting in complete cancer cell growth suppression after their systemic in vitro administration. Ag@TiO2 NPs was adsorbed visible light that leads to an enhanced anticancer sensitivity by killing and inhibiting cancer cell reproduction through cell viability assay test. It was clear that 0.015 M of Ag@TiO2 NPs were highly effective against human lung cancer cell lines and showed increased production of ROS in cancer cell lines due to the medicinal behavior of the Aloe vera gel.
    Matched MeSH terms: Plant Leaves/chemistry
  18. Zakaria ZA, Mahmood ND, Omar MH, Taher M, Basir R
    Pharm Biol, 2019 Dec;57(1):335-344.
    PMID: 31068038 DOI: 10.1080/13880209.2019.1606836
    CONTEXT: Muntingia calabura L. (Muntingiaceae) exerts antioxidant and anti-inflammatory activities, thus, it might be a good hepatoprotective agent.

    OBJECTIVE: This study investigates the effect of methanol extract of M. calabura leaves (MMCL) on hepatic antioxidant and anti-inflammatory activities in CCl4-induced hepatotoxic rat.

    MATERIALS AND METHODS: Sprague Dawley rats (n = 6) were treated (p.o.) with 10% DMSO (Groups 1 and 2), 50 mg/kg N-acetylcysteine (Group 3) or, 50, 250, or 500 mg/kg MMCL (Groups 4-6) for 7 consecutive days followed by pretreatment (i.p.) with vehicle (Group 1) or 50% CCl4 in olive oil (v/v) (Groups 2-6) on day 7th. Plasma liver enzymes and hepatic antioxidant enzymes and pro-inflammatory cytokines concentrations were measured while liver histopathology was examined.

    RESULTS: MMCL, at 500 mg/kg, significantly (p 

    Matched MeSH terms: Plant Leaves/chemistry
  19. Bayrami A, Alioghli S, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Ramesh S
    Ultrason Sonochem, 2019 Jul;55:57-66.
    PMID: 31084791 DOI: 10.1016/j.ultsonch.2019.03.010
    The synthesis of nanoparticles often result in the generation of harmful chemical pollutants. As such, many researchers have focused on developing green processes, which include the biosynthesis. In this research, ZnO nanoparticles were prepared using the leaf extract of whortleberry (Vaccinium arctostaphylos L.) via a simple ultrasonic-assisted method. The morphology, crystal size and structure, surface, thermal, and optical properties of the bio-mediated ZnO sample (ZnOext) were analyzed and compared with that produced without incorporating the extract (ZnOchem). The ZnO samples were evaluated for their antidiabetic, antibacterial, as well as their sono- and photo-catalytic performances. Initially, the samples were intraperitoneal injected to alloxan-diabetic rats to examine their treatment efficiency in terms of effects on fasting blood glucose, insulin, cholesterol, high-density lipoprotein, and total triglyceride levels. The ZnOext showed significantly higher efficiency for improving the health status of alloxan-diabetic rats in contrast with other tested treatments, vis. ZnOchem, insulin, and only leaf extract. In addition, both the ZnO samples were assessed against gram-negative and gram-positive bacteria and through sono- and photo-catalytic processes for removing rhodamine B, respectively. The results of this study indicated that not only the ZnOext sample was pollution free, it also exhibited higher potentials for treating diabetic rats, bacterial decontamination, and also oxidative removal of organic compounds under the influences of ultrasound and UV irradiations when compared with ZnOchem sample.
    Matched MeSH terms: Plant Leaves/chemistry*
  20. Tan NAS, Giribabu N, Karim K, Nyamathulla S, Salleh N
    J Ethnopharmacol, 2019 May 23;236:9-20.
    PMID: 30771519 DOI: 10.1016/j.jep.2019.02.027
    ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (MP) (Kacip Fatimah) is used to maintain the well-being of post-menopausal women. However, its role in ameliorating post menopause-related vaginal atrophy (VA) is unknown.

    AIMS: To investigate the ability of intravaginal MP gel treatment to ameliorate VA in sex-steroid deficient condition, mimicking post-menopause.

    METHODS: Ovariectomized female Sprague-Dawley rats received MP (100 μg/ml, 250 μg/ml and 500 μg/ml) and estriol (E) gels intravaginally for seven consecutive days. Rats were then euthanized and vagina was harvested and subjected for histological and protein expression and distribution analyses. Vaginal ultrastructure was observed by transmission electron microscopy (TEM).

    RESULTS: Thickness of vaginal epithelium increased with increasing intravaginal MP doses. Additionally, increased in expression and distribution of proliferative protein i.e. PCNA, tight junction protein i.e. occludin, water channel proteins i.e. AQP-1 and AQP-2 and proton extruder protein i.e. V-ATPase A1 were observed in the vagina following intravaginal MP and E gels treatment. Intravaginal MP and E gels also induced desmosome formation and approximation of the intercellular spaces between the vaginal epithelium.

    CONCLUSIONS: Intravaginal MP was able to ameliorate features associated with VA; thus, it has potential to be used as an agent to treat this condition.

    Matched MeSH terms: Plant Leaves/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links