Displaying publications 541 - 560 of 1201 in total

Abstract:
Sort:
  1. Yap YH, Tan N, Fung S, Aziz AA, Tan C, Ng S
    J Sci Food Agric, 2013 Sep;93(12):2945-52.
    PMID: 23460242 DOI: 10.1002/jsfa.6121
    Lignosus rhinocerus (tiger milk mushroom) is an important medicinal mushroom used in Southeast Asia and China, and its sclerotium can be developed into functional food/nutraceuticals. The nutrient composition, antioxidant properties, and anti-proliferative activity of wild type and a cultivated strain of L. rhinocerus sclerotia were investigated.
    Matched MeSH terms: Antineoplastic Agents/analysis; Antineoplastic Agents/isolation & purification; Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry
  2. Shamsabadi FT, Khoddami A, Fard SG, Abdullah R, Othman HH, Mohamed S
    Nutr Cancer, 2013;65(2):255-62.
    PMID: 23441613 DOI: 10.1080/01635581.2013.756528
    The tropical edible red seaweed (Eucheuma cottonii L.) is rich in nutrients and polyphenolic compounds that may suppress cancer through its antioxidant and antiproliferative properties. The study reports on rat mammary tumor suppression and tissue antioxidant status modulation by E. cottonii ethanol extract (ECE). The effect of orally administered ECE (100 mg/kg body-weight) was compared with that of tamoxifen (10 mg/kg body-weight). Rat was induced to develop mammary tumor with subcutaneous injection of LA-7 cells (6 × 10(6) cells/rat). The ECE was more effective than tamoxifen in suppressing tumor growth (27%), improving tissues (plasma, liver, and kidney) malondialdehyde concentrations, superoxide dismutase activity and erythrocyte glutathione concentrations (P < 0.05). Unlike tamoxifen, the ECE displayed little toxicity to the liver and kidneys. The ECE exhibited strong anticancer effect with enzyme modulating properties, suggesting its potential as a suppressing agent for mammary gland tumor.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/adverse effects; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Hormonal/pharmacology
  3. Ravichandiran V, Masilamani K, Senthilnathan B, Maheshwaran A, Wong TW, Roy P
    Curr Drug Deliv, 2017;14(8):1053-1059.
    PMID: 27572089 DOI: 10.2174/1567201813666160829100453
    BACKGROUND: Curcumin is a yellow polyphenolic chemopreventive agent isolated from the rhizomes of Curcuma longa. It is approved as Generally Regarded as Safe by US FDA. Nonetheless, its clinical success is limited due to its poor aqueous solubility, fast metabolism and short biological half-life attributes.

    OBJECTIVE: Quercetin-decorated liposomes of curcumin (QCunp) are perceived to be able to overcome these biopharmaceutical drawbacks.

    METHODS: Curcumin liposomes with/without quercetin were prepared by lipid hydration technique. The liposomes were characterized for their particle size, zeta potential, surface morphology, drug loading and release characteristics. The toxicity of the liposomes were evaluated in-vitro and their invivo efficacy were tested against Dalton's ascites lymphoma in mice.

    RESULTS: Liposomes designed showed particle size of 261.8 ± 2.1 nm with a negative zeta potential of -22.6±1.6 mV. Quercetin decorated liposomes were more effective in increasing the life span and body weight of lymphoma inflicted mice compared to those without quercetin. Similarly, the presence of quercetin also contributed to enhanced cytotoxicity of the liposomal formulation towards HT-29 cells and HCT-15 cells.

    CONCLUSION: Newer liposomal design exhibited promising potential to emerge as alternative anticancer therapeutics.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage; Antineoplastic Agents/pharmacology; Antineoplastic Agents/therapeutic use; Antineoplastic Agents/chemistry*
  4. Sathishkumar P, Preethi J, Vijayan R, Mohd Yusoff AR, Ameen F, Suresh S, et al.
    PMID: 27541567 DOI: 10.1016/j.jphotobiol.2016.08.005
    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis; Antineoplastic Agents/pharmacology; Antineoplastic Agents/therapeutic use; Antineoplastic Agents/chemistry
  5. Beh CY, How CW, Foo JB, Foong JN, Selvarajah GT, Rasedee A
    Drug Des Devel Ther, 2017;11:771-782.
    PMID: 28352153 DOI: 10.2147/DDDT.S123939
    Tamoxifen (TAM) has been used in the treatment of breast cancers and is supplemented with erythropoietin (EPO) to alleviate the cancer-related anemia. The purported deleterious effects caused by the use of EPO with chemotherapeutic agents in the treatment of cancer-related anemia vary across studies and remain controversial. The use of nanoparticles as a drug delivery system has the potential to improve the specificity of anticancer drugs. In this study, we simultaneously incorporated two pharmacological active ingredients in one nanocarrier to develop EPO-conjugated TAM-loaded lipid nanoparticles (EPO-TAMNLC), a targeted delivery system, to enhance the cytotoxic activity while reducing the side effects of the ingredients. The effect of temperature in modulating the thermodynamic parameters associated with the binding of EPO and TAMNLC was assessed using isothermal titration calorimetry, while the unfolding of EPO structure was determined using fluorescence-quenching approach. The association efficiency of EPO and TAMNLC was 55.43%. Unlike binding of albumin to TAMNLC, the binding of EPO to TAMNLC occurred through endothermic and entropy-driven reaction. The EPO-TAMNLC formulation was stable because of the hydrophobic interaction and the high free energy, suggesting the spontaneity of the interactions between EPO and TAMNLC. The EPO-TAMNLC enhanced the in vitro cytotoxicity of TAM to MCF-7 cells. The EPO surface-functionalized TAMNLC could sequentially deliver EPO and TAM as well as improving site-specific delivery of these therapeutic compounds.
    Matched MeSH terms: Antineoplastic Agents, Hormonal/administration & dosage*; Antineoplastic Agents, Hormonal/metabolism; Antineoplastic Agents, Hormonal/pharmacokinetics; Antineoplastic Agents, Hormonal/pharmacology
  6. Tan SY, Kan E, Lim WY, Chay G, Law JH, Soo GW, et al.
    J Pharm Pharmacol, 2011 Jul;63(7):918-25.
    PMID: 21635257 DOI: 10.1111/j.2042-7158.2011.01296.x
    The pharmacokinetic interaction between metronidazole, an antibiotic-antiparasitic drug used to treat anaerobic bacterial and protozoal infections, and imatinib, a CYP3A4, P-glycoprotein substrate kinase inhibitor anticancer drug, was evaluated.
    Matched MeSH terms: Antineoplastic Agents/adverse effects; Antineoplastic Agents/blood; Antineoplastic Agents/metabolism; Antineoplastic Agents/pharmacokinetics*
  7. Tan BL, Norhaizan ME
    Molecules, 2019 Jul 10;24(14).
    PMID: 31295906 DOI: 10.3390/molecules24142527
    Many chemotherapeutic drugs have been used for the treatment of cancer, for instance, doxorubicin, irinotecan, 5-fluorouracil, cisplatin, and paclitaxel. However, the effectiveness of chemotherapy is limited in cancer therapy due to drug resistance, therapeutic selectivity, and undesirable side effects. The combination of therapies with natural compounds is likely to increase the effectiveness of drug treatment as well as reduce the adverse outcomes. Curcumin, a polyphenolic isolated from Curcuma longa, belongs to the rhizome of Zingiberaceae plants. Studies from in vitro and in vivo revealed that curcumin exerts many pharmacological activities with less toxic effects. The biological mechanisms underlying the anticancer activity of co-treatment curcumin and chemotherapy are complex and worth to discuss further. Therefore, this review aimed to address the molecular mechanisms of combined curcumin and chemotherapy in the treatment of cancer. The anticancer activity of combined nanoformulation of curcumin and chemotherapy was also discussed in this study. Taken together, a better understanding of the implication and underlying mechanisms of action of combined curcumin and chemotherapy may provide a useful approach to combat cancer diseases.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/administration & dosage; Antineoplastic Agents, Phytogenic/adverse effects; Antineoplastic Agents, Phytogenic/therapeutic use; Antineoplastic Agents, Phytogenic/chemistry
  8. Tan JM, Karthivashan G, Abd Gani S, Fakurazi S, Hussein MZ
    J Mater Sci Mater Med, 2016 Feb;27(2):26.
    PMID: 26704543 DOI: 10.1007/s10856-015-5635-8
    Chemically functionalized carbon nanotubes are highly suitable and promising materials for potential biomedical applications like drug delivery due to their distinct physico-chemical characteristics and unique architecture. However, they are often associated with problems like insoluble in physiological environment and cytotoxicity issue due to impurities and catalyst residues contained in the nanotubes. On the other hand, surface coating agents play an essential role in preventing the nanoparticles from excessive agglomeration as well as providing good water dispersibility by replacing the hydrophobic surfaces of nanoparticles with hydrophilic moieties. Therefore, we have prepared four types of biopolymer-coated single walled carbon nanotubes systems functionalized with anticancer drug, betulinic acid in the presence of Tween 20, Tween 80, polyethylene glycol and chitosan as a comparative study. The Fourier transform infrared spectroscopy studies confirm the bonding of the coating molecules with the SWBA and these results were further supported by Raman spectroscopy. All chemically coated samples were found to release the drug in a slow, sustained and prolonged fashion compared to the uncoated ones, with the best fit to pseudo-second order kinetic model. The cytotoxic effects of the synthesized samples were evaluated in mouse embryonic fibroblast cells (3T3) at 24, 48 and 72 h. The in vitro results reveal that the cytotoxicity of the samples were dependent upon the drug release profiles as well as the chemical components of the surface coating agents. In general, the initial burst, drug release pattern and cytotoxicity could be well-controlled by carefully selecting the desired materials to suit different therapeutic applications.
    Matched MeSH terms: Antineoplastic Agents/pharmacokinetics; Antineoplastic Agents/chemistry*
  9. Tan D, Phipps C, Hwang WY, Tan SY, Yeap CH, Chan YH, et al.
    Lancet Haematol, 2015 Aug;2(8):e326-33.
    PMID: 26688485 DOI: 10.1016/S2352-3026(15)00097-6
    BACKGROUND: Patients with relapsed or refractory peripheral T-cell lymphoma have a poor prognosis after conventional chemotherapy. Approved novel agents have only modest single-agent activity in most subtypes of peripheral T-cell lymphoma. Panobinostat is a potent oral pan-deacetylase inhibitor. Findings of many preclinical studies have shown synergistic antilymphoma activity when panobinostat is combined with the proteasome inhibitor bortezomib. We aimed to study the effect of panobinostat and bortezomib in patients with relapsed or refractory peripheral T-cell lymphoma.

    METHODS: In this open-label, multicentre phase 2 trial, we recruited patients aged 21 years or older with relapsed or refractory peripheral T-cell lymphoma who had received at least one previous line of systemic therapy from five tertiary hospitals in Singapore, Malaysia, and South Korea. Patients received 20 mg oral panobinostat three times a week and 1·3 mg/m(2) intravenous bortezomib two times a week, both for 2 of 3 weeks for up to eight cycles. The primary endpoint was the proportion of patients who achieved an objective response in accordance with the International Working Group revised response criteria; analyses were by intention to treat. The study is completed and is registered with ClinicalTrials.gov, number NCT00901147.

    FINDINGS: Between Nov 9, 2009, and Nov 26, 2013, we enrolled 25 patients with various histological subtypes of peripheral T-cell lymphoma. Of 23 patients assessable for responses, ten (43%, 95% CI 23-63) patients had an objective response, of which five were complete responses. Serious adverse events were reported in ten (40%) of 25 patients. Common treatment-related grade 3-4 adverse events included thrombocytopenia (17 [68%]), neutropenia (ten [40%]), diarrhoea (five [20%]), and asthenia or fatigue (two [8%]). We recorded peripheral neuropathy of any grade in ten (40%) patients.

    INTERPRETATION: Combined proteasome and histone deacetylase inhibition is safe and feasible and shows encouraging activity for patients with peripheral T-cell lymphoma. Our findings validate those of preclinical studies showing synergism in the combination and represent a rational way forward in harnessing the full potential of novel agents in peripheral T-cell lymphoma.

    FUNDING: Novartis Pharmaceuticals, Janssen Pharmaceuticals, and Singhealth Foundation.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage; Antineoplastic Agents/therapeutic use*
  10. Ghasemzadeh A, Jaafar HZ, Rahmat A
    BMC Complement Altern Med, 2015;15(1):422.
    PMID: 26613959 DOI: 10.1186/s12906-015-0873-3
    Strobilanthes crispus is a well-known herb in Malaysia with various pharmaceutical properties. S. crispus is known to contain several biologically active chemical constituents which are responsible for its pharmaceutical quality.
    Matched MeSH terms: Antineoplastic Agents/analysis; Antineoplastic Agents/pharmacology*
  11. Yap VA, Loong BJ, Ting KN, Loh SH, Yong KT, Low YY, et al.
    Phytochemistry, 2015 Jan;109:96-102.
    PMID: 25468714 DOI: 10.1016/j.phytochem.2014.10.032
    Hispidacine, an 8,4'-oxyneolignan featuring incorporation of an unusual 2-hydroxyethylamine moiety at C-7, and hispiloscine, a phenanthroindolizidine alkaloid, were isolated from the stem-bark and leaves of the Malaysian Ficus hispida Linn. Their structures were established by spectroscopic analysis. Hispidacine induced a moderate vasorelaxant activity in rat isolated aorta, while hispiloscine showed appreciable antiproliferative activities against MDA-MB-231, MCF-7, A549, HCT-116 and MRC-5 cell lines.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/chemistry*
  12. Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ
    Drug Des Devel Ther, 2014;8:2333-43.
    PMID: 25429205 DOI: 10.2147/DDDT.S70650
    Among the array of nanomaterials, carbon nanotubes have shown great potential as drug carriers in the field of nanomedicine, owing to their attractive physicochemical structure, which facilitates functionalization of therapeutic molecules onto their external walls or being encapsulated inside the tubes. The aim of this preliminary study was to formulate betulinic acid (BA), a poorly water-soluble drug, in oxidized multiwalled carbon nanotubes (MWCNT-COOH) for enhanced delivery efficiency into cancer cells with reduced cytotoxicity. The synthesized MWCNT-BA nanocomposite was characterized using ultraviolet-visible, Fourier transform infrared, thermogravimetric analysis, powder X-ray diffraction, and field emission scanning electron microscopy techniques. The loading of BA in MWCNT-COOH nanocarrier was estimated to be about 14.5%-14.8% (w/w), as determined by ultraviolet-visible and thermogravimetric analysis. Fourier transform infrared study shows that the peaks of the resulting MWCNT-BA nanocomposite correlate to the characteristic functional groups of BA and MWCNT-COOH. The powder X-ray diffraction results confirmed that the tubular structures of MWCNT-COOH were not affected by the drug loading mechanism of BA. The release profiles demonstrated that approximately 98% of BA could be released within 22 hours by phosphate-buffered saline solution at pH 7.4 compared with about 22% within 24 hours at pH 4.8. The biocompatibility studies revealed that MWCNT-BA at concentrations <50μg/mL expressed no cytotoxicity effects for mouse embryo fibroblast cells after 72 hours of treatment. The anticancer activity of MWCNT-BA was observed to be more sensitive to human lung cancer cell line when compared with human liver cancer cell line, with half maximal inhibitory concentration values of 2.7 and 11.0μg/mL, respectively. Our findings form a fundamental platform for further investigation of the MWCNT-BA formulation against different types of cancer cells.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry*
  13. Manaharan T, Thirugnanasampandan R, Jayakumar R, Ramya G, Ramnath G, Kanthimathi MS
    ScientificWorldJournal, 2014;2014:239508.
    PMID: 25431779 DOI: 10.1155/2014/239508
    Antimetastatic and anti-inflammatory activities of Ocimum sanctum essential oil (OSEO) have been assessed in this study. OSEO at the concentration of 250 μg/mL and above showed a significant ((*) P < 0.05) decrease in the number of migrated cancer cells. In addition, OSEO at concentration of 250 μg/mL and above suppressed MMP-9 activity in lipopolysaccharide (LPS) induced inflammatory cells. A dose-dependent downregulation of MMP-9 expression was observed with the treatment of OSEO compared to the control. Our findings indicate that OSEO has both antimetastatic and anti-inflammatory potentials, advocating further investigation for clinical applications in the treatment of inflammation associated cancer.
    Matched MeSH terms: Antineoplastic Agents/isolation & purification; Antineoplastic Agents/pharmacology*
  14. Kooi OK, Ling CY, Rodzi R, Othman F, Mohtarrudin N, Suhaili Z, et al.
    PMID: 25392583
    BACKGROUND: Melastoma malabathricum L. Smith (family Melastomaceae) is a shrub that has been used by the Malay practitioners of traditional medicine to treat various types of ailments. The present study aimed to determine the chemopreventive activity of methanol extract of M. malabathricum leaves (MEMM) using the standard 7,12-dimethylbenz(α)anthracene (DMBA)/croton oil-induced mouse skin carcinogenesis model.

    MATERIALS AND METHODS: In the initiation phase, the mice received a single dose of 100µl/100 µg DMBA (group I-V) or 100µl acetone (group VI) topically on the dorsal shaved skin area followed by the promotion phase involving treatment with the respective test solutions (100 µl of acetone, 10 mg/kg curcumin or MEMM (30, 100 and 300mg/kg)) for 30 min followed by the topical application of tumour promoter (100µl croton oil). Tumors were examined weekly and the experiment lasted for 15 weeks.

    RESULTS: MEMM and curcumin significantly (p<0.05) reduced the tumour burden, tumour incidence and tumour volume, which were further supported by the histopathological findings.

    CONCLUSION: MEMM demonstrated chemoprevention possibly via its antioxidant and anti-inflammatory activities, and the action of flavonoids like quercitrin.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/therapeutic use*
  15. Tan HK, Moad AI, Tan ML
    Asian Pac J Cancer Prev, 2014;15(16):6463-75.
    PMID: 25169472
    The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*; Antineoplastic Agents/therapeutic use
  16. Rohilla P, Deep A, Kamra M, Narasimhan B, Ramasamy K, Mani V, et al.
    Drug Res (Stuttg), 2014 Oct;64(10):505-9.
    PMID: 24992500 DOI: 10.1055/s-0034-1368720
    A series of N'-(substituted benzylidene)-2-(benzo[d]oxazol-3(2H)-yl)acetohydrazide derivatives was synthesized and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial activity results revealed that compound 12 was found to be the most potent antimicrobial agent. Results of anticancer study indicated that the synthesized compounds exhibited average anticancer potential. Compound 7 (IC 50 =3.12 µM) and compound 16 (IC 50 =2.88 µM) were found to be most potent against breast cancer (MCF7) cell lines. In conclusion, compound 12 and 16 have the potential to be selected as lead compound for the developing of novel antimicrobial and anticancer agents respectively.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*; Antineoplastic Agents/pharmacology*
  17. Ali AQ, Teoh SG, Salhin A, Eltayeb NE, Khadeer Ahamed MB, Abdul Majid AM
    PMID: 24607427 DOI: 10.1016/j.saa.2014.01.086
    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis; Antineoplastic Agents/pharmacology
  18. Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, et al.
    Int J Nanomedicine, 2014;9:2479-88.
    PMID: 24899805 DOI: 10.2147/IJN.S59661
    Magnetic iron oxide nanoparticles (Fe3O4 MNPs) are among the most useful metal nanoparticles for multiple applications across a broad spectrum in the biomedical field, including the diagnosis and treatment of cancer. In previous work, we synthesized and characterized Fe3O4 MNPs using a simple, rapid, safe, efficient, one-step green method involving reduction of ferric chloride solution using brown seaweed (Sargassum muticum) aqueous extract containing hydroxyl, carboxyl, and amino functional groups mainly relevant to polysaccharides, which acts as a potential stabilizer and metal reductant agent. The aim of this study was to evaluate the in vitro cytotoxic activity and cellular effects of these Fe3O4 MNPs. Their in vitro anticancer activity was demonstrated in human cell lines for leukemia (Jurkat cells), breast cancer (MCF-7 cells), cervical cancer (HeLa cells), and liver cancer (HepG2 cells). The cancer cells were treated with different concentrations of Fe3O4 MNPs, and an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to test for cytotoxicity, resulting in an inhibitory concentration 50 (IC50) value of 23.83±1.1 μg/mL (HepG2), 18.75±2.1 μg/mL (MCF-7), 12.5±1.7 μg/mL (HeLa), and 6.4±2.3 μg/mL (Jurkat) 72 hours after treatment. Therefore, Jurkat cells were selected for further investigation. The representative dot plots from flow cytometric analysis of apoptosis showed that the percentages of cells in early apoptosis and late apoptosis were increased. Cell cycle analysis showed a significant increase in accumulation of Fe3O4 MNP-treated cells at sub-G1 phase, confirming induction of apoptosis by Fe3O4 MNPs. The Fe3O4 MNPs also activated caspase-3 and caspase-9 in a time-response fashion. The nature of the biosynthesis and therapeutic potential of Fe3O4 MNPs could pave the way for further research on the green synthesis of therapeutic agents, particularly in nanomedicine, to assist in the treatment of cancer.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage; Antineoplastic Agents/chemical synthesis
  19. Ghasemzadeh A, Jaafar HZ
    PMID: 24289290 DOI: 10.1186/1472-6882-13-341
    Phytochemicals and antioxidants from plant sources are of increasing interest to consumers because of their roles in the maintenance of human health. Most of the secondary metabolites of herbs are used in a number of pharmaceutical products.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry
  20. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    PMID: 24305067 DOI: 10.1186/1472-6882-13-343
    Hepatocellular carcinoma is a common type of tumour worldwide with a high mortality rate and with low response to current cytotoxic and chemotherapeutic drugs. The prediction of activity spectra for the substances (PASS) software, which predicted that more than 300 pharmacological effects, biological and biochemical mechanisms based on the structural formula of the substance was efficiently used in this study to reveal new multitalented actions for Vitex negundo (VN) constituents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links